Aquatic Studies at Kensington Gold Mine, 2012

by Jackie Timothy and Katrina M. Kanouse with Southeast Region Habitat Staff

February 2013

Alaska Department of Fish and Game

Division of Habitat

Symbols and Abbreviations

The following symbols and abbreviations, and others approved for the Système International d'Unités (SI), are used without definition in the following reports by the Divisions of Sport Fish and of Commercial Fisheries: Fishery Manuscripts, Fishery Data Series Reports, Fishery Management Reports, and Special Publications. All others, including deviations from definitions listed below, are noted in the text at first mention, as well as in the titles or footnotes of tables, and in figure or figure captions.

Weights and measures (metric)		General		Mathematics, statistics	
centimeter	cm	Alaska Administrative		all standard mathematical	
deciliter	dL	Code	AAC	signs, symbols and	
gram	g	all commonly accepted		abbreviations	
hectare	ha	abbreviations	e.g., Mr., Mrs.,	alternate hypothesis	H_A
kilogram	kg		AM, PM, etc.	base of natural logarithm	e
kilometer	km	all commonly accepted		catch per unit effort	CPUE
liter	L	professional titles	e.g., Dr., Ph.D.,	coefficient of variation	CV
meter	m		R.N., etc.	common test statistics	$(F, t, \chi^2, etc.)$
milliliter	mL	at	@	confidence interval	CI
millimeter	mm	compass directions:		correlation coefficient	
		east	E	(multiple)	R
Weights and measures (English)		north	N	correlation coefficient	
cubic feet per second	ft ³ /s	south	S	(simple)	r
foot	ft	west	W	covariance	cov
gallon	gal	copyright	©	degree (angular)	0
inch	in	corporate suffixes:		degrees of freedom	df
mile	mi	Company	Co.	expected value	E
nautical mile	nmi	Corporation	Corp.	greater than	>
ounce	oz	Incorporated	Inc.	greater than or equal to	≥
pound	lb	Limited	Ltd.	harvest per unit effort	HPUE
quart	qt	District of Columbia	D.C.	less than	<
yard	yd	et alii (and others)	et al.	less than or equal to	≤
		et cetera (and so forth)	etc.	logarithm (natural)	ln
Time and temperature		exempli gratia		logarithm (base 10)	log
day	d	(for example)	e.g.	logarithm (specify base)	log ₂ , etc.
degrees Celsius	°C	Federal Information		minute (angular)	
degrees Fahrenheit	°F	Code	FIC	not significant	NS
degrees kelvin	K	id est (that is)	i.e.	null hypothesis	H_{O}
hour	h	latitude or longitude	lat. or long.	percent	%
minute	min	monetary symbols		probability	P
second	S	(U.S.)	\$,¢	probability of a type I error	
		months (tables and		(rejection of the null	
Physics and chemistry		figures): first three		hypothesis when true)	α
all atomic symbols		letters	Jan,,Dec	probability of a type II error	
alternating current	AC	registered trademark	®	(acceptance of the null	
ampere	A	trademark	TM	hypothesis when false)	β
calorie	cal	United States		second (angular)	"
direct current	DC	(adjective)	U.S.	standard deviation	SD
hertz	Hz	United States of		standard error	SE
horsepower	hp	America (noun)	USA	variance	
hydrogen ion activity	рH	U.S.C.	United States	population	Var
(negative log of)			Code	sample	var
parts per million	ppm	U.S. state	use two-letter		
parts per thousand	ppt,		abbreviations		
	‰		(e.g., AK, WA)		
volts	V				
watts	W				

TECHNICAL REPORT NO. 12-10

AQUATIC STUDIES AT KENSINGTON GOLD MINE, 2012

by
Jackie Timothy
Katrina M. Kanouse
Southeast Region Habitat Staff

Alaska Department of Fish and Game Division of Habitat, Region I 802 W. 3rd Street, Juneau, Alaska, 99824-0024 February 2013

This investigation was fully financed by Coeur Alaska, Inc. through a Reimbursable Services Agreement, No. 1029540, with the Alaska Department of Natural Resources, Office of Project Management and Permitting.

Cover: Clockwise from bottom left hand corner: periphyton sample; benthic macroinvertebrates from the Orders Plecoptera (stonefly), Ephemeroptera (mayfly) and Trichoptera (caddisfly); juvenile Dolly Varden char, and; anadromous fish barrier at Johnson Creek.

Technical Reports are available through the Alaska State Library, Alaska Resources Library and Information Services (ARLIS) and on the Internet: http://www.adfg.alaska.gov/index.cfm?adfg=habitat_publications.main. This publication has undergone editorial and peer review.

Note: Product names used in the publication are included for completeness but do not constitute product endorsement. The Alaska Department of Fish and Game does not endorse or recommend any specific company or their products.

Jackie Timothy and Katrina M. Kanouse Alaska Department of Fish and Game, Division of Habitat 802 3rd Street, Douglas, AK 99824, USA

This document should be cited as:

Timothy, J. and K. M. Kanouse. 2013. Aquatic studies at Kensington Gold Mine, 2012. Alaska Department of Fish and Game, Technical Report No.12-10, Douglas, Alaska.

The Alaska Department of Fish and Game (ADF&G) administers all programs and activities free from discrimination based on race, color, national origin, age, sex, religion, marital status, pregnancy, parenthood, or disability. The department administers all programs and activities in compliance with Title VI of the Civil Rights Act of 1964, Section 504 of the Rehabilitation Act of 1973, Title II of the Americans with Disabilities Act of 1990, the Age Discrimination Act of 1975, and Title IX of the Education Amendments of 1972.

If you believe you have been discriminated against in any program, activity, or facility please write:

- ADF&G ADA Coordinator, P.O. Box 115526, Juneau, AK 99811-5526
- U.S. Fish and Wildlife Service, 4401 N. Fairfax Drive, MS 2042, Arlington, VA 22203
- Office of Equal Opportunity, U.S. Department of the Interior, 1849 C Street NW MS 5230, Washington DC 20240.

The department's ADA Coordinator can be reached via phone at the following numbers:

- (VOICE) 907-465-6077
- (Statewide Telecommunication Device for the Deaf) 1-800-478-3648
- (Juneau TDD) 907-465-3646
- (FAX) 907-465-6078

For information on alternative formats and questions on this publication, please contact the ADF&G Division of Habitat at 802 3rd Street, Juneau, AK 99824, or 907-465-4105.

TABLE OF CONTENTS

	Page
LIST OF TABLES	III
LIST OF FIGURES	III
LIST OF APPENDICES	IV
ACKNOWLEDGEMENTS	V
EXECUTIVE SUMMARY	
INTRODUCTION	
Purpose	
Study Area	
Slate Creek Drainage	
Johnson Creek Drainage	
Sherman Creek Drainage	
Aquatic Studies	10
Monitoring Schedule	16
METHODS	17
Periphyton Community Composition & Biomass	17
Rationale (APDES 1.5.3.5.2)	17
Sample Collection and Analysis	
Data Presentation	
Rationale (APDES 1.5.3.2)	
Sample Collection and Analysis	
Data Presentation	
Resident Fish Population	19
Rationale (APDES 1.5.3.3)	
Sample Collection and Analysis	
Data Presentation	
Rationale (APDES 1.5.3.3.1)	
Sample Collection and Analysis	
Data Presentation	
Resident Fish Metals Concentrations	23
Rationale (APDES 1.5.3.4)	
Sample Collection and Analysis	
Data Presentation	
Sediment Metals Concentrations	
Rationale (APDES 1.5.2)	
Data Presentation	
Sediment Metals Toxicity	24
Rationale (APDES 1.5.2.3)	24
Sample Collection and Analysis	24
Data Presentation	
Spawning Substrate Quality	
Rationale (APDES 1.5.3.5.1)	25

TABLE OF CONTENTS (Continued)

	1 age
Sample Collection	25
Data Presentation	25
Adult Salmon Counts	26
Rationale (USFS Plan of Operations)	26
Sample Collection	
Data Presentation	
RESULTS	27
Slate Creek	27
Lower Slate Creek	27
Periphyton Community Composition & Biomass	27
Benthic Macroinvertebrate Composition & Abundance	
Resident Fish Metals Concentrations	29
Sediment Metals Concentrations	
Sediment Toxicity	
Adult Salmon Counts	
Spawning Substrate Quality	
East Fork Slate Creek	
Periphyton Community Composition & Biomass	
Benthic Macroinvertebrate Composition & Abundance	
Resident Fish Population & Condition Resident Fish Metals Concentrations	
Sediment Metals Concentrations	
Sediment Toxicity	
Aquatic Vegetation Surveys	
West Fork Slate Creek	
Periphyton Community Composition & Biomass	
Benthic Macroinvertebrate Composition & Abundance	
Upper Slate Creek	
Periphyton Community Composition & Biomass	48
Benthic Macroinvertebrate Composition & Abundance	
Resident Fish Population & Condition	
Resident Fish Metals Concentrations	
Sediment Metals Concentrations	
Sediment Toxicity	
Johnson Creek	
Lower Johnson Creek	
Sediment Metals Concentrations	
Sediment Toxicity	
Adult Salmon Counts	
Upper Johnson Creek Benthic Macroinvertebrate Composition & Abundance	
Sherman Creek	
Lower Sherman Creek	
Benthic Macroinvertebrate Composition & Abundance	
Sediment Metals Concentrations	
Sediment Toxicity	
Adult Salmon Counts	
REFERENCES CITED	

LIST OF TABLES

Table		Page
1.	Aquatic studies sample sites in three drainages	
2.	Aquatic studies sampling frequency	
3.	Latitude and longitude of sampling stations.	
4.	Aquatic studies data collection schedule	16
5.	Lower Slate Creek chlorophylls a, b, and c mean densities	27
6.	East Fork Slate Creek chlorophylls a, b, and c mean densities	35
7.	West Fork Slate Creek chlorophylls a, b, and c mean densities	46
8.	Upper Slate Creek chlorophylls a, b, and c mean densities	48
9.	Lower Sherman Creek Sample Point 1 chlorophylls a, b, and c mean densities	
10.	Lower Sherman Creek Sample Point 2 chlorophylls a , b , and c mean densities	57
	LIST OF FIGURES	
Figure		Page
1.	Kensington Gold Mine area map	
2.	Kensington Gold Mine infrastructure.	
3.	Slate Creek Drainage	
4.	Johnson Creek Drainage.	
5.	Sherman Creek Drainage	9
6.	Aerial view of the Slate Creek Drainage below the TTF.	
7.	Slate Creek aquatic studies.	
8.	Johnson Creek aquatic studies.	
9.	Sherman Creek aquatic studies	
10. 11.	Lower State Creek chlorophyll <i>a</i> densities	
12.	Lower Slate Creek entolophyn a densities. Lower Slate Creek benthic macroinvertebrates.	
13.	Lower State Creek whole body metals concentrations.	
14.	Lower Slate Creek sediment metals concentrations.	
15.	Lower Slate Creek adult pink salmon counts.	
16.	Lower Slate Creek adult pink salmon distribution.	
17.	Lower Slate Creek geometric mean particle sizes by sample and sample point	
18.	Lower Slate Creek geometric mean particle size of all samples by year	
19.	Diversion dam, pipeline, and TTF.	34
20.	Approximate diversion pipeline route.	
21.	East Fork Slate Creek discharge, July 2011 and 2012	
22.	East Fork Slate Creek chlorophylls a, b, and c proportion	
23.	East Fork Slate Creek chlorophyll a densities	36
24.	East Fork Slate Creek benthic macroinvertebrates.	
25.	East Fork Slate Creek resident fish population estimates.	
26.	East Fork Slate Creek resident fish population estimates by habitat type.	
27.	East Fork Slate Creek resident fish length frequency.	
28.	East Fork Slate Creek whole body metals concentrations.	
29.	East Fork Slate Creek sediment metals concentrations.	
30.	Chlorophyll <i>a</i> parts per billion (mg/m ³) at four stations	
31.	Total Kjeldahl nitrogen parts per million (mg/L) at four stations.	
32.	Total phosphorus parts per million (mg/L) at four stations.	
33.	East Fork Slate Creek TDS and TTF total phosphorus in parts per million (mg/L)	
34.	Total recoverable potassium parts per million (mg/L) at four stations	
35.	Total sulfur parts per million (mg/L) at four stations.	
36. 37.	Total Organic Carbon parts per million (mg/L) at four stations	
31.	West Fork State Creek periphyton sample taken July 23, 2012.	40

LIST OF FIGURES (Continued)

Figur	re	Page
38.	West Fork Slate Creek chlorophylls a, b, and c proportion	_
39.	West Fork Slate Creek chlorophyll a densities.	
40.	West Fork Slate Creek benthic macroinvertebrates	
41.	Upper Slate Creek chlorophylls <i>a</i> , <i>b</i> , and <i>c</i> proportion	49
42.	Upper Slate Creek chlorophyll a densities.	49
43.	Upper Slate Creek benthic macroinvertebrates.	50
44.	Upper Slate Creek resident fish population estimates.	50
45.	Upper Slate Creek resident fish population estimates by habitat type	51
46.	Upper Slate Creek resident fish length frequency.	51
47.	Upper Slate Creek whole body metals concentrations.	52
48.	Upper Slate Creek sediment metals concentrations.	
49.	Lower Johnson Creek sediment metals concentrations.	54
50.	Ben Brewster collects sediment in Lower Johnson Creek	54
51.	Lower Johnson Creek adult pink salmon counts.	55
52.	Lower Johnson Creek adult pink salmon distribution.	56
53.	Upper Johnson Creek benthic macroinvertebrates.	57
54.	Lower Sherman Creek Sample Point 1 chlorophylls a, b, and c proportion	58
55.	Lower Sherman Creek Sample Point 2 chlorophylls a, b, and c proportion	58
56.	Lower Sherman Creek Sample Point 1 chlorophyll a densities.	58
57.	Lower Sherman Creek Sample Point 2 chlorophyll a densities	58
58.	Lower Sherman Creek Sample Point 1 benthic macroinvertebrates.	59
59.	Lower Sherman Creek Sample Point 2 benthic macroinvertebrates.	59
60.	Lower Sherman Creek sediment metals concentrations.	60
61.	Lower Sherman Creek adult pink salmon counts.	61
62.	Lower Sherman Creek adult pink salmon distribution.	61

LIST OF APPENDICES

Appendix

- A PERIPHYTON DATA
- B BENTHIC MACROINVERTEBRATE DATA
- C RESIDENT FISH POPULATION & CONDITION DATA
- D RESIDENT FISH METALS CONCENTRATIONS LAB REPORT
- E SEDIMENT METALS CONCENTRATIONS & TOXICITY LAB REPORTS
- F SPAWNING SUBSTRATE QUALITY DATA
- G ADULT SALMON COUNT DATA
- H SHERMAN CREEK CATALOG NOMINATION

ACKNOWLEDGEMENTS

The Alaska Department of Fish and Game thanks Coeur Alaska Inc. Kensington Gold Mine for financially supporting the aquatic studies program. Kevin Eppers, Pete Strow, and staff provided logistical support and water quality information.

Alaska Department of Fish and Game Division of Habitat biologists assisted with this year's effort, including Greg Albrecht, Benjamin Brewster, Matt Kern, Tally Teal, Tess Quinn, Gordon Willson-Naranjo, and Johnny Zutz. John Hudson provided macroinvertebrate quality assurance and control. Division of Sport Fish biometrician Dan Reed provided biometric review and Dr. Al Ott provided technical review. Habitat biologist Nicole Legere edited the draft report and Amy Carroll of the Commercial Fisheries Division prepared the report for publication. Thank you all so very much.

EXECUTIVE SUMMARY

The Alaska Department of Fish and Game (ADF&G) Division of Habitat (Habitat) completes the aquatic resource monitoring the U.S. Forest Service (USFS) and the Alaska Department of Environmental Conservation (DEC) require for Coeur Alaska Inc.'s (Coeur) Kensington Gold Mine. This partnership provides Habitat the opportunity to gather and review aquatic information and identify, assess, and resolve issues at the Kensington Gold Mine as they arise.

During 2011, the first year we completed aquatic studies, we observed the physiochemical habitat characteristics of each sample site are distinct and saw less value in comparisons amongst drainages and more value in comparisons at each sampling location between years. In 2012, we focused on evaluating stream health by assessing biotic assemblages in relation to the physical and chemical constituents within a drainage section. This process will continue over the long term. These are complex relationships with inherent high variability.

Weather is a factor we consider when we analyze the aquatic study data. The National Weather Service reports that November 2012 was the seventh consecutive month that Juneau experienced air temperatures below normal. The cooler temperatures contributed to a decrease in algal biomass in our annual July samples at all sample sites except in Upper Slate Creek where we observed a slightly greater density. The cooler temperatures and above normal precipitation in 2012 also effectively controlled the algae growing in the tailing treatment facility (TTF) so the filters in the TTF wastewater treatment plant did not clog.

Coeur's environmental staff agreed we could continue sampling periphyton quarterly in Lower, East Fork and Upper Slate Creek during 2012 and beyond. Should warmer temperatures and decreased precipitation in future years result in an algal bloom in the TTF as happened in 2011, we will have periphyton community composition and biomass data across seasons and drainage sections to compare. These data will be useful should Coeur need to treat the TTF with an algaecide. Of interest is there are no significant differences between the mean ranks of July 2011 and July 2012 chlorophyll *a* densities in samples collected in East Fork Slate Creek, meaning algal biomass is about the same both years downstream of the TTF.

The Lower Slate Creek benthic macroinvertebrate sample site is a shallow, wide riffle with no defined thalweg. We find it difficult to select suitable sampling locations and we record more chironomids (midges) in Lower Slate Creek than any other Kensington Gold Mine sampling site. Though we tried to replicate the 2005–2010 sampling reach of the previous contractor (Flory 2011), we are not confident we sampled the exact reach in 2011 and 2012. In 2013, we will collect six additional benthic macroinvertebrate samples at riffle habitats upstream where it appears there are better opportunities for sampling. If we find the EPT taxa in previously documented proportions, we will establish a new long-term benthic macroinvertebrate sampling site in Lower Slate Creek.

The concentrations of the metallic elements cadmium, copper, lead, mercury, nickel, silver, and zinc, and the semimetallic element arsenic, are higher in East Fork Slate Creek stream sediments than in those of Upper Slate or Lower Slate Creeks. Cadmium and zinc concentrations are about an order of magnitude higher and unlike the aforementioned metals, do not naturally occur above NOAA sediment recommendations^a for freshwater ecosystems (Buchman 2008; MacDonald et al.

^a These are guidelines, not federal or state standards.

2000) at Upper Slate Creek, suggesting input somewhere between the sampling stations in Upper Slate Creek and East Fork Slate Creek, which includes the TTF, dam and plunge pool.

That said, there are no significant differences in growth or survival of *Chironomus dilutes* or *Hyalella azteca* between the laboratory control sediments and the individual sediment samples in our short-term chronic sediment toxicity tests at any sampling location. We will sample stream sediments in West Fork Slate Creek and Upper Sherman Creek in 2013 and test for metals concentrations to improve our understanding of naturally occurring background conditions.

The phosphorous concentrations measured in the TTF last year are consistent with those found in eutrophic lakes, and this year are consistent with those found in mesotrophic lakes, despite the TTF being situated in the formerly oligotrophic Lower Slate Lake. We theorize a source of phosphorous in the mine tailings is causing algal blooms in the TTF.

We may be starting to see a correlation between phosphorus spikes in the TTF and total dissolved solids^b (TDS) spikes downstream in East Fork Slate Creek. In 2013, we will review these data with a 2012 schedule of TTF discharge to see if there is a correlation between phosphorus dips when the mill is not operating or when the tailings are directed to the underground paste plant. We have not ruled out natural seeps or the graphitic phyllite seeps at the dam and plunge pool as a metals contributor to East Fork Slate Creek.

In 2013, we will sample Dolly Varden char *Salvelinus malma* in West Fork Slate Creek for whole body metals concentrations for comparison with other Slate Creek drainage sampling locations. These data will help improve our understanding of natural metals concentrations and variability.

In our 2011 report, we stated we would investigate overwintering habitat possibilities in East Fork Slate Creek in 2012, as previous contractors suggested the East Fork Slate Creek Dolly Varden char population might be dependent on Upper Slate Lake migrants. We did not complete the investigation in 2012 as we planned, and have scheduled visits in February 2013.

We attempted, and did not document adult coho salmon returning to Lower Slate Creek, though it makes sense they spawn there given the number of age-0 and 1-year-old juveniles we observe. We viewed adult coho salmon returning to Lower Johnson Creek during snorkel surveys, and will continue to survey Lower Slate Creek by foot and snorkeling in 2013 as we work to document adult coho salmon spawning in the system. We will continue to investigate the presence of age-0 and 1-year-old juvenile coho salmon in Lower Slate Creek during spring 2013.

We reviewed the 2011 data with the 2012 data to ensure accuracy. We found errors in the 2011 periphyton, benthic macroinvertebrate, resident fish, and spawning substrate datasets. We corrected the errors and note corrections that change results in this report. We will continue the practice of revisiting the long-term dataset annually, noting errors and corrections in the subsequent report. Since we provide the report to Coeur by the end of February each year, readers can ensure they are reviewing the most recent issue by checking the February [year] date near the bottom of the cover page.

^b TDS is a measure of minerals, salts, metals, cations or anions dissolved in water.

INTRODUCTION

The Kensington Gold Mine is located near Berners Bay in Southeast Alaska; about 72.5 km north of Juneau by air and about 56 km south of Haines by air (Figure 1). The site, where mining began near the end of the 19th century, is within the City and Borough of Juneau and the Tongass National Forest (Tetra Tech Inc. et al. 2004a,b). The mine is owned and operated by Coeur Alaska, Inc. under the Coeur d'Alene Corporation out of Coeur d'Alene, Idaho.

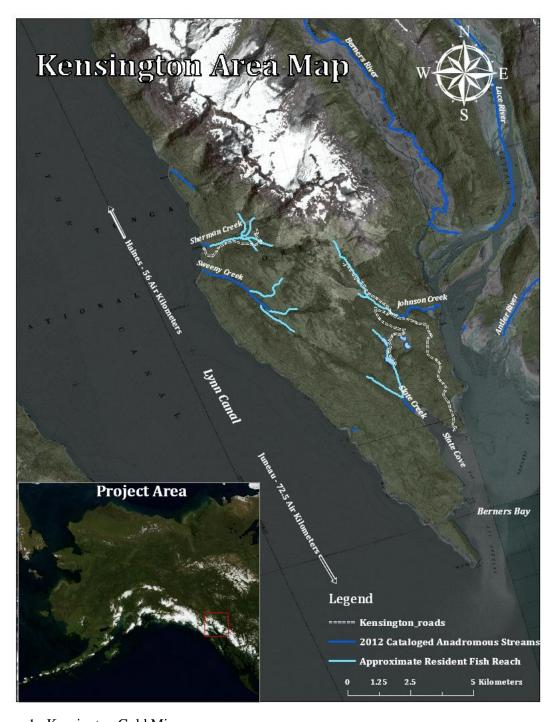


Figure 1.–Kensington Gold Mine area map.

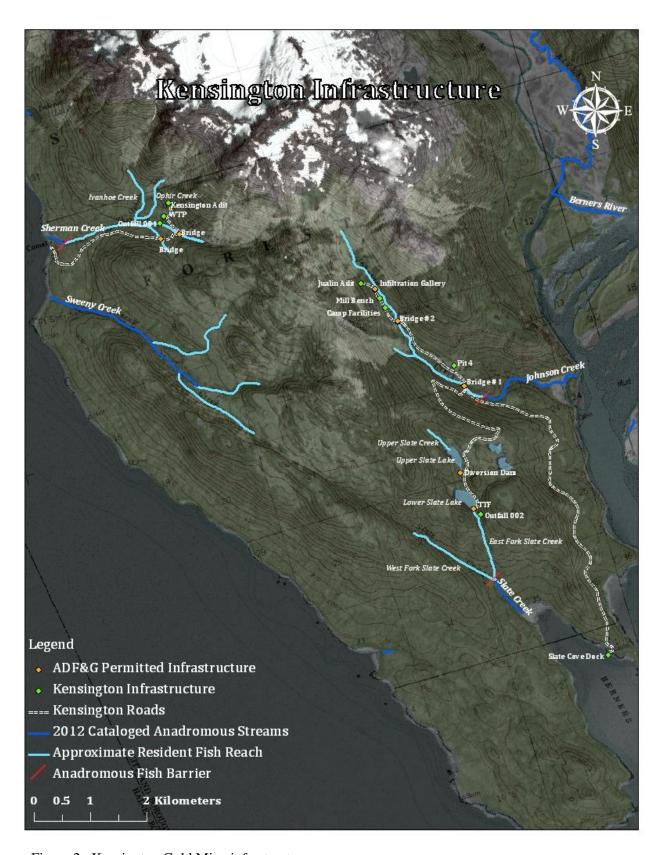


Figure 2.–Kensington Gold Mine infrastructure.

Mine infrastructure is located in three drainages that support anadromous fish (Figure 2):

- The TTF in the Slate Creek drainage;
- The camp and mill facilities in the Johnson Creek drainage, and;
- The mine water treatment facility in the Sherman Creek drainage.

The Kensington and Jualin adits were connected in July 2007, making travel through the ore body between the Johnson and Sherman Creek drainages possible. The mine began production on June 24, 2010 and produces gold concentrate that is exported for processing. Tailings are disposed as slurry from the mill through a pipeline into the TTF. Under ADF&G's authorities at Alaska Statute (AS) 16.05.841 and 16.05.871, Habitat permits a dam and stream diversion in the Slate Creek drainage that allows Dolly Varden char to bypass the TTF and move downstream into East Fork Slate Creek. Habitat permits activities in two other waterbodies where Kensington Gold Mine activities occur, including an infiltration gallery and bridges at Johnson Creek, and bridges over tributaries to Sherman Creek (Timothy and Kanouse 2012, Appendix B).

Contractors gathered aquatic data for the Kensington Gold Mine from the late 1980s through 2005 that, in part, informed Habitat permit decisions, the USFS Plan of Operations monitoring requirements (Coeur 2005), the Environmental Protection Agency (EPA) National Pollutant Elimination Discharge System (NPDES) Permit No. AK-005057-1 (Timothy & Kanouse 2012, Appendix A), and the DEC Alaska Pollutant Elimination System (APDES) Permit No. AK0050571 (Timothy and Kanouse 2012, Appendix A). Contractor reports include Archipelago Marine Research Ltd. (1991), Dames and Moore (1991), Earthworks Technology, Inc. (2002), EVS Environment Consultants (2000), Flory (1998, 1999, 2000, 2001a, 2001b, 2002, 2004), HDR Alaska, Inc. (2003), Kline Environmental Research, LLC (2001, 2003, 2005), Konopacky Environmental (1992a, 1992b, 1993a, 1993b, 1993c, 1995, 1996a, 1996b, 1996c, 1996d), Pentec Environmental (1990, 1991), and Steffen Robertson and Kirsten Consulting Engineers and Scientists (1997). Monitoring reports include Flory (2006, 2007, 2008, 2009a, 2009b, 2009c, 2009d, 2011) and (Timothy and Kanouse 2012).

Habitat began the aquatic studies for the Kensington Gold Mine in Slate, Johnson, and Sherman Creeks in 2011. The aquatic monitoring requirements at the mine changed in 2011 as DEC assumed responsibility for mine discharge permitting, compliance, and enforcement, previously held by the EPA. The APDES Permit requires periphyton, benthic macroinvertebrate, resident fish and sediment sampling. Overall stream health is assessed by estimates of periphyton community composition and chlorophyll *a* biomass, benthic macroinvertebrate composition and abundance, resident Dolly Varden char abundance, condition, and whole body metals concentrations in the Slate Creek system, sediment metals concentrations, sediment toxicity, and pink salmon spawning substrate quality. Habitat also completes adult salmon counts and the tailing habitability studies the USFS Plan of Operations requires (Coeur 2005).

PURPOSE

The purpose of this technical report is to summarize our 2012 aquatic study data and document the condition of biological communities and sediments in the Slate, Johnson, and Sherman Creek drainages near mine development and operations. This report satisfies the aquatic study requirements of Coeur's USFS approved 2005 Plan of Operations and APDES Permit AK0050571.

STUDY AREA

We sample the locations within the drainages listed in Table 1.

Table 1.–Aquatic studies sample sites in three drainages.

Slate Creek	Johnson Creek	Sherman Creek
Lower Slate Creek East Fork Slate Creek West Fork Slate Creek TTF (Lower Slate Lake) Upper Slate Creek	Lower Johnson Creek Upper Johnson Creek	Lower Sherman Creek

Note: Drainages are located near the Kensington Gold Mine, 2012.

Slate Creek Drainage

Slate Creek (Figure 3) drains a 10.5 km² watershed (Coeur 2005) into Slate Cove on the northwest side of Berners Bay. Two waterfalls about 1 km upstream of the mouth prevent upstream anadromous fish passage to the East and West Forks. There are two lakes in this drainage; Lower Slate and Upper Slate Lakes, both upstream of the East Fork. Many of the plants and animals that inhabit lakes differ from those that inhabit rivers, so results of samples taken in Lower Slate and East Fork Slate Creeks below the lakes will differ from those of West Fork Slate and Upper Slate Creeks, Johnson Creek, and Sherman Creek, where lakes are not present.

The Catalog of Waters Important for the Spawning, Rearing, or Migration of Anadromous Fishes (Catalog; Johnson and Blanche 2012) lists Lower Slate Creek (Stream No. 115-20-10030) providing habitat for pink salmon *Oncorhynchus gorbuscha*, chum salmon *O. keta*, coho salmon *O. kisutch*, and eulachon *Thaleichthys pacificus*. Dolly Varden char and cutthroat trout *O. clarkii* are present below the waterfalls. Above the waterfalls, Dolly Varden char are present in East Fork Slate, West Fork Slate and Upper Slate Creeks.

We access Slate Creek by kayak from the Slate Cove dock when conditions permit. During inclement weather, we access the creek hiking along the rocky shoreline, or through the woods to the mouth. Above the waterfalls, East Fork Slate Creek is on river left and West Fork Slate Creek is on river right. The 1 km East Fork Slate Creek reach above the waterfalls, to a plunge pool at the base of an earthen dam that contains the TTF, is a series of steep cascade falls. Upstream of the TTF, a small concrete dam diverts water draining from Upper Slate Lake through a diversion pipeline and into East Fork Slate Creek at the plunge pool, bypassing the TTF. Upper Slate Creek is the inlet creek to Upper Slate Lake and is upstream of current mine operations.

^c The terms "river right" and "river left" are looking downstream in the direction water is flowing, per USGS convention.

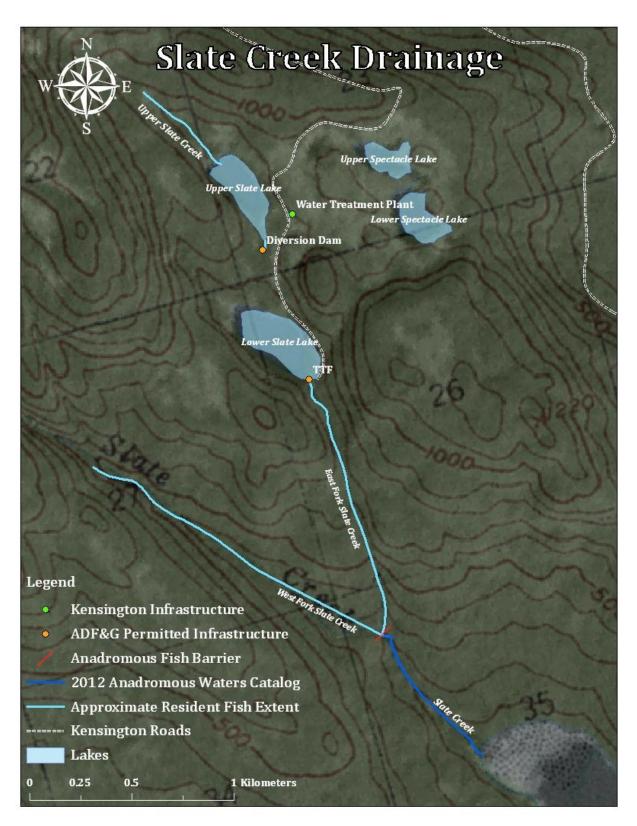


Figure 3.–Slate Creek Drainage.

Johnson Creek Drainage

Johnson Creek (Figure 4) drains a 14.6 km² watershed (Coeur 2005) to the north side of Berners Bay. A waterfall about 1.5 km upstream of the mouth prevents anadromous fish passage. The Catalog (Johnson and Blanche 2012) lists Johnson Creek (Stream No. 115-20-10070) providing habitat for pink, chum, and coho salmon. Dolly Varden char and cutthroat trout are present below the waterfall, and Dolly Varden char are present above the waterfall.

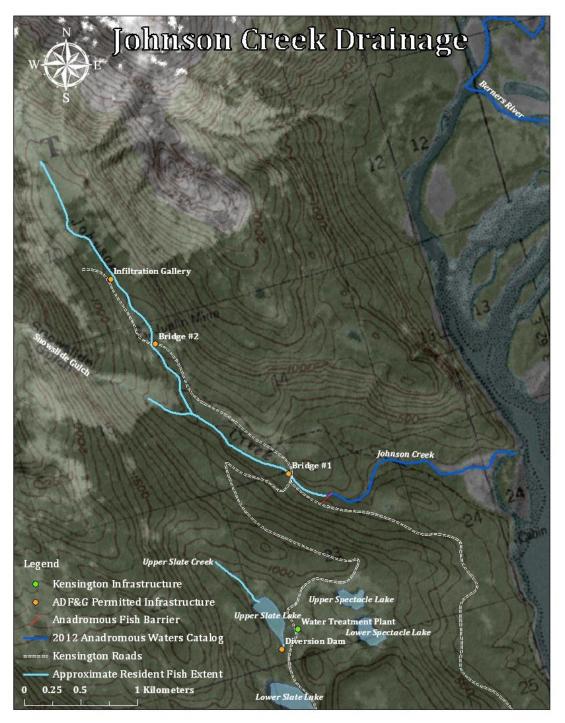


Figure 4.—Johnson Creek Drainage.

We access Lower Johnson Creek by hiking downhill from mile 3 of the Jualin road, through the woods and across meadows to the mouth. About 0.5 km above the anadromous barrier, the creek runs beneath the Jualin Road Bridge 1. The Snowslide Gulch tributary is on river right about 1 km upstream of Jualin Road Bridge 1. Further upstream, the creek runs beneath the Jualin Road Bridge 2 with camp facilities, the mill and the Jualin adit on river right. Upper Johnson Creek is between Jualin Road Bridge 2 and the headwaters. An infiltration gallery collects water from Johnson Creek at the mill bench to support the camp. Upper Johnson Creek above the waste rock pile near the Jualin adit to the headwaters is upstream of current mine operations.

Sherman Creek Drainage

Sherman Creek (Figure 5) drains a 10.84 km² watershed (Coeur 2005) to the east shore of Lynn Canal. A waterfall about 360 m upstream from the mouth prevents anadromous fish passage. The Catalog (Johnson and Blanche 2012) lists Sherman Creek (Stream No. 115-31-10330) providing habitat for pink, chum and coho salmon. Habitat submitted a nomination to remove coho salmon and correct the 2013 Catalog, since juvenile and adult coho salmon have not been documented in Sherman Creek. Above the waterfall, Dolly Varden char are present.

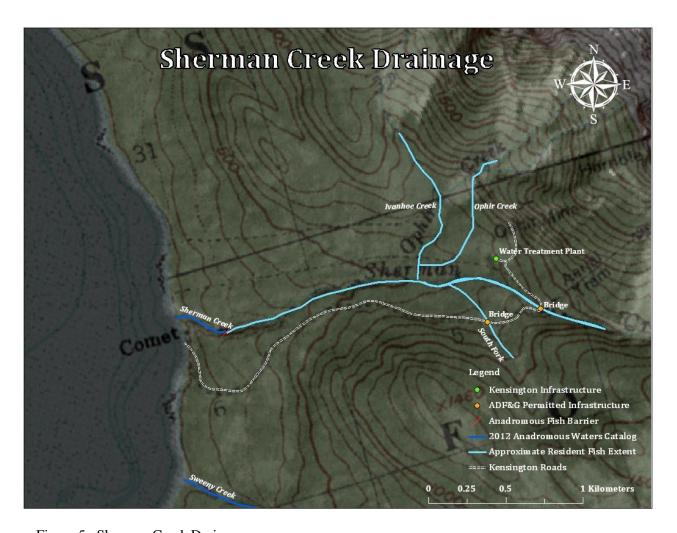


Figure 5.—Sherman Creek Drainage.

We access Sherman Creek by driving underground from the Jualin adit to the Kensington adit and then down the Comet Road to the beach where we walk north about 100 m to the mouth. Middle Sherman Creek is upstream of the waterfall and intercepts Ophir Creek on river right. Upstream of the Sherman and Ophir Creeks confluence, the South Fork of Sherman Creek is on river left. The mine water treatment plant Outfall 001 is upstream of the Sherman and South Fork Creeks confluence. The outfall discharge into Sherman Creek does not require an ADF&G fish passage permit as the discharge does not block fish passage (AS 16.05.841). Upper Sherman Creek above the Comet Road to the headwaters is upstream of current mine operations. The historic 2050 adit and a cabin are in this drainage.

AQUATIC STUDIES

We conduct the Kensington Gold Mine aquatic studies^d at the frequency specified in the USFS Plan of Operations and DEC APDES Permit (Table 2). We note when we include studies in the Slate Creek drainage (Figure 6) in excess of those required by the USFS or DEC. We show maps of the stream segments and aquatic study sampling stations in Figures 7, 8, & 9. The latitude and longitude of each aquatic study sampling station is listed in Table 3.

Figure 6.—Aerial view of the Slate Creek Drainage below the TTF.

_

For our own information, we use an Extech Exstick II field meter to measure basic water quality at each site during sampling, including temperature and conductivity. We use a Global Water Flow Probe FP101 to measure stream flow. Product names used in the publication are included for completeness but do not constitute product endorsement. The Alaska Department of Fish and Game does not endorse or recommend any specific company or their products.

Table 2.—Aquatic studies sampling frequency.

Location	Location Description	Aquatic Study	Sampling Frequency
Lower Slate Creek	Anadromous, drains to Berners Bay downstream of a 25 m barrier waterfall.	Periphyton biomass and composition Benthic macroinvertebrate composition and abundance Resident fish metals concentrations (Ag, Al, Cd, Cr, Cu, Pb, Hg, Ni, Se, and Zn) Sediment metals concentrations and toxicity (Ag, Al, As, Cd, Cr, Cu, Pb, Hg, Ni, Se, and Zn) Spawning substrate quality Adult salmon counts	1/year 1/year 1/year 1/year 1/year Annually
East Fork Slate Creek	Riffles and cascade falls downstream of the TTF to the barrier waterfall.	Periphyton biomass and composition Benthic macroinvertebrate composition and abundance Resident fish population and condition Resident fish metals concentrations (Ag, Al, As, Cd, Cr, Cu, Pb, Hg, Ni, Se, and Zn) Sediment metals concentrations and toxicity (Ag, Al, As, Cd, Cr, Cu, Pb, Hg, Ni, Se, and Zn)	1/year 1/year 1/year 1/year
West Fork Slate Creek	Reference site, a tributary to Slate Creek located outside of mine influence.	Periphyton biomass and composition Benthic macroinvertebrate composition and abundance	1/year 1/year
Upper Slate Creek	Control site located on the north side of upper Slate Lake upstream of mine influence.	Periphyton biomass and composition Benthic macroinvertebrate composition and abundance Resident fish population and condition Resident fish metals concentrations (Ag, Al, Cd, Cr, Cu, Pb, Hg, Ni, Se, and Zn) Sediment metals concentrations and toxicity (Ag, Al, As, Cd, Cr, Cu, Pb, Hg, Ni, Se, and Zn)	1/year 1/year 1/year 1/year 1/year
Lower Johnson Creek	Anadromous, drains to Berners Bay below a 30 m barrier waterfall.	Sediment metals concentrations and toxicity (Ag, Al, As, Cd, Cr, Cu, Pb, Hg, Ni, Se, and Zn) Adult salmon counts	1/year Annually
Upper Johnson Creek	Adjacent to camp facilities, downstream of the mill bench.	Benthic macroinvertebrate composition and abundance	1/year
Lower Sherman Creek	Anadromous, drains to Lynn Canal below a 15 m barrier waterfall.	Periphyton biomass and composition Benthic macroinvertebrate composition and abundance Sediment metals concentrations and toxicity (Ag, Al, As, Cd, Cr, Cu, Pb, Hg, Ni, Se, and Zn) Adult salmon counts	1/year 1/year 1/year 1/year

Note: Requirements of the DEC APDES Permit and USFS Plan of Operations.

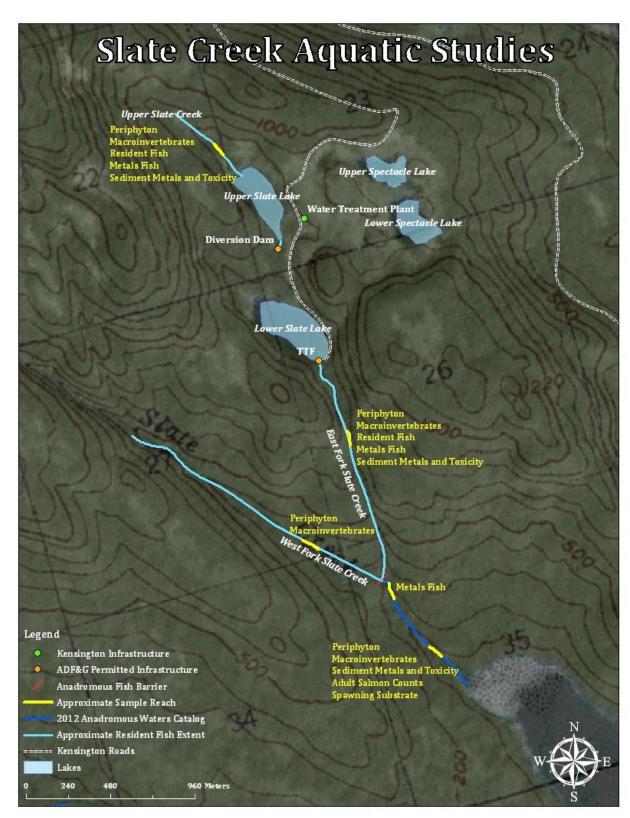


Figure 7.-Slate Creek aquatic studies.

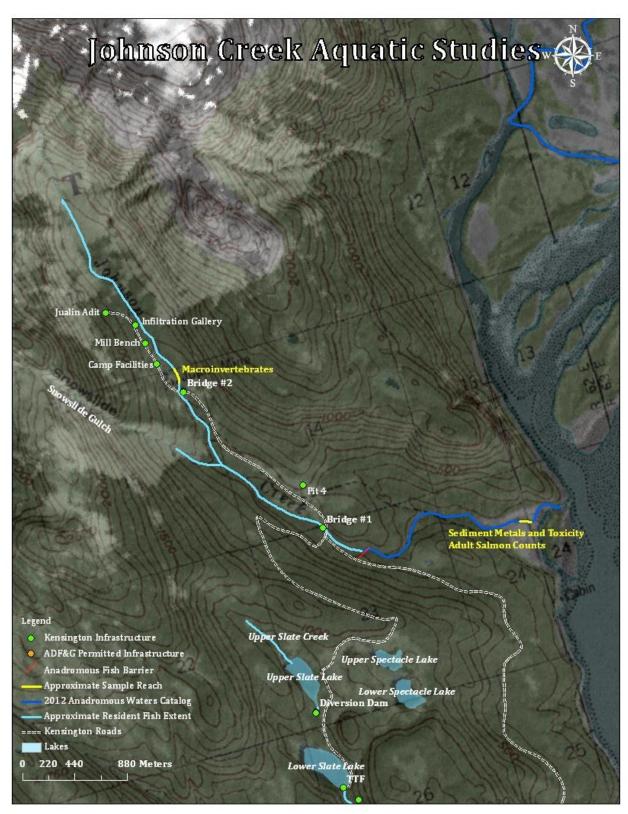


Figure 8.–Johnson Creek aquatic studies.

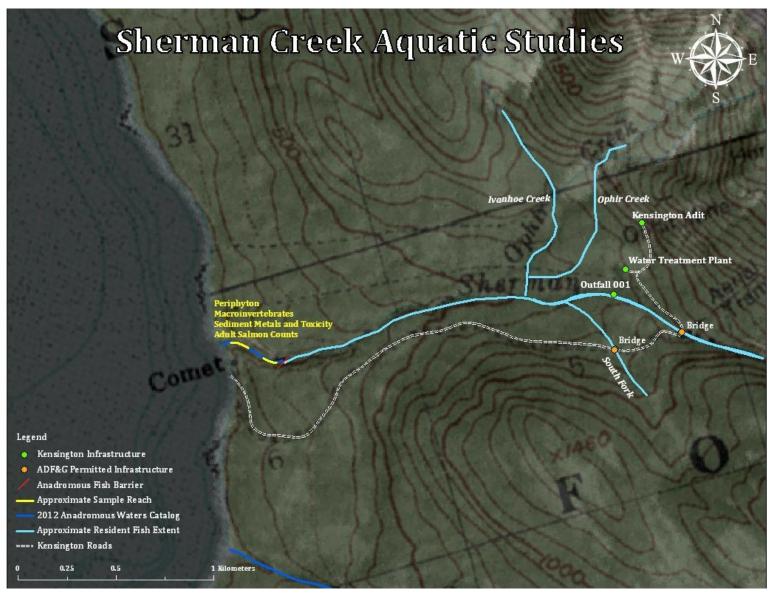


Figure 9.-Sherman Creek aquatic studies.

Table 3.–Latitude and longitude of sampling stations.

Location	Sample Parameter	Latitude	Longitude
Lower Slate Creek	Periphyton	58.7901° N	135.0343° W
	Benthic Macroinvertebrates	58.7901° N	135.0342° W
	Resident Fish Metals	58.7964° N	135.0389° W
	Sediment Metals and Toxicity	58.7920° N	135.0360° W
	Spawning Substrate Sample Point 1	58.7905° N	135.0345° W
	Spawning Substrate Sample Point 2	58.7905° N	135.0345° W
East Fork Slate Creek	Periphyton	58.8046° N	135.0382° W
	Benthic Macroinvertebrates	58.8045° N	135.0381° W
	Resident Fish	58.8040° N	135.0382° W
	Resident Fish Metals	58.8040° N	135.0382° W
	Sediment Metals and Toxicity	58.8053° N	135.0383° W
West Fork Slate Creek	Periphyton	58.7992° N	135.0460° W
	Benthic Macroinvertebrates	58.7995° N	135.0459° W
Upper Slate Creek	Periphyton	58.8191° N	135.0416° W
	Benthic Macroinvertebrates	58.8189° N	135.0415° W
	Resident Fish	58.8199° N	135.0425° W
	Resident Fish Metals	58.8199° N	135.0425° W
	Sediment Metals and Toxicity	58.8189° N	135.0416° W
Lower Johnson Creek	Sediment Metals and Toxicity	58.8235° N	135.0048° W
Upper Johnson Creek	Benthic Macroinvertebrates	58.8407° N	135.0450° W
Lower Sherman Creek	Periphyton Sample Point 1	58.8687° N	135.1414° W
	Periphyton Sample Point 2	58.8672° N	135.1376° W
	Benthic Macroinvertebrates Sample Point 1	58.8688° N	135.1412° W
	Benthic Macroinvertebrates Sample Point 2	58.8674° N	135.1381° W
	Sediment Metals and Toxicity	58.8687° N	135.1413° W

Source: World Geodetic System 84 datum, at Kensington Gold Mine, 2012.

MONITORING SCHEDULE

We document our 2012 aquatic studies data collection schedule in Table 4.

Table 4.—Aquatic studies data collection schedule.

Aquatic Study	Lower Slate	East Fork Slate	West Fork Slate	Upper Slate	Lower Johnson	Upper Johnson	Lower Sherman
Periphyton	2/8/12 5/2/12	2/7/12 4/27/12		2/7/12 4/27/12			
	7/25/12 10/30/12	7/24/12 10/30/12	7/25/12	7/24/12 10/30/12			7/26/12
Benthic Macroinvertebrates	2/8/12 5/2/12	2/8/12 4/27/12	5/2/12	10/30/12		4/26/12	4/30/12
Resident Fish		8/1/12		4/27/12			
Resident Fish Metals	8/20/12	8/1/12		8/2/12			
Sediment Metals and Toxicity	7/3/12	7/10/12		8/2/12	7/2/12		7/3/12
Adult Salmon Counts	7/16/12– 10/30/12				7/17/12– 11/5/12		7/16/12- 9/18/12
Spawning Substrate Quality	7/9/12			7/2/12			

Note: Data collected by Habitat biologists at Kensington Gold Mine, 2012.

METHODS^e

PERIPHYTON COMMUNITY COMPOSITION & BIOMASS Rationale (APDES 1.5.3.5.2)

Periphyton are primary producers whose microcommunites include algae, cyanobacteria, heterotrophic microbes, and detritus attached to the submerged surfaces of aquatic ecosystems. The chlorophyll a pigment in periphyton samples provides an estimate of active algal biomass present. Chlorophyll b and c pigments provide an estimate of the composition of organisms present in addition to those found in chlorophyll a. We monitor periphyton community composition and biomass in Lower Slate Creek, East Fork Slate Creek, and Lower Sherman Creek receiving waters downstream of Kensington Gold Mine discharges as a reliable indicator of water quality and to detect changes over time. We monitor periphyton community composition and biomass in the West Fork Slate Creek and Upper Slate Creek reference sites to detect variations due to other natural factors that may include mineral seeps, climate, and stream flow.

Sample Collection and Analysis

We attempt to sample periphyton annually at low flows when there have not been high flows within the previous three weeks. We collect 10^f smooth, flat, undisturbed, and perennially wetted rocks from a riffle area of submerged cobble in less than 0.45 m of water within each study reach using the collection methods described in Ott et al. (2010). We place a 5×5 cm square of high-density foam on each rock and scrub the area around the foam with a toothbrush to remove all attached algae outside the covered area. We rinse the rock by dipping it with foam intact in the stream.

We remove the foam square and scrub the sample area with a rinsed toothbrush over a 1 µm, 47 mm glass fiber filter attached to a vacuum pump. We use stream water in a wash bottle to rinse the loosened periphyton from the rock, the toothbrush, and the inside of the vacuum pump onto the filter. We pump most of the water through the filter then add a few drops^g of saturated magnesium carbonate (MgCO₃) to the filter before we pump the sample dry. This prevents acidification and conversion of chlorophyll to phaeophyton. We remove the dry glass fiber filter, fold it in half with the sample on the inside, and wrap it in a coffee filter to absorb additional water. We place the sample in a sealed, labeled plastic bag with desiccant and store the samples in a light-proof cooler containing frozen gel packs until we can freeze them. Once we return to the office, we keep the samples frozen at -20°C until processing.

We follow U.S. Environmental Protection Agency protocol (1997) for chlorophyll extraction and measurement and instrument detection limit and error. We remove the samples from the freezer, cut them into small pieces, and place them in a centrifuge tube with 10 ml of 90% buffered acetone. We cap the centrifuge tubes and place them in a metal rack, cover them with aluminum foil, and hold them in a refrigerator for not more than 24 hours to extract the chlorophyll. After extraction, we centrifuge the samples for 20 minutes at 1,600 rpm and then read them on a

e We will provide footnotes under each specific aquatic study in the Results section when we deviate from the methods described in this section.

We are working with Dan Reed, ADF&G Sport Fish biometrician, to evaluate sample size.

^g This measurement is not exact as the amount of water used to dilute the magnesium carbonate is not exact and fixes the sample regardless of the concentration and without affecting data integrity.

h There are two main deviations from EPA Method 446. Our sample storage may exceed 3.5 weeks. Our filters are cut rather than homogenized due to risk of acetone exposure (Ott et al. 2010).

Shimadzu UV-1800 Spectrophotometer at optical densities (OD) 664 nm, OD 647 nm, and OD 630 nm. We also take a reading at OD 750 nm to correct for turbidity. We use an acetone blank to correct for the solvent. We treat the samples with 80 μ 1 of 0.1 N hydrochloric acid to convert chlorophyll to phaeophyton, and then read them again at OD 665 nm and OD 750 nm.

We use Statistix® 9 (Analytical Software. 2008. Statistix 9 User's Manual. Analytical Software, Tallahassee, Florida, http://www.statistix.com/features.html) to conduct the Kruskal-Wallis One-Way Analysis of Variance by ranks test to investigate significant differences ($p \le 0.05$) in data distribution within sites between sample events (Neter et al. 1990).

Data Presentation

We include a figure of stream flow three weeks prior to field sampling in the East Fork Slate Creek section when the information is available. Discharge data is not available in Johnson or Sherman Creeks.

For each sample site, we provide a table showing sampling dates and chlorophylls a, b, and c mean concentrations (mg/m²) for the calendar year, present a graph of the mean proportion of chlorophylls a, b, and c for all sampling events, and show algal biomass, estimated by the chlorophyll a concentration in each sample, for all sampling events. Data are in Appendix A.

BENTHIC MACROINVERTEBRATE COMPOSITION & ABUNDANCE

Rationale (APDES 1.5.3.2)

We sample benthic macroinvertebrates, paying close attention to the proportion of those classified in the Orders Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies); collectively known as EPT taxa. EPT taxa have limited mobility, a short life cycle, and are sensitive to changes in water quality. We monitor macroinvertebrate community composition and abundance in Lower Slate Creek, East Fork Slate Creek, Upper Johnson Creek, and Lower Sherman Creek annually between March and May after spring breakup and before peak snowmelt to detect changes over time. We monitor West Fork Slate Creek and Upper Slate Creek reference sites to detect variations due to other natural factors.

Sample Collection and Analysis

The APDES Permit requires we evaluate each reach for all areas that contain stream substrate with particles less than 20 cm along the longest axis, and then sample every third or fourth sampling site, until we collect six benthic macroinvertebrate samples. We sample with a Surber stream bottom sampler in riffles and runs representing different velocities (Barbour et al. 1999).

The Surber stream bottom sampler has a 0.093 m² sample area and a 300-micron mesh net that terminates at the cod end. After setting the frame in the substrate, we scrub rocks within the sample area with a brush and disturb gravels and silt manually, to about 10 cm depth, to dislodge insects into the net.

We remove each macroinvertebrate sample from the cod end of Surber sampler by rinsing the sample into a prelabeled 500 mL plastic bottle with minimum 70% denatured ethanol. We add additional ethanol to each bottle at three parts ethanol to one part sample. Habitat biologists sort macroinvertebrates from debris under dissecting stereoscopes and identify oligochaetes to Order,

_

i In 2012, our error detection limit for the spectrophotometer was high, potentially due to scratches on the cuvettes. We disposed and replaced the cuvettes in late 2012, and will regularly replace the cuvettes to prevent high detection limits on future readings.

and all others to genus, using Merritt and Cummins (1996) and Stewart and Oswood (2006). We contract externally with an expert in macroinvertebrate identification to provide quality assurance and control and verify our insect identification in 10% of our total samples.

We calculate the density of aquatic macroinvertebrates per square meter by dividing the number of aquatic insects per sample by 0.093 m², the Surber sampling area.

The Shannon Diversity (H) and Evenness (E) Indices are commonly applied measures of diversity (Magurran 1988). We calculate the indices using the following equations:

$$H = -\sum_{i=1}^{S} (P_i \log_{10} P_i)$$
$$E = \frac{H}{\log_{10} S}$$

Where P_i is the number of invertebrates per genus divided by the total number of invertebrates in the sample, and S is the number of genera in the sample.

A single insect community has an H value of 0 that increases with the insect number (richness) and insect evenness (abundance equality). Aquatic macroinvertebrate density is expressed as the mean number of invertebrates per m^2 .

We use Statistix® 9 (Analytical Software 2008) to conduct the Kruskal-Wallis One-Way Analysis of Variance by ranks test to investigate significant differences ($p \le 0.05$) in data distribution within sites between sample events (Neter et al. 1990).

Data Presentation

We present a figure of macroinvertebrate community composition and abundance by year. Though not required by the APDES permit, we include an additional February 2012 measurement in the Slate Creek figures. The Shannon Indices of Diversity and Evenness are in narrative. Data are in Appendix B.

RESIDENT FISH POPULATION

Rationale (APDES 1.5.3.3)

The APDES Permit requires resident fish population estimates by species and habitat type in 360 m reaches in East Fork Slate and Upper Slate Creeks so that statistical comparisons can be made between years within a reach. We estimate the variability of the data, including minimum detectable differences between samples, and the precision of the 95% confidence interval so that we can refine or revise sampling protocols.

Sample Collection and Analysis

In 2011, we completed habitat surveys in about the same 360 m reaches surveyed by Flory (2011) using the habitat types described in Bisson et al. (1981). Based on the results of those habitat surveys, we selected a 90 m sampling reach representative of the habitat types present. Though Bisson subdivides three main habitat types for precision to detect environmental change,

^j Assuming all species are represented in the sample.

we counted the main habitat types—riffles^k, pools^l, and glides^m. The East Fork and Upper Slate Creeks sample sites are moderate gradient, narrow, shallow, and contained, with East Fork Slate Creek dominated by bedrock and boulder substrate. Channels of this type are stable and habitat features are unlikely to change during the Kensington Gold Mine period of operation. In 2012, we sampled in the representative 90 m reaches selected in 2011.

We sample resident fish populations using a modification of a depletion method developed by the USFS (Bryant 2000). We isolate sample reaches using fine mesh nets and secure them to the stream bottom with large rocks. We saturate the 90 m reaches with 0.635 cm (1/4 in) and 0.317 cm (1/8 in) soft mesh and wire mesh minnow traps baited with whirl packs containing sterilized salmon roe (Magnus et al. 2006).

Biologists begin from the downstream end of each reach setting baited minnow traps opportunistically in all habitat types where water depth and flow allow. We record the habitat type in which each trap is set. We move away from the sampling site so fish are not disturbed while the traps soak for 1.5 h. We retrieve each trap, record the fish in each trap, and then place the fish in an aerated bucket for processing. We remove the spent bait packet, rebait each trap and reset it in the exact same spot, as quickly as possible. We leave the trap for another 1.5 h soak period, and then complete the sequence a third time.

Biologists anesthetize fish in the aerated bucket with clove oil^o, measure FL to the nearest 1 mm, weigh each to the nearest 0.1 g, and record the species (Pollard et al. 1997). Fish are kept in a live well secured in the stream outside the delineated sample reach during the sampling period, and returned to the sample reach after all three passes are complete.

We collect data to meet the assumptions of closure and of equal probability of capture (Lockwood and Schneider 2000) during all three sampling events by ensuring the following.

- Fish emigration and immigration during the sampling period is negligible.
 - o Sample reaches are isolated using fine mesh nets having a cork and lead line.
 - o The net is secured to the streambed with large rocks along the lead line.
- All fish are equally vulnerable to capture during a pass.
 - o Baited minnow traps are set in all habitat types where water depth and flow allow.
- Fish do not become more wary of capture with each pass.
 - o Trap numbers and placement remain constant during all three capture events.
 - o Instream field crew is limited to two biologists.
 - o Field crew completes all three capture events as quickly possible.
 - o Field crew does not talk and uses hand signals to convey habitat type for each trap to the data recorder on shore.
 - o Field crews move away from sampling sites so fish are not disturbed while the traps soak 1.5 h each capture event.

¹ Deepest areas where water surface slope below bankfull is near zero.

k Steepest slopes and shallowest depths at flows below bankfull with a poorly defined thalweg.

m Immediately downstream of pools with negative bed slope and positive water surface slope.

ⁿ Shorter reaches, more minnow traps and three passes instead of four.

^o Clove oil (.5 ml/gl) in 2012. We learned we should be diluting the clove oil with ethanol for solubility and will in 2013 (Anderson et al. 1997).

- Collection effort and conditions which affect collection efficiency remain constant.
 - All capture events begin at the downstream end of each reach.
 - Field crew moves upstream setting, retrieving and replacing traps as quickly as possible.
 - o Data recorder notes time between capture events in field notebook.
 - o Water temperature and clarity are recorded at the beginning of each capture event.
 - For the second and third capture events, the field crew removes the spent bait packet and rebaits and resets each trap in the exact same location.

We estimate resident fish populations using the multiple-pass depletion method developed by Lockwood and Schneider (2000), based on methods developed by Carle and Strub (1978). The repetitive method produces a maximum likelihood estimate (MLE) of fish with a 95% confidence interval.

Let X represent an intermediate sum statistic where the total number of passes, k, is reduced by the pass number, i, and multiplied by the number of fish caught in the pass, C_i , for each pass,

$$X = \sum_{i=1}^{k} (k-i)C_i$$

Let T represent the total number of fish captured in the minnow traps for all passes. Let n represent the predicted population of fish, using T as the initial value tested. Using X, the MLE, N, is calculated by repeated estimations of n. The MLE is the smallest integer value of n greater than or equal to T which satisfies^p:

$$\left[\frac{n+1}{n-T+1}\right] \prod_{i=1}^{k} \left[\frac{kn-X-T+1+(k-i)}{kn-X+2+(k-i)}\right]_{i} \le 1.000$$

The probability of capture, p, is given by the total number of fish captured, divided by an equation where the number of passes is multiplied by the MLE and subtracted by the intermediate statistic, X,

$$p = \frac{T}{kN - X}$$

The variance of N, a measure of variability from the mean, is given by,

Variance of
$$N = \frac{N(N-T)T}{T^2 - N(N-T)\left[\frac{(kp)^2}{(1-p)}\right]}$$

The SE of N is calculated by the square root of the variance of N, and the 95% confidence interval for the MLE is given by: MLE ± 2 (SE). Because we sample a 90 m reach, we multiply the MLE and 95% confidence interval by four to extrapolate the data to a 360 m sample reach. A

P Lockwood and Schneider (2000) suggest the result should be rounded to one decimal place (1.0). We use three decimal places (1.000) which is an option in Carle and Strub (1978).

MLE cannot be generated from samples from small populations if few fish are captured during the three sample events; in these cases, we present the number of fish captured as the result and do not include a MLE. We determine the precision of the estimate by expressing the 95% confidence interval as a percentage of the MLE.

Calculating a MLE using three-pass depletion data relies heavily on equal capture probability among passes (Bryant 2000, Carle and Strub 1968, Lockwood and Schneider 2000). To evaluate equal capture probability, we use the goodness of fit test in White et al. (1982), recommended by Lockwood and Schneider (2000), which follows the χ^2 test form. We first calculate expected numbers of fish captured for each pass (C_1 , C_2 , C_3) using variables previously described

$$E(C_1) = N(1-p)^{i-1}p$$

Then we calculate χ^2 ,

$$\chi^{2} = \frac{[C_{1} - E(C_{1})]^{2}}{E(C_{1})} + \frac{[C_{2} - E(C_{2})]^{2}}{E(C_{2})} + \frac{[C_{3} - E(C_{3})]^{2}}{E(C_{3})}$$

If the goodness of fit test indicates we did not achieve equal capture probability, the MLE will be biased low.

We use Monte-Carlo simulations to assess the power of our three-pass depletion studies to detect changes in abundance of small (N < 200) fish populations. We simulate sampling according to the three-pass depletion design on each years population of fish where the abundance of fish differs by varying degrees, and estimate the abundance of each population using the techniques described in Lockwood and Schneider (2000). We use a Student's *t*-test with two degrees of freedom to test the null hypothesis that both estimates come from populations of equal size, with one degree of freedom associated with each estimate. We evaluate significance at $\alpha = 0.05$, conduct 10,000 simulations of three-pass depletions to evaluate power for probabilities of capture during each sampling pass of 0.30, 0.40, 0.50, 0.60, and 0.70 using the assumptions of the model and estimate the power as the proportion of simulations where the null hypothesis is rejected (Dan Reed, Sport Fish Biometrician, ADF&G, Nome, personal communication).

Data Presentation

We present resident fish population estimates by 360 m reach by year, population estimates by habitat type by 360 m reach by year, and the length frequency of this year's captures in figures. We present resident fish capture data, population estimates by reach by year, population estimates by habitat type by reach by year, precision of the population estimates, and power of the current year population estimates compared to the previous year population estimate in Appendix C.

RESIDENT FISH CONDITION

Rationale (APDES 1.5.3.3.1)

The APDES Permit requires us to compare fish condition by reach and by year in East Fork Slate and Upper Slate Creeks. Age, sex, season, maturation, diet, gut fullness, fat reserve, and muscular development affect fish condition.

Sample Collection and Analysis

We weigh the resident fish captured in our resident fish surveys to the nearest 0.1 g and measure FL to the nearest 1 mm.

We use the lengths and weights to calculate Fulton's condition factor (K) using the equation given in Anderson & Neumann (1996) where the weight of each fish measured in grams (W) is divided by the cubed length of fish (L) measured in millimeters, and the product multiplied by 100,000,

$$K = \frac{W}{I^3} \times 100,000$$

Data Presentation

We present the mean condition factor of resident fish in the East Fork Slate Creek and Upper Slate Creek sections, and provide resident fish length, weight, and condition factor data in Appendix C.

RESIDENT FISH METALS CONCENTRATIONS

Rationale (APDES 1.5.3.4)

The APDES Permit requires us to sample six Dolly Varden char within the size class 90–130 mm for whole body concentrations for the metallic elements aluminum (Al), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni), silver (Ag) and zinc (Zn), and the semi-metallic element selenium (Se), in Lower Slate, East Fork Slate and Upper Slate Creeks for a total of 18 fish. We recommended DEC choose this sample size as it is the size used for aquatic studies at other mines in Alaska and provides information without being cost prohibitive. The minimum size of 90 mm FL is the minimum amount of tissue (about 5 g) required for the laboratory to conduct the analyses. The maximum size of 130 mm FL improves the likelihood of sampling less than a three year old resident fish in Lower Slate Creek where Dolly Varden char may be anadromous (Balon 1980). In the future, we may be able to examine the relationship of tissue and water quality data to see if changes over time are related to operations or natural variability.

Sample Collection and Analysis

We capture fish in minnow traps baited with sterilized salmon roe, individually package them in clean, prelabeled bags, and measure FL to 1 mm. Samples are immediately stored in a cooler containing gel ice packs, then in a camp freezer until we return to Juneau and weigh the fish in the sealed bags, correcting for bag weight. We freeze the samples at -20° C until we ship them to a private laboratory, where they are individually digested, dried, and analyzed for Ag, Al, Cd, Cr, Cu, Pb, Hg, Ni, Se, and Zn on a dry-weight basis. The private analytical laboratory provides Tier II quality assurance/quality control validation information for each analyte including matrix spikes, standard reference materials, laboratory calibration data, sample blanks and duplicates.

Data Presentation

We present a figure of whole body metals concentrations for each sample by element in the Lower Slate, East Fork Slate, and Upper Slate Creeks sections. We provide a figure with the 2012 whole body metals concentrations for Lower, East Fork and Upper Slate Creeks, a table with all data, and the laboratory report in Appendix D.

SEDIMENT METALS CONCENTRATIONS

Rationale (APDES 1.5.2)

Sediment metals concentrations are influenced by a variety of factors, including mineralogy, grain size, organic content, and human activity. We sample Lower Slate, East Fork Slate, Upper Slate, Lower Johnson, and Lower Sherman Creeks for the metallic elements Ag, Al, Cd, Cr, Cu, Pb, Hg, Ni, and Zn and the semi-metallic elements arsenic (As) and Se.

Sample Collection and Analysis

We collect sediment samples opportunistically in areas with fine sediment deposition, usually along the perimeter of the stream and in shallow eddies. We retain the sediment that passes through a 1.7 mm sieve in a plastic bucket, and transfer the sediment to a 100 mL glass jar the laboratory provides. Between sites, we rinse our sampling equipment in stream water. We store the samples in coolers on ice during transport between the mine and our lab, and store them in our refrigerator until we ship them to a private laboratory for analysis.

Data Presentation

We present sediment metals concentrations for each sample site in a figure. We include tables with Kensington Gold Mine sediment sample compositions, metallic element concentrations, and semi-metallic element concentrations for all six sample sites across years with this year's laboratory report in Appendix E.

SEDIMENT METALS TOXICITY

Rationale (APDES 1.5.2.3)

Sediment is a repository of metals introduced into surface waters. We monitor the toxicity of metals in sediments in the laboratory using *Chironomus dilutus* (midges) and *Hyalella azteca* (amphipods). We sample Lower Slate, East Fork Slate, Upper Slate, Lower Johnson, and Lower Sherman Creeks for the metallic elements Ag, Al, Cd, Cr, Cu, Pb, Hg, Ni, and Zn and the semi-metallic elements As and Se. Survival of *Chironomus dilutus* is generally lower than survival of *Hyalella azteca* on all mediums including the laboratory control sand.

Sample Collection and Analysis

We collect sediment samples opportunistically in areas with fine sediment deposition, usually along the perimeter of the stream and in shallow eddies. We retain the sediment that passes through a 1.7 mm sieve in a plastic bucket, and transfer the sediment to a 2 L plastic container the laboratory provides. Between sites, we rinse our sampling equipment in stream water. We store the samples in coolers on ice during transport between the mine and our lab, and store them in our refrigerator until we ship them to a private laboratory for analysis.

The private laboratory tests for short-term chronic toxicity of sediment using the organisms *Chironomus dilutus* and *Hyalella azteca*, and removes debris and large sediment from the sample prior to homogenizing. The laboratory uses eight replicates of sediment for each treatment, and the laboratory control sediment is commercial grade sand.

Data Presentation

We present organism survival and growth for each sample site in the narrative. We provide the laboratory report that lists significant differences ($p \le 0.05$) between control and individual samples in Appendix E.

SPAWNING SUBSTRATE QUALITY

Rationale (APDES 1.5.3.5.1)

The APDES permit requires annual pink salmon spawning substrate sampling in Lower Slate Creek during July prior to spawning activity. We calculate the geometric mean particle size (d_g) , an index of substrate textural composition, for each sample and for each sample site. We monitor spawning substrate quality to detect change over time.

Sample Collection

We collect four replicate samples from two locations in the anadromous portion of Slate Creek using a McNeil sampler, which has a 15 cm basal core diameter and 25 cm core depth. We choose sample sites selecting substrate measuring less than 10 cm, the maximum gravel size used by pink salmon (Lotspeich and Everest 1981; Kondolf and Wolman 1993), where the stream gradient is less than 3% (Valentine, B. E. 2001. Unpublished. Stream substrate quality for salmonids: Guidelines for Sampling, Processing, and Analysis. California Department of Forestry and Fire Protection, Coast Cascade Regional Office, Santa Rosa, CA). We push the McNeil sampler into the substrate until the sample core is buried, then transfer the sediments to a five gallon bucket using a stainless steel scoop. Samples are wet-sieved onsite using sieve sizes 101.6, 50.8, 25.4, 12.7, 6.35, 1.68, 0.42, and 0.15 mm. We measure the contents of each sieve to the nearest 5 mL^q by the volume of displaced water in 600 mL and 1 L plastic beakers. We transfer the fines that pass through the 0.15 mm sieve to an Imhoff cone and allow them to settle for 10 minutes, then measure the displacement using the Imhoff cone gradations.

Data Presentation

We convert the wet weights to dry weights using standards identified by Zollinger (1981) for the fines that settle in the Imhoff cones. For all others, we convert the wet weights to dry weights using a correction factor derived from Shirazi et. al (1979), assuming a gravel density of 2.6 g/cm³ previously used by Timothy and Kanouse (2012). We calculate the geometric mean particle size (d_g) using methods developed by Lotspeich and Everest (1981), where the midpoint diameter of particles retained in each sieve (d) is raised to a power equal to the decimal fraction of volume retained by that sieve (w), and multiplied the products of each sieve size to obtain the final product,

$$d_g = d_1^{w1} \times d_2^{w2} \times d_3^{w3} \dots d_n^{wn}$$

We present a figure that shows the geometric mean particle size calculated for each sample at each sample point and a figure that shows the geometric mean particle size of all samples by year in the Lower Slate Creek results section. Raw data are in Appendix F.

^q The contents of the 0.15 mm sieve are measured to the nearest 1 mL using an Imhoff cone.

ADULT SALMON COUNTS

Rationale (USFS Plan of Operations)

The USFS Plan of Operations require weekly surveys of adult chum salmon, coho salmon, and pink salmon in Lower Slate, Lower Johnson, and Lower Sherman Creeks throughout the spawning season. We can detect shifts in the distribution of pink salmon spawning activity using the number of adult pink salmon observed in different reaches of each stream system (Daniel Reed, Division of Sport Fish Biometrician, ADF&G, Nome; memorandum, Review of Technical Report No 11-08: Aquatic Studies at Kensington Mine, 2011).

Sample Collection

We conduct foot surveys in the anadromous reaches of Slate and Sherman Creeks once per week, and survey Johnson Creek from a helicopter once per week, verifying survey results three times with foot surveys.

We section each creek to examine the distribution of adult salmon (Timothy and Kanouse 2012). Sherman Creek is sectioned into 50 m reaches, Slate Creek into 100 m reaches, and Johnson Creek by landmarks. We begin surveys at the stream mouth, ending at the anadromous fish barrier.

A team of two biologists wearing polarized sunglasses independently record the number of live fish and carcasses by species during each foot and aerial survey. We use the average of the two biologists' counts to estimate the total number of fish, by species, each survey. We also record weather and flow conditions each survey.

Data Presentation

We present figures of adult pink salmon counts by week and distribution in Lower Slate, Lower Johnson, and Lower Sherman Creeks. We present figures of adult chum salmon counts in Slate and Johnson Creek and adult coho salmon counts in Johnson Creek. Pentec (1990) documented a 1–3 week pink salmon residence time in Sherman Creek, so we divide the total number of adult pink salmon by two (residence time) in all systems to avoid overestimating (Neilson and Geen 1981). We do not adjust chum and coho salmon estimates as we have not identified the residence time of these fish in these stream systems. In Johnson Creek, we use a method developed by Jones et al. (1998) to adjust the adult pink and chum salmon aerial counts by multiplying our mean weekly count by a factor of 2.5, before we adjust for residence time. We also round down intermediate numbers and final numbers to whole numbers for the return estimate calculations. Data are in Appendix G.

RESULTS

SLATE CREEK

Lower Slate Creek

Periphyton Community Composition & Biomass

We collected periphyton samples in Lower Slate Creek at 58.7901°N, 135.0343°W, on July 25, 2012, as required in the APDES permit to sample annually at low stream flow and not within three weeks after peak snowmelt/outfall discharge. In addition we sampled three times, February 8, 2012, May 2, 2012, and October 30, 2012, to investigate the algal bloom in the TTF and changes in algal biomass downstream in East Fork Slate Creek in 2011.

Table 5 shows the average concentrations of chlorophylls a, b, and c (mg/m²) in Lower Slate Creek samples collected during 2012. The 2011 and 2012 proportion of chlorophylls a, b, and c are shown in Figure 10.

Table 5.–Lower Slate Creek chlorophylls a, b, and c mean densities.

Sample Date	Chlorophyll a (mg/m²)	Chlorophyll <i>b</i> (mg/m ²)	Chlorophyll c (mg/m²)
February 8, 2012	1.73	0.04	0.13
May 2, 2012	0.96	0.02	0.11
July 25, 2012	2.31	0.05	0.18
October 30, 2012	1.31	0.00	0.16

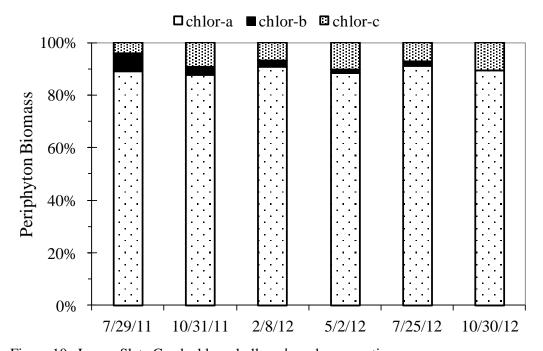


Figure 10.–Lower Slate Creek chlorophylls a, b, and c proportion.

Lower Slate Creek algal biomass, estimated from the chlorophyll *a* concentration in each sample, is shown in Figure 11.

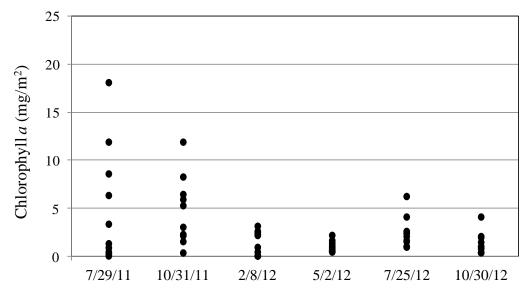


Figure 11.–Lower Slate Creek chlorophyll *a* densities.

Benthic Macroinvertebrate Composition & Abundance

We collected benthic macroinvertebrate samples in Lower Slate Creek at 58.7901°N, 135.0342°W, on February 8, 2012, to document aquatic life downstream of the TTF following the algal bloom in 2011. We collected benthic macroinvertebrate samples in Lower Slate Creek in the same location again on May 2, 2012, as required by the APDES Permit to sample between late March and late May, after spring breakup and before peak snowmelt.

In February, we identified 30 taxa among the 6 samples, and we estimate the mean number of aquatic benthic macroinvertebrates per m² at 2,452 insects, of which 38% are EPT taxa (Figure 12). The Shannon Diversity score is 0.75 and Evenness score is 0.64. The dominant taxa are Diptera: Chironomidae and Annelida: Oligochaeta, each representing about 28% of samples.

In May, we identified 32 taxa among the 6 samples, and we estimate the mean number of aquatic benthic macroinvertebrates per m² at 3,154 insects, of which 38% are EPT taxa (Figure 12). The Shannon Diversity score is 0.69 and Evenness score is 0.58. The dominant taxon is Diptera: Chironomidae, representing about 53% of samples.

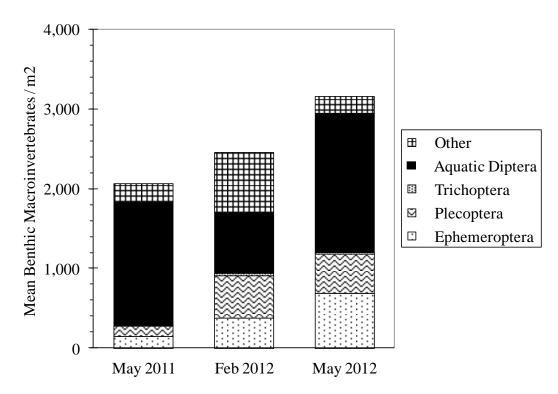


Figure 12.-Lower Slate Creek benthic macroinvertebrates.

Resident Fish Metals Concentrations

We captured six Dolly Varden char in Lower Slate Creek at 58.7964°N, 135.0389°W on August 20, 2012 within 200 m downstream of the waterfall barrier. We shipped the samples to Columbia Analytical in Kent, Washington, for laboratory analyses September 27, 2012 and received the results November 9, 2012. The laboratory processed the fish individually and the concentration for each fish is shown for each element, except for Ag and Ni which are undetected at the method reporting limit in two samples.

Though we present the information from 2011 and 2012 in Figure 13, we won't compare data between years because in 2011 we incorrectly completed the laboratory's chain of custody form and the laboratory homogenized all six fish, giving one concentration for each element. Columbia Analytical reported in 2011 they observed sediment in the bottom of their digestion tube containing the Lower Slate Creek fish samples^r, which may have elevated metals concentrations.

^r The probable source is sediment the fish ingested.

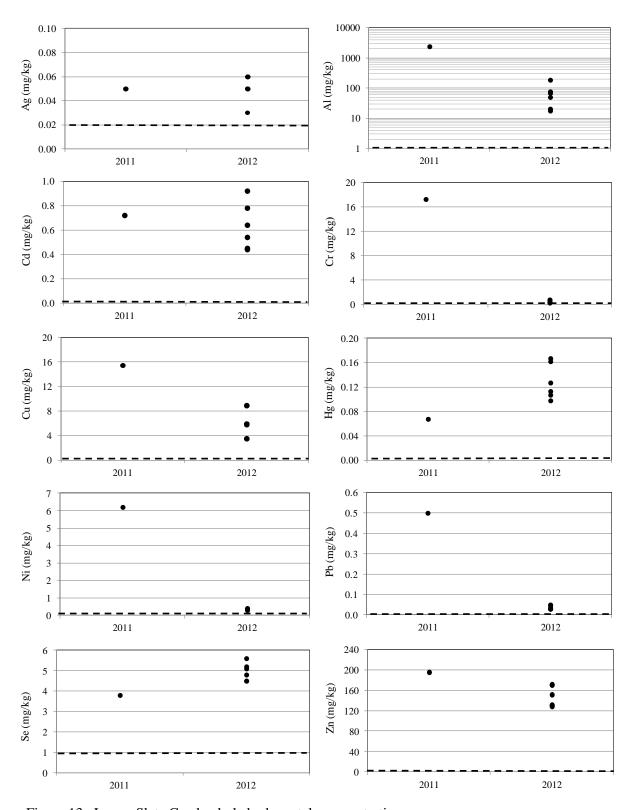


Figure 13.-Lower Slate Creek whole body metals concentrations.

Note: 2011 and 2012, juvenile Dolly Varden char.

Note: Dashed lines represent the method reporting limit, ND indicates the metal was not detected.

Sediment Metals Concentrations

We collected sediments in Lower Slate Creek at 58.7920°N, 135.0360°W on July 3, 2012 and shipped the samples to the AECOM Environmental Toxicology laboratory in Fort Collins, Colorado for analyses on July 19, 2012. We received the laboratory results on September 27, 2012.

Lower Slate Creek sediment metals concentrations are shown in Figure 14. Concentrations are similar to the 2011 results, and to results from sampling during the 2005–2010 period (Flory 2011). We include tables with 2011 and 2012 sediment composition, metals and semi metals data for all sites and the 2012 AECOM laboratory report in Appendix E.

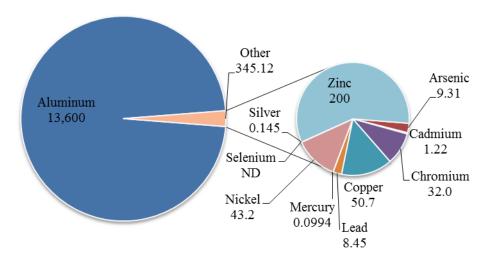


Figure 14.-Lower Slate Creek sediment metals concentrations.

Note: 2012 data presented in parts per million (mg/kg).

Sediment Toxicity

There are no statistical differences in growth or survival of *Chironomus dilutus* or *Hyalella azteca* on the Lower Slate Creek sediment sample compared to the control. We include the laboratory report that in Appendix E.

Adult Salmon Counts

We surveyed Lower Slate Creek for adult chum salmon and pink salmon between July 16 and September 10, 2012. We did not observe adult salmon during the first two surveys, or during the last survey.

Figure 15 presents our adult pink salmon count for each survey in Lower Slate Creek, and Figure 16 presents the distribution of pink salmon by section. We estimate the 2012 adult pink salmon return at 3,636 fish, the highest estimate in the eight years of monitoring (Flory 2011, Timothy and Kanouse 2012).

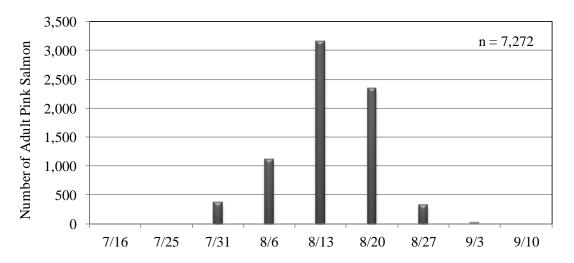


Figure 15.-Lower Slate Creek adult pink salmon counts.

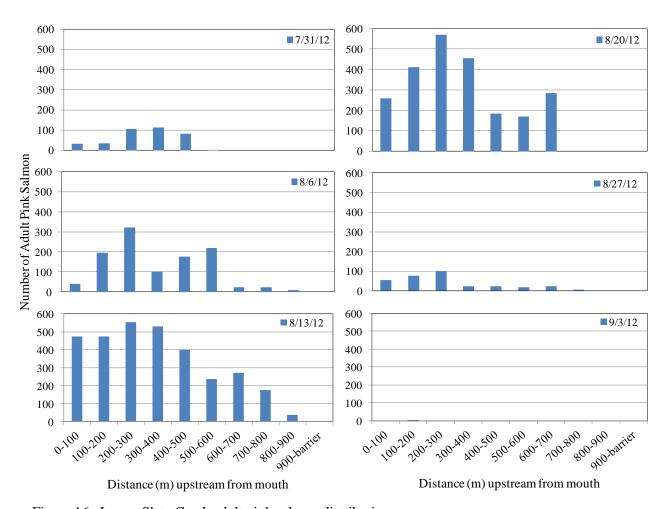


Figure 16.-Lower Slate Creek adult pink salmon distribution.

We observed one live adult chum salmon in Lower Slate Creek on August 15.

We surveyed for adult coho salmon between September 18 and October 30, 2012 and did not document any live fish or carcasses. Since we captured age-0 and 1-year-old juvenile coho salmon during resident fish abundance and distribution studies, we theorize Lower Slate Creek is the natal stream (Timothy and Kanouse 2012). We will continue our investigation of adult coho salmon in this stream during the coho salmon spawning season by foot and snorkel.

Spawning Substrate Quality

Sample Point 1, 58.7905°N, 135.0345°W

Sample Point 2, 58.7916°N, 135.0356°W

We present the geometric mean particle size for each of the four samples collected at Sample Point 1 and each of the four samples collected at Sample Point 2 in Lower Slate Creek on July 9, 2012 in Figure 17 (two sediment samples from Sample Point 2 have the same geometric mean, 11.6 mm).

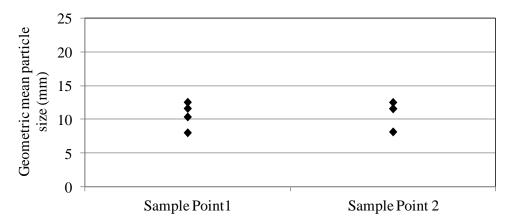


Figure 17.-Lower Slate Creek geometric mean particle sizes by sample and sample point.

In our 2012 Technical Report (Timothy and Kanouse), we reported the geometric mean particle size for substrate samples taken at Lower Slate Creek on August 17, 2011 as 6.54 mm at Sample Point 1, and 9.33 mm at Sample Point 2, and stated the substrate was finer than any year sampled since 2005. While entering the 2012 data, we noticed the formulas we used to calculate the 2011 results contained an error. We corrected the formulas and the results change to an geometric mean particle size for substrate samples taken at Lower Slate Creek on August 17, 2011 is 10.1 mm at Sample Point 1, and 10.9 mm at Sample Point 2 (Figure 17). This remains finer than any year sampled since 2005.

We include the corrected Lower Slate Creek data in Appendix F^s.

The geometric mean particle size for substrate samples taken at Lower Slate Creek on July 9, 2012 is 10.6 mm at Sample Point 1, and 10.9 mm at Sample Point 2 (Figure 18).

We also include corrected 2011 and new 2012 data for Johnson and Sherman Creeks in Appendix F, but do not summarize it in this technical report as the APDES permit does not require the sampling. Those results are summarized in Brewster, 2012.

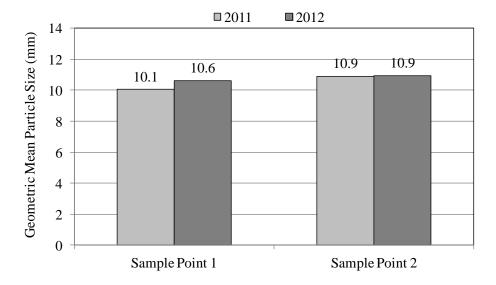


Figure 18.-Lower Slate Creek geometric mean particle size of all samples by year.

East Fork Slate Creek

Upper Slate Lake discharge is intercepted at a dam (Figure 19) and routed through a diversion pipeline around the TTF (Figure 20), discharging into East Fork Slate Creek (Gordon Willson-Naranjo, Division of Habitat Biologist, ADF&G, Douglas; December 12, 2012, memorandum, Kensington Gold Mine: Diversion Pipeline Fish Passage Trip Report). Treated water from the TTF wastewater treatment plant began discharging into East Fork Slate Creek in December 2010. Most sampling in East Fork Slate Creek occurs between 250 m and 300 m downstream of the plunge pool.

Figure 19.-Diversion dam, pipeline, and TTF.

Figure 20.–Approximate diversion pipeline route.

Periphyton Community Composition & Biomass

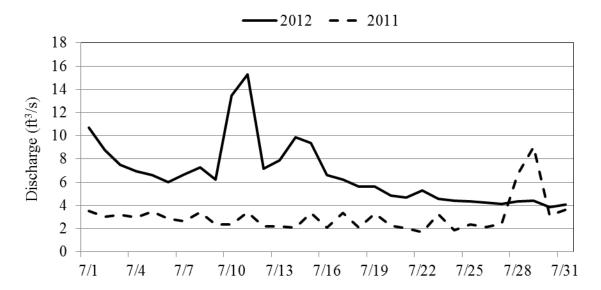


Figure 21.–East Fork Slate Creek discharge, July 2011 and 2012.

Note: Discharge calculated using Parshall Flume flow data and TTF WTP discharge data.

In July 2011, mean daily discharge in East Fork Slate Creek stayed below 4 $\rm ft^3/s$ except on July 29 when it peaked at about 9 $\rm ft^3/s$ during a rainstorm. In July 2012, three weeks prior to periphyton sampling, mean daily discharge stayed above 4 $\rm ft^3/s$ during this same period, except for July 30, when it dipped to 3.8 $\rm ft^3/s$ (Figure 21).

We collected periphyton samples in East Fork Slate Creek at 58.8046°N, 135.0382°W on July 24, 2012. In addition, we sampled three times, February 7, 2012, April 27, 2012, and October 30, 2012, to investigate the algal bloom in the TTF and changes in periphyton biomass in East Fork Slate Creek in 2011.

Table 6 shows the average concentrations of chlorophylls a, b, and c (mg/m²) in East Fork Slate Creek samples collected during 2012. The 2011 and 2012 proportion of chlorophylls a, b, and c are shown in Figure 22.

Table 6.–East Fork Slate	Creek chlorophy	vills a, b	and c mean densities.

Sample Date	Chlorophyll a (mg/m ²)	Chlorophyll b (mg/m ²)	Chlorophyll $c \text{ (mg/m}^2\text{)}$
February 7, 2012	2.04	0.48	0.05
April 27, 2012	4.87	0.26	0.26
July 24, 2012	5.08	0.57	0.18
October 30, 2012	0.78	0.00	0.06

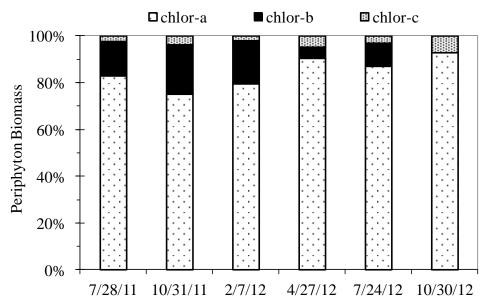


Figure 22.–East Fork Slate Creek chlorophylls *a*, *b*, and *c* proportion.

East Fork Slate Creek algal biomass, estimated from the chlorophyll *a* concentration for each sample, is shown in Figure 23. There are no significant differences between the mean ranks of July 2011 and July 2012 chlorophyll *a* densities in East Fork Slate Creek.

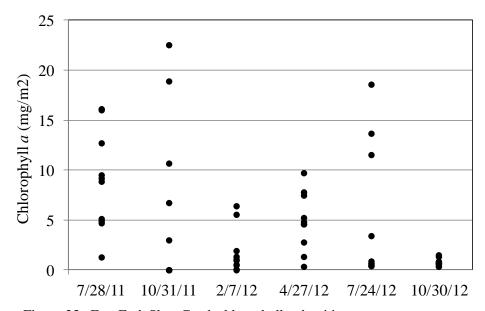


Figure 23.–East Fork Slate Creek chlorophyll a densities.

Benthic Macroinvertebrate Composition & Abundance

We collected six benthic macroinvertebrate samples in East Fork Slate Creek at 58.8045°N, 135.0381°W, on February 7, 2012, to investigate the algal bloom in the TTF and the change in algal biomass downstream in East Fork Slate Creek in 2011. We collected six benthic macroinvertebrate samples in Lower Slate Creek in the same location again on April 27, 2012, as required by the APDES Permit to sample between late March and late May, after spring breakup and before peak snowmelt.

In February, we identified 33 taxa among the six samples, and we estimate the mean number of aquatic benthic macroinvertebrates per m² at 10,703 insects, of which 22% are EPT taxa (Figure 24). The Shannon Diversity score is 0.73 and Evenness score is 0.57. The dominant taxon is Bivalvia: Sphaeriidae (pea clams), representing about 45% of samples.^t

In April, we identified 33 taxa among the six samples, and we estimate the mean number of aquatic benthic macroinvertebrates per m² at 4,633 insects, of which 23% are EPT taxa (Figure 24). The Shannon Diversity score is 0.78 and the Evenness score is 0.61. The dominant taxon is Bivalvia: Sphaeriidae (pea clams), representing about 45% of samples^u.

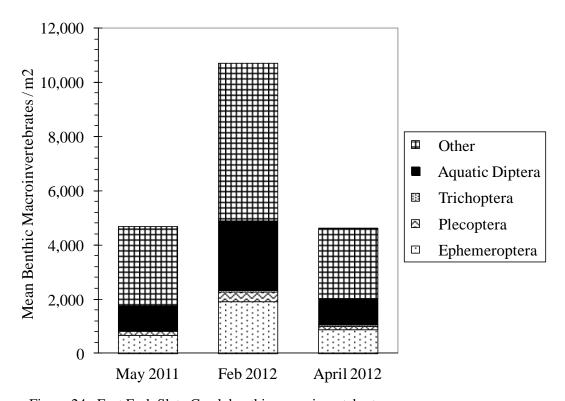


Figure 24.—East Fork Slate Creek benthic macroinvertebrates.

We do not observe this organism at other sites, except a few occasionally in the Lower Slate Creek samples. When we removed the pea clams from the East Fork Slate Creek February 2012 data set, the estimated mean benthic macroinvertebrate density decreased to 5,880 insects per m², percent EPT increased to 40%, and Chironomidae became the dominant taxon representing about 37% of samples.

When we removed the pea clams from the East Fork Slate Creek April 2012 data set, the estimated mean benthic macroinvertebrate density decreased to 2,534 insects per m², percent EPT increased to 42%, and Chironomidae became the dominant taxon representing about 28% of samples.

Resident Fish Population & Condition

We sampled East Fork Slate Creek resident fish at 58.8040°N, 135.0382°W on August 1, 2012. We followed the methods described earlier in this report, except that two of our three minnow trapping intervals exceeded the 1.5 hr soak time because of blasting occurring upstream at the dam.

The 2012 Dolly Varden char population estimate for East Fork Slate Creek is 20 fish, half the 2011 estimate (Figure 25). We captured more Dolly Varden char in pools than riffles or glides (Figure 26) and the fish we captured are about the same size (Figure 27). Mean fish condition is 1.08 g/mm³, about the same as in 2011.

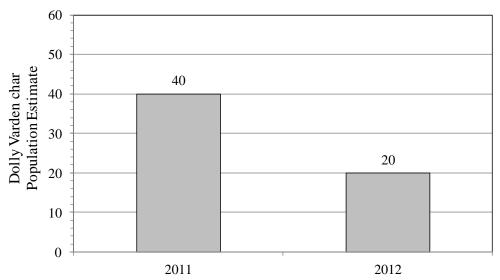


Figure 25.–East Fork Slate Creek resident fish population estimates.

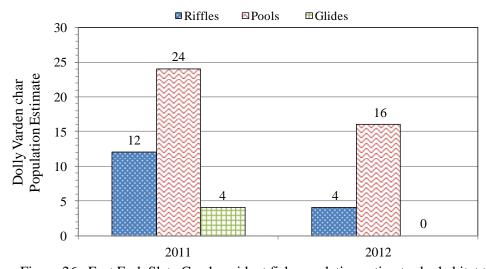


Figure 26.—East Fork Slate Creek resident fish population estimates by habitat type.

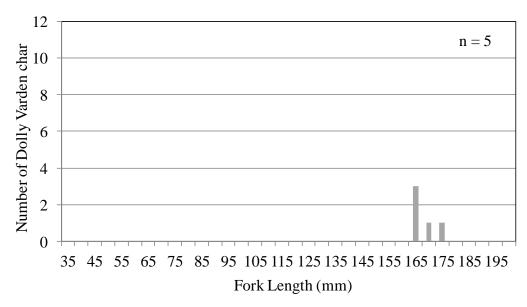


Figure 27.—East Fork Slate Creek resident fish length frequency.

Resident Fish Metals Concentrations

We captured six Dolly Varden char in East Fork Slate Creek at 58.8040°N, 135.0382°W on August 1, 2012. We shipped the fish samples to Columbia Analytical in Kent, Washington, for laboratory analyses September 27, 2012 and received the results November 9, 2012. The laboratory processed the fish individually and the concentration for each fish is shown for each element in Figure 28.

Though we present the information from 2011 and 2012 in the figure below, we won't compare data between years because in 2011 we incorrectly completed the laboratory's chain of custody form and the laboratory homogenized all six fish, giving one concentration for each element.

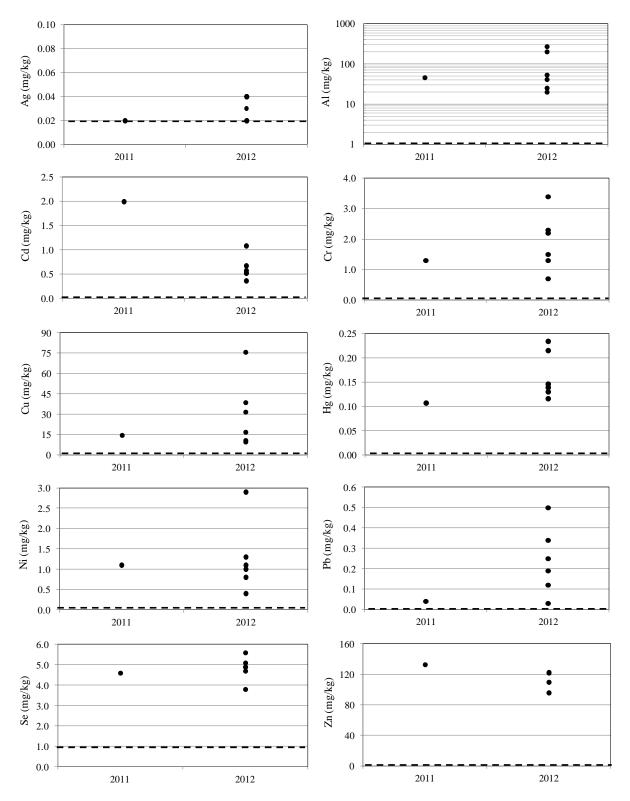


Figure 28.–East Fork Slate Creek whole body metals concentrations.

Note: 2012, juvenile Dolly Varden char.

Note: Dashed lines represent the method reporting limit.

Sediment Metals Concentrations

We collected sediments in East Fork Slate Creek at 58.8053°N, 135.0383°W on July 10, 2012, finding collection more difficult than in 2011. East Fork Slate Creek is characterized as an incised, bedrock canyon with water flow primarily from Upper Slate Lake via the diversion pipeline and the TTF water treatment plant effluent. We collected sediment upstream of the bedrock canyon under large woody debris and in eddies. We shipped the samples to the AECOM Environmental Toxicology laboratory in Fort Collins, Colorado for analyses on July 19, 2012. We received the laboratory results on September 27, 2012.

East Fork Slate Creek concentrations of Ag, Cr, Cu, Hg, Pb, and Zn are greater than in 2011, Cd and Ni concentrations are similar, and Al, As, and Se concentrations are lower. East Fork Slate Creek sediment metals concentrations are shown in Figure 29.

The 2012 East Fork Slate Creek sediment sample is composed of 26% sand, has the greatest percentage of total volatile solids (29%) and total organic carbon (17%), the lowest percentage of total solids (24%), and a similar amount of acid volatile sulfide (1%) compared to the sediment samples collected from our other sampling locations (Ben Brewster, Division of Habitat Biologist, ADF&G, Douglas; September 27, 2012, memorandum, Kensington Spawning Substrate Trip Report). We include tables with 2011 and 2012 sediment composition, metals and semi metals data for all sites and the 2012 AECOM laboratory report in Appendix E.

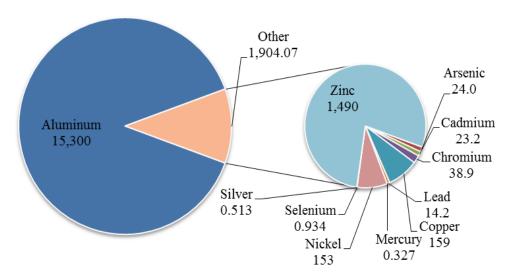


Figure 29.–East Fork Slate Creek sediment metals concentrations.

Note: 2012 data presented in parts per million (mg/kg).

Sediment Toxicity

There are no statistical differences in growth or survival of *Chironomus dilutus* or *Hyalella azteca* on the East Fork Slate Creek sediment sample compared to the control. We include the laboratory report in Appendix E.

Aquatic Vegetation Surveys

Tailing discharge to the TTF began June 24, 2010. In July 2011, the TTF was host to an algal bloom. In August 2011, Coeur began water sampling to detect chlorophyll *a* (Figure 30), nitrogen (Figure 31), phosphorus (Figures 32, 33), potassium (Figure 34), sulfur (Figure 35), and total organic carbon (Figure 36), among other parameters, at four locations: 1) upstream of the TTF (Control), 2) in the TTF, 3) the TTF water treatment plant effluent, and 4) downstream of effluent discharge in East Fork Slate Creek (EFSC).

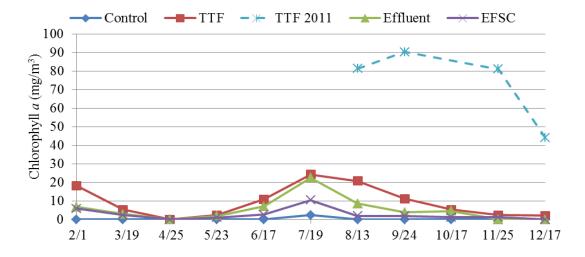


Figure 30.—Chlorophyll a parts per billion (mg/m^3) at four stations.

Chlorophyll a concentrations in the TTF have decreased from a high of 90 mg/m³ on September 19, 2011. In 2012, chlorophyll a concentrations in the TTF, effluent, and East Fork Slate Creek are generally higher than the control, and follow control trends.

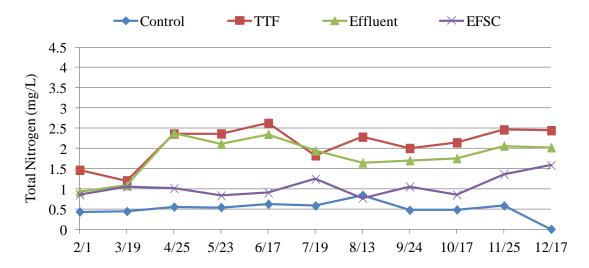


Figure 31.–Total Kjeldahl nitrogen parts per million (mg/L) at four stations.

The nitrogen concentrations are greatest in the TTF and effluent, increasing in East Fork Slate Creek toward the 2012 year end.

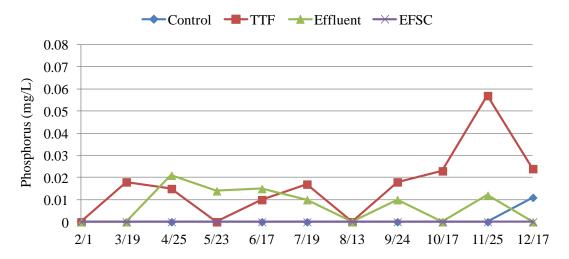


Figure 32.–Total phosphorus parts per million (mg/L) at four stations.

The 2011 phosphorous concentrations in the TTF were consistent with those found in eutrophic lakes, though the TTF is in a formerly oligotrophic lake, suggesting a source of phosphorous in the tailings caused the algal bloom. The erratic phosphorus concentrations in the TTF in 2012 continue to suggest phosphate deposit encounters during mining, with tailing discharge to the TTF. We are investigating a correlation between phosphorus spikes in the TTF and TDS spiking shortly thereafter downstream in East Fork Slate Creek (Figure 33).

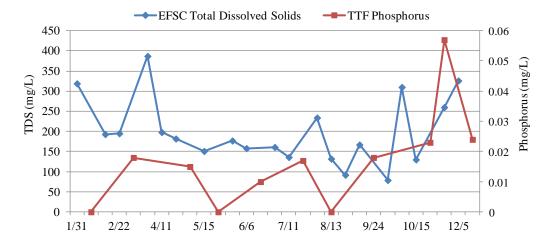


Figure 33.–East Fork Slate Creek TDS and TTF total phosphorus in parts per million (mg/L).

^v Warm water, high productivity.

w Cold water, low productivity.

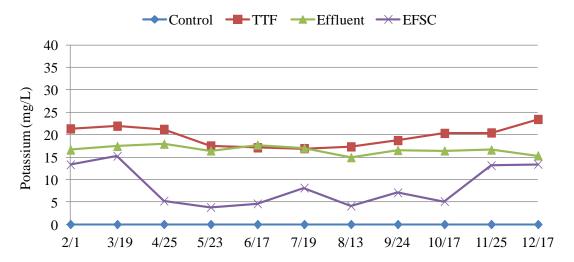


Figure 34.–Total recoverable potassium parts per million (mg/L) at four stations.

Potassium is not detected at the control site in 2012, and is highest in the TTF and in the effluent. East Fork Slate Creek potassium concentrations in 2012 are higher than the control and lower than the TTF and effluent. We continue to watch potassium levels in East Fork Slate Creek, as increases can disrupt the sodium/potassium ratio and become toxic to algae. We assess algal abundance in our periphyton biomass studies and the chlorophyll *a* concentrations in Coeur's water samples.

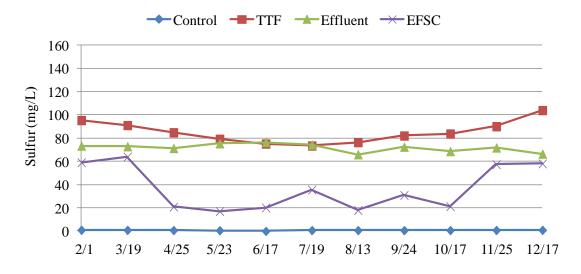


Figure 35.–Total sulfur parts per million (mg/L) at four stations.

Sulfur is present in low concentrations (<1.0 mg/L) upstream of the TTF in 2012, and is highest in the TTF and in the effluent. East Fork Slate Creek sulfur concentrations are higher than the control and lower than the TTF and effluent, and remain within a similar range across years.

Potassium and sulfur are present in potassium amyl xanthate (C5H11OCSSK), used in the milling process. Habitat biologists occasionally smell an odor reminiscent of the mill in East Fork Slate and Lower Slate Creeks. In a conversation with the lead author at the mine site in the spring of 2011, a former Kensington Mine employee suggested the xanthate molecules pass the water treatment facility, move downstream, dissolve in the water column and release the characteristic odor of sulfur into the air (Ron Johnson, Mill Manager, Kensington Gold Mine, Juneau, personal communication).

Sulfur can increase the acidity of water, so we regularly review Couer's monthly water quality data. In 2012, we find that the pH of East Fork Slate Creek water is about 7.5 to 8 throughout the year, within the normal range.

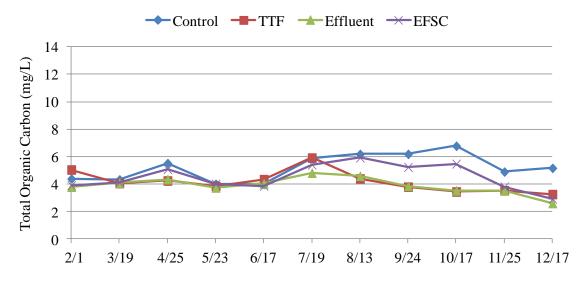


Figure 36.—Total Organic Carbon parts per million (mg/L) at four stations.

The total organic carbon at the control site and East Fork Slate Creek follow a similar trend in 2012 (Figure 36). The rate of vegetative growth depends, among other factors, on temperature and sunshine, both more abundant in 2011 than 2012, resulting in greater decaying natural organic matter in 2011.

West Fork Slate Creek

Periphyton Community Composition & Biomass

We collected periphyton samples in West Fork Slate Creek at 58.7992° N, 135.0460° W on July 25, 2012 (Figure 37). Table 7 shows the average concentration of chlorophylls a, b, and c (mg/m²) in the sample. The 2011 and 2012 proportion of chlorophylls a, b, and c are shown in Figure 38. West Fork Slate Creek algal biomass, estimated from the chlorophyll a concentration in each sample, is shown in Figure 39.

Figure 37.-West Fork Slate Creek periphyton sample taken July 25, 2012.

Table 7.-West Fork Slate Creek chlorophylls a, b, and c mean densities

Sample Date	Chlorophyll a (mg/m²)	Chlorophyll b (mg/m²)	Chlorophyll c (mg/m²)
July 25, 2012	1.01 (0.75)	0.00 (0.00)	0.10 (0.08)

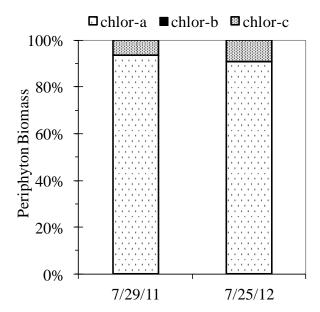


Figure 38.-West Fork Slate Creek chlorophylls a, b, and c proportion

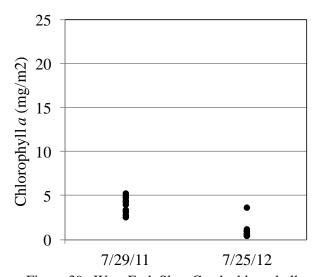


Figure 39.–West Fork Slate Creek chlorophyll a densities.

Benthic Macroinvertebrate Composition & Abundance

We collected six macroinvertebrate samples in West Fork Slate Creek at 58.7995° N, 135.0459° W, on May 2, 2012. We identified 31 taxa among the six samples, and we estimate the mean number of aquatic benthic macroinvertebrates per m² at 1,819 insects, of which 80% are EPT taxa (Figure 40). The Shannon Diversity score is 0.84 and the Evenness score is 0.71. The dominant taxon is Ephemeroptera: Baetidae, representing 32% of samples. When we compared the benthic macroinvertebrate samples collected in May 2011 and April 2012, we detected significant differences (p \leq 0.05) in insect density and the number of taxa per sample between years.

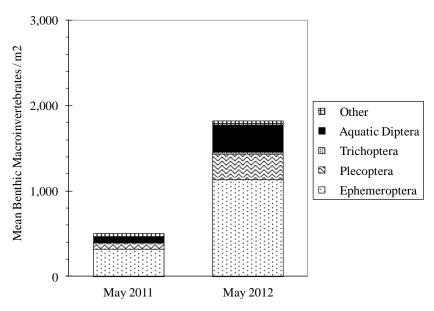


Figure 40.—West Fork Slate Creek benthic macroinvertebrates.

Upper Slate Creek

Periphyton Community Composition & Biomass

We collected 10 periphyton samples in Upper Slate Creek at 58.8191°N, 135.0416°W on July 24, 2012. In addition, we sampled three times, February 7, 2012, April 27, 2012, and October 30, 2012 to investigate the algal bloom in the TTF and the change in periphyton biomass downstream in East Fork Slate Creek in 2011.

Table 8 shows the average concentrations of chlorophylls a, b, and c (mg/m²) in East Fork Slate Creek samples collected during 2012. The 2011 and 2012 proportion of chlorophylls a, b, and c are shown in Figure 41.

Table 8.–Upper Slate Creek chlorophylls a, b, and c mean densities.

Sample Date	Chlorophyll a (mg/m²)	Chlorophyll <i>b</i> (mg/m ²)	Chlorophyll c (mg/m²)
February 7, 2012	0.64	0.00	0.04
April 27, 2012	0.70	0.00	0.06
July 24, 2012	1.26	0.00	0.07
October 30, 2012	0.78	0.00	0.06

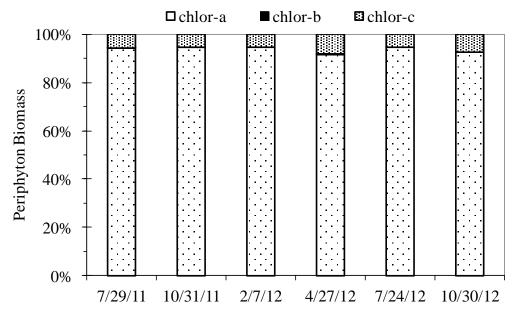


Figure 41.–Upper Slate Creek chlorophylls a, b, and c proportion.

Upper Slate Creek algal biomass, estimated from the chlorophyll *a* concentration in each sample, is shown in Figure 42.

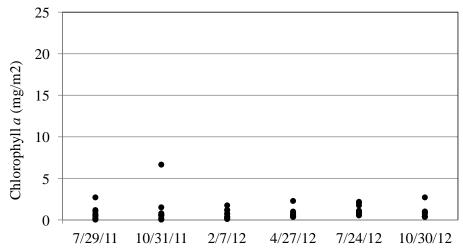


Figure 42.–Upper Slate Creek chlorophyll a densities.

Benthic Macroinvertebrate Composition & Abundance

We collected macroinvertebrate samples in Upper Slate Creek at 58.8189° N, 135.0415° W, on April 27, 2012. We identified 39 taxa among the six samples, and we estimate the mean number of aquatic benthic macroinvertebrates per m² at 2,256 insects, of which 68% are EPT taxa (Figure 43). The Shannon Diversity score is 1.04 and the Evenness score is 0.79. The dominant taxon is Diptera: Chironomidae, representing about 20% of samples.

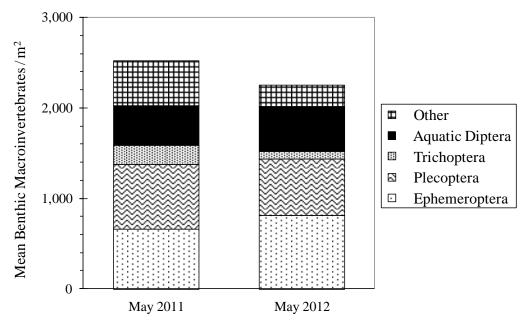


Figure 43.–Upper Slate Creek benthic macroinvertebrates.

Resident Fish Population & Condition

We sampled resident fish in Upper Slate Creek at $58.8199^{\circ}N$, $135.0425^{\circ}W$ on August 2, 2012. The 2012 Dolly Varden char population estimate for Upper Slate Creek is 192 ± 32 fish and significantly greater (p ≤ 0.05) than our 2011 estimate (Figure 44). We captured more Dolly Varden char in pools than riffles or glides (Figure 45) and the fish we captured are from several age classes (Figure 46). Mean fish condition is 0.99 g/mm^3 , about the same as fish condition in 2011.



Figure 44.–Upper Slate Creek resident fish population estimates.

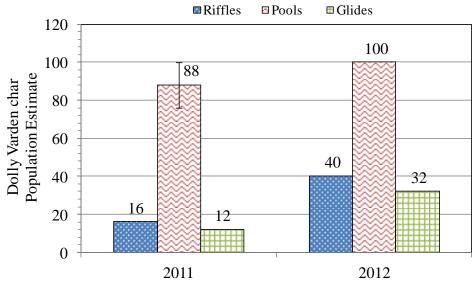


Figure 45.–Upper Slate Creek resident fish population estimates by habitat type.

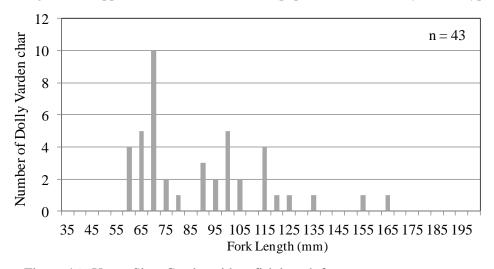


Figure 46.–Upper Slate Creek resident fish length frequency.

Resident Fish Metals Concentrations

We captured six Dolly Varden char in Upper Slate Creek at 58.8199°N, 135.0425°W on August 2, 2012. We shipped the fish samples to Columbia Analytical in Kent, Washington, for laboratory analyses September 27, 2012 and received the results November 9, 2012. The laboratory processed the fish individually and the concentration for each fish is shown for each element in Figure 47, except for Ag, which was undetected at the method reporting limit in five samples and Ni, which was undetected at the method reporting limit in one sample.

Though we present the information from 2011 and 2012 in the figure below, we won't compare data between years because in 2011 we incorrectly completed the laboratory's Chain of Custody form and the laboratory homogenized all six fish, giving just one concentration for each element for all six fish. Columbia Analytical reported they observed sediment in the bottom of their

digestion tube containing the 2011 Upper Slate Creek homogenized fish sample^x, which may have increased the concentrations of some elements.

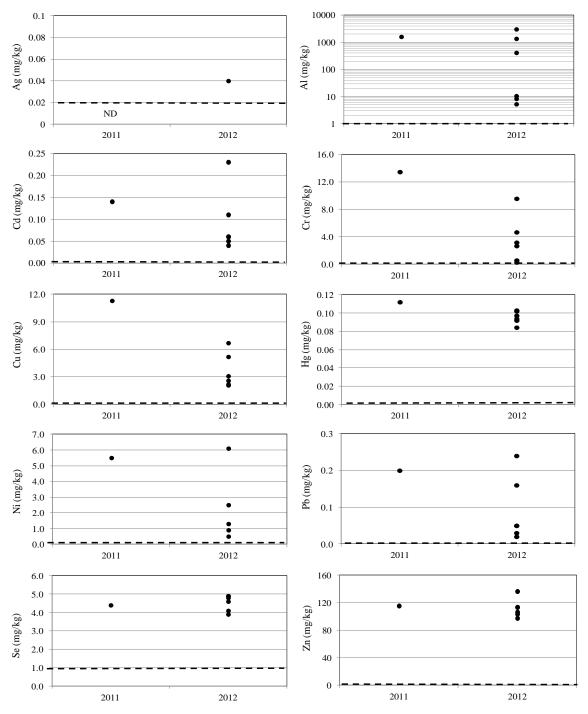


Figure 47.-Upper Slate Creek whole body metals concentrations.

Note: 2012, juvenile Dolly Varden char.

Note: Dashed lines represent the method reporting limit.

Note: ND indicates the metal was not detected at the method reporting limit.

^x The probable source is sediment the fish ingested.

Sediment Metals Concentrations

We collected sediments in Upper Slate Creek at 58.8189°N, 135.0416°W on July 2, 2012. We shipped the samples to the AECOM Environmental Toxicology laboratory in Fort Collins, Colorado for analyses on July 19, 2012. We received the laboratory results on September 27, 2012.

The Upper Slate Creek Hg concentration is greater in 2012 than 2011 when it was not detected at the method reporting limit (0.0366 mg/kg). Concentrations of the other elements are similar to those in 2011. Upper Slate Creek sediment metals concentrations are shown in Figure 48. We include tables with 2011 and 2012 sediment composition, metals and semi metals data for all sites and the 2012 AECOM laboratory report in Appendix E.

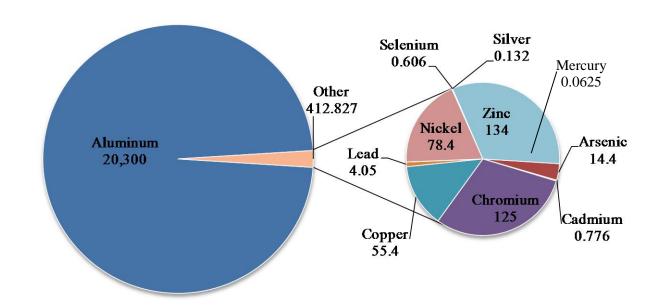


Figure 48.–Upper Slate Creek sediment metals concentrations.

Note: 2012 data presented in parts per million (mg/kg).

Sediment Toxicity

There are no statistical differences in growth or survival of *Chironomus dilutus* or *Hyalella azteca* on the Upper Slate Creek sediment sample compared to the control. We include the laboratory report in Appendix E.

JOHNSON CREEK

Lower Johnson Creek

Sediment Metals Concentrations

We collected sediments in Lower Johnson Creek at 58.8235°N, 135.0048°W on July 2, 2012. We shipped the samples to the AECOM Environmental Toxicology laboratory in Fort Collins, Colorado for analyses on July 19, 2012. We received the laboratory results on September 27, 2012.

The 2012 Ag concentration is twice that of 2011 though still similar to 2005–2010 (Flory 2011). The concentrations of the other elements are similar to 2011. Lower Johnson Creek sediment

metals concentrations are shown in Figure 49. We include tables with 2011 and 2012 sediment composition, metals and semi metals data for all sites and the 2012 AECOM laboratory report in Appendix E.

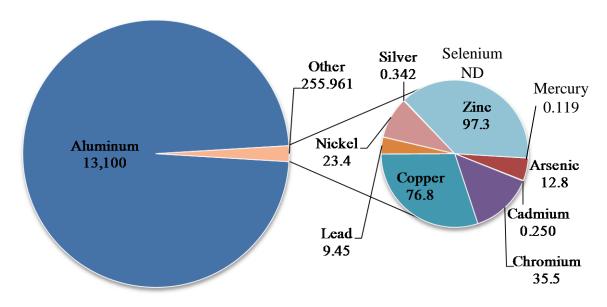


Figure 49.-Lower Johnson Creek sediment metals concentrations.

Note: 2012 data presented in parts per million (mg/kg).

Sediment Toxicity

We collected sediments in Lower Johnson Creek at 58.8235°N, 135.0048°W on July 2, 2012 (Figure 50). There are no statistical differences in growth or survival of *Chironomus dilutus* or *Hyalella azteca* on the Lower Johnson Creek sediment sample compared to the control. We include the laboratory report in Appendix E.

Figure 50.—Ben Brewster collects sediment in Lower Johnson Creek.

Adult Salmon Counts

We surveyed Lower Johnson Creek for adult chum salmon and pink salmon between July 17 and September 19, 2012.

Figure 51 presents the adult pink salmon count for each Lower Johnson Creek survey, and Figure 52 presents the weekly distribution of adult pink salmon. The 2012 adult pink salmon estimate is 6,267 fish, similar to the 2006 and 2009 estimates (Flory 2011).

We observed adult chum salmon in the lower and middle portions of the Johnson Creek between July 24 and August 7, and estimate adult chum salmon return at 248 fish, similar to estimates for previous years.

We surveyed Lower Johnson Creek for coho salmon between September 26 and November 5 by foot and by snorkeling on October 23, October 30, and November 5. We observed most adult coho salmon in the middle portion of Lower Johnson Creek between Site 4 and Site 10. We estimate coho salmon at 90 fish, the highest in eight years of monitoring (Flory 2011, Timothy and Kanouse 2011). This is an overestimation as we unknowingly counted adult Dolly Varden char as adult coho salmon prior to snorkeling. We will snorkel deep pools in Lower Johnson Creek each week in 2013 during the coho salmon spawning season to verify Dolly Varden char are not included in the adult coho salmon estimate.

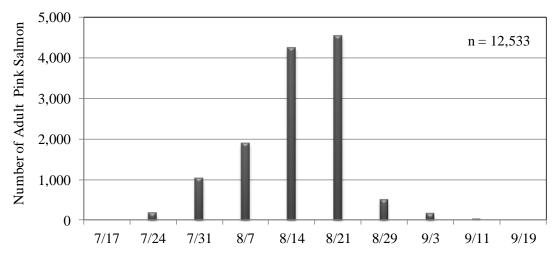


Figure 51.-Lower Johnson Creek adult pink salmon counts.

Figure 52.-Lower Johnson Creek adult pink salmon distribution.

Upper Johnson Creek

Benthic Macroinvertebrate Composition & Abundance

We collected macroinvertebrate samples in Upper Johnson Creek at 58.8407°N, 135.0450°W, on April 26, 2012. We identified 28 taxa among the six samples, and we estimate the mean number of aquatic benthic macroinvertebrates per m² at 3,968 insects, of which 64% are EPT taxa (Figure 53). The Shannon Diversity score is 0.81 and the Evenness score is 0.68. The dominant taxon is Diptera: Chironomidae, representing about 26% of samples.

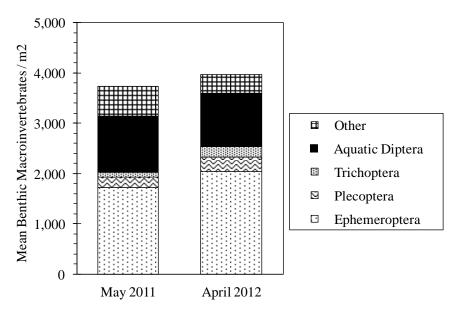


Figure 53.–Upper Johnson Creek benthic macroinvertebrates.

SHERMAN CREEK

Lower Sherman Creek

Periphyton Community Composition & Biomass

We collected periphyton samples in Lower Sherman Creek on July 26, 2012 in two locations; Sample Point 1 at 58.8687° N, 135.1414° W, and Sample Point 2 at 58.8672° N, 135.1376° W. Tables 9 and 10 show the average concentration of chlorophylls a, b, and c (mg/m²) in the samples. The 2011 and 2012 proportion of chlorophylls a, b, and c are shown in Figures 54 and 55.

Table 9.–Lower Sherman Creek Sample Point 1 chlorophylls a, b, and c mean densities.

Sample Date	Chlorophyll <i>a</i> (mg/m ²)	Chlorophyll b (mg/m ²)	Chlorophyll $c \text{ (mg/m}^2\text{)}$
July 26, 2012	2.54	0.93	0.08

Table 10.–Lower Sherman Creek Sample Point 2 chlorophylls a, b, and c mean densities.

Sample Date	Chlorophyll <i>a</i> (mg/m ²)	Chlorophyll b (mg/m²)	Chlorophyll c (mg/m²)
July 26, 2012	0.67	0.01	0.09

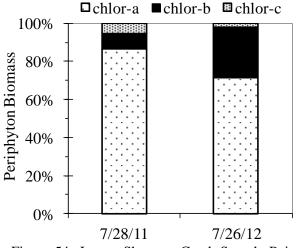


Figure 54.–Lower Sherman Creek Sample Point 1 chlorophylls *a*, *b*, and *c* proportion.

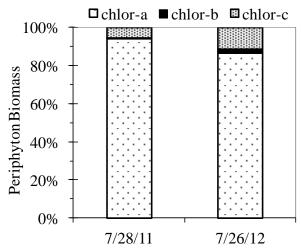


Figure 55.–Lower Sherman Creek Sample Point 2 chlorophylls *a*, *b*, and *c* proportion.

Lower Sherman Creek Sample Points 1 and 2 algal biomass, estimated by the chlorophyll *a* concentration in each sample, is shown in Figures 56 and 57.

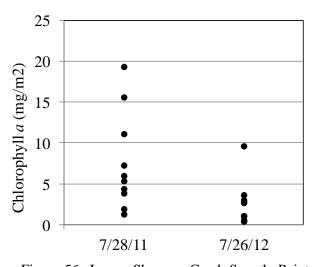


Figure 56.–Lower Sherman Creek Sample Point 1 chlorophyll a densities.

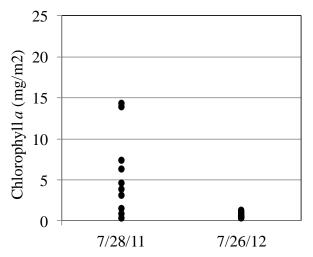


Figure 57.–Lower Sherman Creek Sample Point 2 chlorophyll *a* densities.

Benthic Macroinvertebrate Composition & Abundance

Sherman Creek Sample Point 1

We collected macroinvertebrate samples in Lower Sherman Creek at Sample Point 1, 58.8688°N, 135.1412°W, on April 30, 2012. We identified 31 taxa among the six samples, and we estimate the mean number of aquatic benthic macroinvertebrates per m² at 2,733 insects, of which 66% are EPT taxa (Figure 58). The Shannon Diversity score is 0.74 and the Evenness score is 0.62. The dominant taxon is Ephemeroptera: Baetidae, representing 44% of samples.

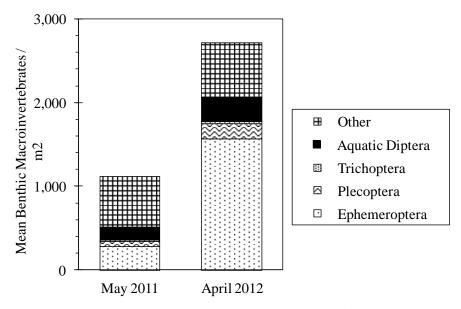


Figure 58.-Lower Sherman Creek Sample Point 1 benthic macroinvertebrates.

Sherman Creek Sample Point 2

We collected macroinvertebrate samples in Lower Sherman Creek at Sample Point 2, 58.8674°N, 135.1381°W, on April 30, 2012. We identified 37 taxa among the six samples, and we estimate the mean number of aquatic benthic macroinvertebrates per m² at 2,823 insects, of which 79% are EPT taxa (Figure 59). The Shannon Diversity score is 0.70 and the Evenness score is 0.57. The dominant taxon is Ephemeroptera: Baetidae, representing 57% of samples.

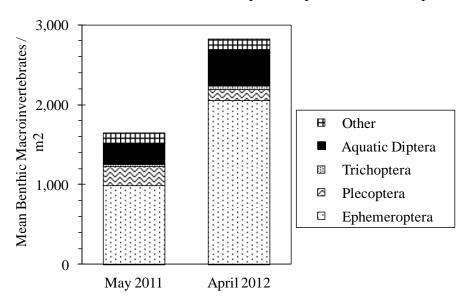


Figure 59.-Lower Sherman Creek Sample Point 2 benthic macroinvertebrates.

Sediment Metals Concentrations

We collected sediments in Lower Sherman Creek at 58.8687°N, 135.1413°W on July 3, 2012. We shipped the samples to the AECOM Environmental Toxicology laboratory in Fort Collins, Colorado for analyses on July 19, 2012. We received the laboratory results on September 27, 2012.

The 2012 Ag concentration is twice that of 2011 though still similar to 2005–2010 (Flory 2011). The concentrations of the other elements are similar to 2011. Lower Sherman Creek sediment metals concentrations are shown in Figure 60. We include tables with 2011 and 2012 sediment composition, metals and semi metals data and the 2012 AECOM laboratory report for Lower Sherman Creek^y in Appendix E.

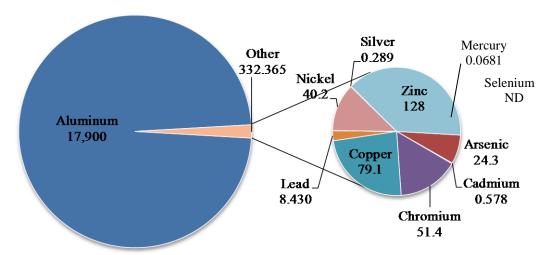


Figure 60.-Lower Sherman Creek sediment metals concentrations.

Note: 2012 data presented in parts per million (mg/kg).

Sediment Toxicity

There are no statistical differences in growth or survival of *Chironomus dilutus* or *Hyalella azteca* on the Lower Sherman Creek sediment sample compared to the control. We include the laboratory report in Appendix E.

Adult Salmon Counts

We surveyed Lower Sherman Creek for adult chum salmon and pink salmon between July 16 and September 18, 2012.

Figure 61 presents our adult pink salmon count for each survey in Lower Sherman Creek, and Figure 62 presents the distribution of pink salmon by section. We estimate the 2012 adult pink salmon return at 804 fish, less than estimates reported for the previous three years and similar to the 2006 and 2008 estimates (Flory 2011, Timothy and Kanouse 2012).

We did not observe live adult chum and coho salmon or any carcasses.

^y We also provide this information for Middle Sherman Creek in Appendix E, though the information is not required in the APDES permit.

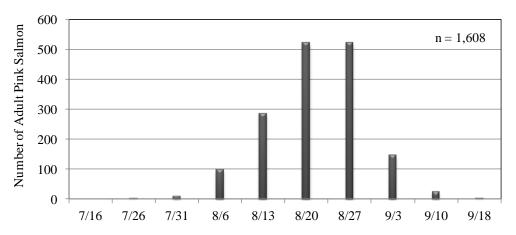


Figure 61.-Lower Sherman Creek adult pink salmon counts.

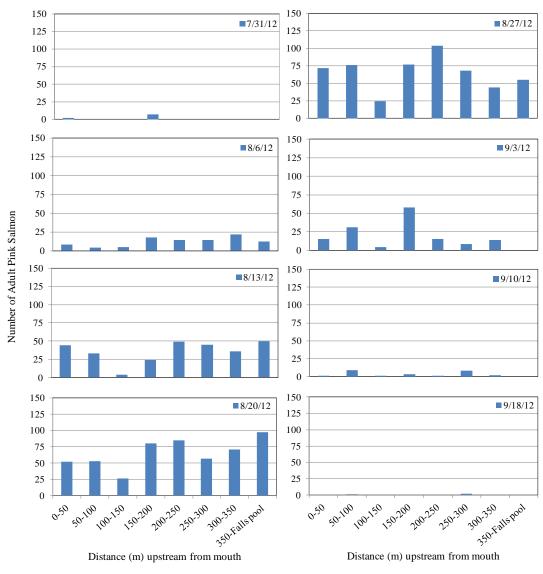


Figure 62.-Lower Sherman Creek adult pink salmon distribution.

REFERENCES CITED

- Anderson, W.G., R.S. McKinley, and M. Colavecchia. 1997. The use of clove oil as an anesthetic for rainbow trout and its effects on swimming performance. North American Journal of Fisheries Management 17(2):301–307.
- Anderson, R. O. and R. M. Neumann, 1996. Length, weight, and associated structural indices. [*In*] B. R. Murphy and D.W. Willis, editors. Fisheries Techniques. 2nd edition. American Fisheries Society, Bethesda, MD.
- Archipelago Marine Research Ltd. 1991. Use of nearshore habitat by juvenile salmonids near Point Sherman, Lynn Canal, Alaska. Prepared for Kensington Venture, Juneau, AK. 75 p.
- Balon, E. K. 1980. Charrs, salmonid fishes of the Genus Salvelinus (Perspectives in vertebrate science), Volume 1. W. Junk Publishers, P.O. Box 13713 2501 ES, The Hague: The Netherlands.
- Barbour, M. T., J. Gerritsen, B. D. Snyder, and J. B. Stribling. 1999. Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish. 2nd edition. EPA 841-B-99-002. U.S. Environmental Protection Agency, Office of Water, Washington, D.C.
- Bisson, P. A., J. L. Nielsen, R. A. Palmason, and L. E. Grove. 1982. A system of naming habitat types in small streams, with examples of habitat utilization by salmonids during low streamflow. Pages 62-73 [In] N. B. Armantrout, editor. Acquisition and utilization of aquatic habitat inventory information. Proceedings of a symposium held 28–30 October, 1981, Portland, Oregon. Western Division, American Fisheries Society, Bethesda, Maryland, USA.
- Bryant, M. D. 2000. Estimating fish populations by removal methods with minnow traps in Southeast Alaska streams. North American Journal of Fisheries Management 20:923–930.
- Buchman, M. F., 2008. NOAA Screening Quick Reference Tables, NOAA OR&R Report 08-1, Seattle WA, Office of Response and Restoration Division, National Oceanic and Atmospheric Administration. 34 p.
- Carle, F. L., and M. R. Strub. 1978. A new method for estimating population size from removal data. Biometrics 34:621–630.
- Coeur Alaska, Inc. 2005. Final Plan of Operations for the Kensington Gold Project. Prepared for the USDA Forest Service, Juneau Ranger District, Tongass National Forest. Juneau, AK. 135 p.
- Dames & Moore. 1991. Nearshore marine biological baseline survey Pt. Sherman, Lynn Canal, Alaska April 18-21, 1988 (16325-002-020). Prepared for Kensington Venture, Boise, ID. 11 p.
- Earthworks Technology, Inc. 2002. Kensington Project August–September 2001 Slate Lakes Basin. Prepared for Coeur Alaska, Inc. Juneau, AK.
- EVS Environment Consultants. 2000. Year 2000 Outmigration counts of juvenile pink salmon in Sherman and Sweeny Creeks. Prepared for Coeur Alaska, Inc. Juneau, AK.
- Flory, E. 1998. Kensington gold project 1998 aquatic resource surveys. Prepared for Coeur Alaska Inc., Aquatic Science Inc., Juneau, AK. 47 p.
- Flory, E. 1999. Kensington gold project 1999 aquatic resource surveys. Prepared for Coeur Alaska Inc., Aquatic Science Inc., Juneau, AK. 40 p.
- Flory, E. 2000. Kensington gold project 2000 aquatic resource surveys. Prepared for Coeur Alaska Inc., Aquatic Science Inc., Juneau, AK. 46 p.
- Flory, E. 2001a. Kensington gold project invertebrate tissue analysis. December 2001 [sic]^z. Prepared for Coeur Alaska Inc., Aquatic Science Inc., Juneau, AK. 29 p.
- Flory, E. 2001b. Kensington gold project resident fish surveys December 2001 [sic]^{aa}. Prepared for Coeur Alaska Inc., Aquatic Science Inc., Juneau, AK. 9 p.

^z This publication is actually the resident fish survey report.

^{aa}This publication is actually the invertebrate tissue analysis.

REFERENCES CITED (Continued)

- Flory, E. 2002. Kensington gold project aquatic resource surveys December 2002. Prepared for Coeur Alaska Inc., Aquatic Science Inc., Juneau, AK. 37 p.
- Flory, E. 2004. Kensington gold project benthic invertebrate surveys Slate and Johnson Creeks. Prepared for Coeur Alaska Inc., Aquatic Science Inc., Juneau, AK. 10 p.
- Flory, E. 2006. Kensington gold project NPDES permit AK-005057-1 annual water quality monitoring summary Volume 1: Aquatic resource surveys 2005. Prepared for Coeur Alaska. Aquatic Science Inc., Juneau, AK. 43 p.
- Flory, E. 2007. Kensington gold project NPDES permit AK-005057-1 annual water quality monitoring summary Volume 1: Aquatic resource surveys 2006. Prepared for Coeur Alaska. Aquatic Science Inc., Juneau, AK. 64 p.
- Flory, E. 2008. NPDES Annual report 2007 Volume 1: Aquatic resources. Prepared for Coeur Alaska Inc., Aquatic Science Inc., Juneau, AK. 74 p.
- Flory, E. 2009a. Johnson Creek fish habitat channel types and aquatic capability. A review by Liz Flory Ph.D. Aquatic Science Inc., Juneau, AK. 20 p.
- Flory, E. 2009b. Out-migrating salmon fry, Sherman, Johnson and Slate Creeks. Prepared for ADF&G (Permit No. SF-2009-059). Aquatic Science Inc., Juneau, AK. 10 p.
- Flory, E. 2009c. NPDES annual report 2008 Volume 1: Aquatic resources. Prepared for Coeur Alaska Inc., Aquatic Science Inc., Juneau, AK. 83 p.
- Flory, E. 2009d [sic]^{bb}. NPDES annual report 2009 Volume 1: Aquatic resources. Prepared for Coeur Alaska Inc., Aquatic Science Inc., Juneau, AK. 74 p.
- Flory, E. 2011. NPDES annual report 2010 Volume 1: Aquatic resources. Prepared for Coeur Alaska Inc., Aquatic Science Inc., Juneau, AK. 82 p.
- HDR Alaska, Inc. 2003. Slate and Johnson Creek water years 2000, 2001, 2002, and 2003 streamflow analysis. Prepared for Coeur Alaska, Inc., Juneau, AK.
- Johnson, J. and P. Blanche. 2012. Catalog of waters important for spawning, rearing, or migration of anadromous fishes Southeastern Region, Effective March 1, 2012. Alaska Department of Fish and Game, Special Publication No. 12-07, Anchorage, AK.
- Jones, E. L., T. J. Quinn, and B. W. Van Alen. 1998. Observer accuracy and precision in aerial and foot survey counts of pink salmon in a Southeast Alaska stream. North American Journal of Fisheries Management. 18:832– 846.
- Kline Environmental Research, LLC. 2001. Kensington project June 2000 Slate Creek Basin survey data report. Prepared for Coeur Alaska, Inc. 36 p.
- Kline Environmental Research, LLC. 2003. Kensington Project: Summary of adult salmon counts during 1995–2000 in Slate Creek and Johnson Creek. Prepared for Earthworks Technology, Inc., Coeur d'Alene, ID. 12 p.
- Kline Environmental Research, LLC. 2005. Data report for aquatic studies conducted in the Slate Lakes Drainage during 2003-2004. Prepared for Coeur Alaska, Inc., Juneau, AK. 84 p.
- Kondolf, G.M. and M.G. Wolman. 1993. The sizes of salmonid spawning gravels. Water Resources Research. 29(7):2275–2285.
- Konopacky Environmental. 1992a. Reconnaissance photograph study of Sherman and Sweeny Creeks, located near the Kensington Mine, Alaska, during Mid-July 1991. Volume 1 of 2. Prepared for Kensington Venture. Boise, ID.

bb Actually published February 2010.

REFERENCES CITED (Continued)

- Konopacky Environmental. 1992b. Baseline monitoring studies of fish and fish habitat in Sherman and Sweeny Creeks, located near the Kensington Mine, Alaska, during 1991. Volume 2 of 2. Prepared for Kensington Venture. Boise, ID.
- Konopacky Environmental. 1993a. Second-year reconnaissance photograph study of Sherman and Sweeny Creeks, located near the Kensington Mine, Alaska, during Mid-July 1992. Volume 1 of 2. Prepared for Kensington Venture. Boise, ID.
- Konopacky Environmental. 1993b. Counts of adult pink, chum, and coho salmon in Sherman and Sweeny Creeks, located Near the Kensington Mine, Alaska, during spawning periods in 1990 through 1993. Prepared for Coeur-Alaska, Inc., Juneau, AK. 46 p.
- Konopacky Environmental. 1993c. Ongoing and completed monitoring studies of fish and fish habitat in Sherman and Sweeny Creeks, located near the Kensington Mine, Alaska, during 1992. Volume 2 of 2. Prepared for Kensington Venture. Boise, ID.
- Konopacky Environmental. 1995. Baseline studies of aquatic habitat and salmonid populations in the Slate Creek System, located near Berner's Bay, Southeast Alaska, during Summer-1994. Volume 2 of 2. Prepared for Coeur Alaska, Inc. Juneau, AK. 81 p.
- Konopacky Environmental. 1996a. Presence-absence survey for fish in small unnamed streams, located in and near the area proposed for the dry tailings storage facility associated with the Kensington Mine, Alaska, during May 1996. Volume 1 of 2. Prepared for Coeur-Alaska, Inc., Juneau, AK. 27 p.
- Konopacky Environmental. 1996b. Counts of adult pink, chum, and coho salmon in Sherman Creek, located near the Kensington Mine, Southeast Alaska, during spawning periods in 1990 through 1993 and 1995. Prepared for Coeur-Alaska, Inc., Juneau, AK. 20 p.
- Konopacky Environmental. 1996c. Analyses of aquatic macroinvertebrate communities in selected stream reaches in the Sherman Creek Drainage, located near the Kensington Mine, Southeast Alaska, during September 1991, July 1995, and December 1995. Volume 1 of 2. Prepared for Coeur-Alaska, Inc., Juneau, AK. 74 p.
- Konopacky Environmental. 1996d. Concentrations of nine trace elements in various size-classes of Dolly Varden char, prickly sculpin, and pink salmon collected from Sherman Creek, located near the Kensington Mine, Southeast Alaska, during 1995 and 1996. Prepared for Coeur-Alaska, Inc., Juneau, AK. 103 p.
- Lockwood, R. N., and J. C. Schneider. 2000. Stream fish population estimates by mark-and-recapture and depletion methods. [*In*] J. C. Schneider, editor. 2000. Manual of fisheries survey methods II: with periodic updates. Michigan Department of Natural Resources, Fisheries Special Report 25, Ann Arbor, MI. 13 p.
- Lotspeich, F. B. and F. H. Everest. 1981. A new method for reporting and interpreting textural composition of spawning gravel. Pacific Northwest Forest and Range Experimental Station, Research Note PNW-369.
- MacDonald, D. D., C. G. Ingersoll, and T. A. Berger. 2000. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination Toxicology 39(1): 20-31.
- Magnus, D. L., D. Brandenburger, K. F. Crabtree, K. A. Pahlke, and S. A. McPherson. 2006. Juvenile salmon capture and coded wire tagging manual. Alaska Department of Fish and Game, Special Publication No. 06-31, Anchorage, AK.
- Magurran, A. 1988. Ecological diversity and its measurement. Princeton University Press, Princeton, NJ. pp. 35-37.
- Merritt, R. W. and K. W. Cummins, editors. 1996. An introduction to the aquatic insects of North America .3rd edition. Kendall/Hunt Publishing Co., Dubuque, IA. 862 p.
- Neilson, J. D. and G. H. Geen. 1981. Enumeration of spawning salmon from spawner residence time and aerial counts. Transactions of the American Fisheries Society. 110(4):554–556.
- Neter, J., W. Wasserman, and M. H. Kutner. 1990. Applied linear statistical models. 3rd edition. Irwin, Burr Ridge, IL.

REFERENCES CITED (Continued)

- Ott, A. G., W. A. Morris and L. L. Jacobs. 2010. Methods for aquatic life monitoring to satisfy requirements of 2010 NPDES Permit AK-003865-2, Red Dog Mine Site (Revision No. 1). Technical Report No. 10-04. Alaska Department of Fish and Game, Division of Habitat, Fairbanks, AK.
- Pentec Environmental, Inc. 1990. Escapement counts of pink and coho salmon and habitat surveys in three streams near the Kensington Mine, Alaska, from August to October 1990. Prepared for Kensington Venture, Boise, Idaho. 11 p.
- Pentec Environmental, Inc. 1991. Additional analyses of pink salmon counts and habitat composition in three streams near the Kensington Mine, Alaska, during August and September 1990. Prepared for Kensington Venture, Boise, ID. 8 p.
- Pollard, W. R., G. F. Hartman, C. Groot, and P. Edgell. 1997. Field identification of coastal juvenile salmonids. Department of Fisheries and Oceans, Vancouver, BC.
- Shirazi, M., W. Seim, and D. Lewis. 1979. Characterization of spawning gravel and stream system evaluation. Originally published as EPA Report EPA-800/3-79-109.
- Steffen Robertson and Kirsten Consulting Engineers and Scientists. 1997. Kensington gold project report on construction activity related to creek crossings and alterations. Prepared for Coeur Alaska, Inc., Juneau, AK.
- Stewart, K. W. and M. W. Oswood. 2006. The stoneflies (Plecoptera) of Alaska and Western Canada. The Caddis Press, Columbus, OH. 325 p.
- Tetra Tech, Inc, Tongass National Forest (Alaska), U.S. Environmental Protection Agency (Region X), U.S. Army Corps of Engineers (Alaska District), Alaska Department of Natural Resources. 2004a. Kensington Gold Project: final supplemental environmental impact statement Volume 1. U.S. Dept. of Agriculture, Forest Service, Tongass National Forest, Juneau AK.
- Tetra Tech, Inc, Tongass National Forest (Alaska), U.S. Environmental Protection Agency (Region X), U.S. Army Corps of Engineers (Alaska District), Alaska Department of Natural Resources. 2004b. Kensington Gold Project: final supplemental environmental impact statement Volume 2. U.S. Dept. of Agriculture, Forest Service, Tongass National Forest, Juneau AK.
- Timothy, J. and K. M. Kanouse. 2012. Aquatic studies at Kensington Mine, 2011. Alaska Department of Fish and Game, Technical Report No. 11-08, Douglas, AK.
- U.S. Environmental Protection Agency. 1997. Method 446.0: In vitro determination of chlorophylls a, b, $c_1 + c_2$ and pheopigments in marine and freshwater algae by visible spectrophotometry. Adapted by Elizabeth J. Arar. Revision 1.2, September 1997. National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH.
- White, G. C., D. R. Anderson, K. P. Burnham, and D. L. Otis. 1982. Capture-recapture and removal methods for sampling closed populations. Los Alamos: Los Alamos National Laboratory.
- Zollinger, H. L. 1981. Engineering Technical Note No. 2: Estimating sediment concentrations by Imhoff Cone in runoff water from silt loam soils. State Conservation Engineer, USDA Natural Resources Conservation Service, Boise, ID.

ADDITIONAL LITERATURE REVIEWED

- American Public Health Association. 1992. Standard methods for the examination of water and wastewater. Section 10300.B.2. 22nd edition. American Public Health Association, Washington, D.C.
- Brewster, B. 2012. Memo: Kensington Adult Salmon Counts Trip Report; dated 12/21/2012. Alaska Department of Fish and Game, Division of Habitat, Douglas, AK.
- Groot, C. and L. Margolis. 1991. Pacific salmon life histories. Department of Fisheries and Oceans, Biological Sciences Branch, Pacific Biological Station, Nanaimo, BC, Canada.
- Kanouse, K. 2010. Memo: Kensington Mine Diversion Pipeline Fish Passage Report; dated 12/3/2010. Alaska Department of Fish and Game, Division of Habitat, Douglas, AK.
- Kanouse, K. and B. Brewster. 2012a. Memo: 2012 Kensington Sediment Sampling Trip Report; dated 11/27/2012. Alaska Department of Fish and Game, Division of Habitat, Douglas, AK.
- Kanouse, K. and B. Brewster. 2012b. Memo: Kensington Periphyton Sampling Trip Report; dated 12/10/2012. Alaska Department of Fish and Game, Division of Habitat, Douglas, AK.
- Kline, E. 2003. Technical Memorandum: Preliminary results of 2003 Slate Lakes field work; dated 11/19/2003. Kline Environmental Research, LLC. Somerset, WI.
- Quinn, T. P. 2005. The behavior and ecology of pacific salmon and trout. American Fisheries Society in association with University of Washington Press, Seattle, WA.
- Willson-Naranjo, G. 2013. Memo: 2012 Kensington Gold Mine February Sampling Trip Report and Macroinvertebrate Results; dated 01/11/2013. Alaska Department of Fish and Game, Division of Habitat, Douglas, AK.

APPENDIX A: PERIPHYTON DATA

Appendix A.—Periphyton data for samples collected near Kensington Gold Mine, 2011–2012.

					•							
		July 201			tober 20			bruary 20			ril/May 2	012
mg/m²	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c
Unner	Slate Cr	ook										
Оррсг		0.00	0.00	6.62	0.00	0.25	0.32	0.00	0.02	0.96	0.00	0.10
	0.32	0.00	0.04	0.46	0.00	0.02	0.75	0.00	0.06	0.53	0.00	0.01
	0.96	0.01	0.07	0.75	0.00	0.05	0.33	0.00	0.02	0.83	0.00	0.05
	0.11	0.00	0.00	0.53	0.00	0.04	1.14	0.00	0.01	0.34	-	-
	2.67	0.00	0.26	0.55	0.00	0.02	0.07	-	-	0.34	_	_
	-	0.00	0.00	1.47	0.00	0.03	1.15	0.00	0.04	0.45	0.01	0.04
	0.60	0.00	0.12	0.14	0.01	0.05	1.71	0.00	0.10	0.34	-	-
	1.14	0.00	0.01	-	0.00	0.15	0.21	0.00	0.03	0.60	0.00	0.02
	0.53	0.00	0.00	0.64	0.00	0.11	0.07	-	-	0.34	-	-
	0.60	0.00	0.02	-	-	-	0.64	0.00	0.01	2.24	0.00	0.15
mean	0.87	0.00	0.05	1.40	0.00	0.08	0.64	0.00	0.04	0.70	0.00	0.06
max	2.67	0.01	0.26	6.62	0.01	0.25	1.71	0.00	0.10	2.24	0.01	0.15
min	0.11	0.00	0.00	0.14	0.00	0.02	0.07	0.00	0.01	0.34	0.00	0.01
					0.00	0.02		0.00	0.01		0.00	0.01
East Fo	ork Slate											
	9.51	2.16	0.24	18.90	7.97	1.11	0.53	0.00	0.00	7.80	0.74	0.34
	9.18	0.02	0.20	10.68	1.30	0.36	0.96	0.11	0.00	0.34	-	-
	1.28	0.03	0.00	2.99	0.79	0.12	1.34	0.37	0.09	5.23	0.00	0.16
	5.13	1.15	0.11	6.73	1.88	0.64	-	0.03	0.00	4.81	1.56	0.19
	16.02	0.18	0.44	22.53	5.43	0.99	1.07	0.09	0.00	7.48	0.00	0.50
	8.86	1.94	0.70	-	-	-	0.50	0.08	0.00	1.33	0.00	0.08
	4.70	0.70	0.13	-	-	-	6.41	2.04	0.09	2.78	0.00	0.09
	16.13	5.35	0.28	-	-	-	0.07	-	-	4.59	0.00	0.33
	4.91	0.49	0.12	-	-	-	5.55	1.44	0.19	4.59	0.00	0.17
-	12.71	3.59	0.15		-		1.92	0.14	0.07	9.72	0.00	0.47
mean	8.84	1.56	0.24	12.37	3.47	0.64	2.04	0.48	0.05	4.87	0.26	0.26
max	16.13	5.35	0.70	22.53	7.97	1.11	6.41	2.04	0.19	9.72	1.56	0.50
min	1.28	0.02	0.00	2.99	0.79	0.12	0.07	0.00	0.00	0.34	0.00	0.08
West F	ork Slat	te Creek										
	2.52	0.00	0.19	-	-	-	-	-	-	-	-	-
	4.70	0.00	0.43	-	_	-	_	-	-	_	_	_
	2.78	0.00	0.26	-	-	-	-	-	-	-	-	-
	3.35	0.00	0.04	-	-	-	-	-	-	-	-	-
	4.27	0.00	0.25	-	-	-	-	-	-	-	-	_
	4.91	0.00	0.42	-	-	-	-	-	-	-	-	-
	3.95	0.00	0.27	-	-	-	-	-	-	-	-	-
	3.10	0.00	0.25	-	-	-	-	-	-	-	-	-
	4.38	0.00	0.39	-	-	-	-	-	-	-	-	-
	5.23	0.00	0.20	-	-	-	-	-	-	-	-	-
mean	3.92	0.00	0.27	-	-	-	-	-	-	-	-	-
max	5.23	0.00	0.43	-	-	-	-	-	-	-	-	-
min	2.52	0.00	0.04		-		_	-			-	-
Lower	Slate Cı	mak										
LOWEI	0.21	0.05	0.00	6.41	0.00	0.87	2.56	0.01	0.16	0.56	0.00	0.06
	1.28	0.02	0.11	11.85	1.30	0.99	2.46	0.00	0.21	0.46	0.00	0.07
	0.85	0.01	0.07	2.99	0.15	0.13	-	-	-	0.85	0.00	0.10
	3.31	0.08	0.25	2.10	0.00	0.21	2.14	0.04	0.14	0.50	0.00	0.13
	11.85	3.11	0.30	5.23	0.03	0.63		-	-	1.32	0.00	0.25
	18.05	0.42	0.91	1.50	0.00	0.18	0.41	0.04	0.04	2.15	0.00	0.20
	-	0.13	0.00	0.32	0.00	0.00	0.90	0.11	0.05	0.41	0.00	0.00
	0.43	0.05	0.00	8.22	0.25	0.77	2.23	0.10	0.10	1.60	0.16	0.13
	8.54	0.39	0.58	2.24	0.00	0.23	3.10	0.00	0.30	1.07	0.00	0.11
	6.30	0.03	0.38	5.87	0.00	0.85	0.00	0.03	0.05	0.69	0.00	0.07
mean	5.65	0.43	0.26	4.67	0.17	0.48	1.72	0.04	0.13	0.96	0.02	0.11
max	18.05	3.11	0.91	11.85	1.30	0.99	3.10	0.11	0.30	2.15	0.16	0.25
min	0.21	0.01	0.00	0.32	0.00	0.00	0.00	0.00	0.04	0.41	0.00	0.00
	J.21	5.01	0.00		5.50	5.55		5.50		- U. FI	5.00	5.00

Note: Bolded values are the spectrophotometer error detection limit, chlor-a not detected.

Appendix A.—Page 2 of 3.

FF		1 age				
	July	2012		Oc	tober 20)12
mg/m²	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c
Unner	Slate Cr	eek				
Сррсг	2.03	0.00	0.14	0.34	_	
	0.96	0.00	0.09	0.70	0.00	0.00
	0.75	0.00	0.00	0.84	0.00	0.00
	0.50	0.00	0.03	0.96	0.00	0.10
	2.03	0.00	0.14	2.67	0.00	0.23
	1.07	0.00	0.14	0.37	0.00	0.11
	0.55	0.00	0.02	0.32	0.00	0.01
	1.71	0.00	0.06	0.96	0.00	0.00
	2.14	0.00	0.12	0.34	-	-
	0.83	0.00	0.00	0.34	-	-
mean	1.26	0.00	0.08	0.78	0.00	0.07
max	2.14	0.00	0.14	2.67	0.00	0.23
min	0.50	0.00	0.00	0.32	0.00	0.00
East Fo	ork Slate	e Creek				
24501	11.53	3.24	0.28	0.60	0.00	0.02
	0.41	0.04	0.04	0.73	0.00	0.07
	0.88	0.00	0.05	0.34	_	_
	0.50	0.00	0.03	1.50	0.00	0.16
	3.42	0.00	0.11	0.85	0.00	0.03
	0.64	0.08	0.05	0.64	0.00	0.07
	18.58	0.00	0.66	0.75	0.00	0.02
	13.67	2.32	0.57	1.34	0.00	0.02
	0.69	0.00	0.00	0.41	0.00	0.08
	0.43	0.00	0.00	0.64	0.00	0.07
mean	5.08	0.57	0.18	0.78	0.00	0.06
max	18.58	3.24	0.66	1.50	0.00	0.16
min	0.41	0.00	0.00	0.34	0.00	0.02
West F	ork Slat	te Creek	3			
	1.15	0.00	0.04	-	-	-
	0.41	0.00	0.08	-	-	-
	0.53	0.00	0.02	-	-	-
	0.64	0.00	0.16	-	-	-
	3.62	0.00	0.24	-	-	-
	0.85	0.00	0.14	-	-	-
	0.96	0.01	0.07	-	-	-
	0.41	0.00	0.08	-	-	-
	0.60	0.00	0.12	-	-	-
	0.96	0.00	0.06		_	
mean	1.01	0.00	0.10 0.24	-	-	-
max min	3.62 0.41	0.01 0.00	0.24	-	-	_
			0.02			
Lower	Slate Ci		0.07	0.06	0.00	0.09
	1.60 4.06	0.13	0.07 0.39	0.96	0.00	0.08
	2.03	0.00 0.00	0.39	2.03 0.75	0.00 0.00	0.21 0.05
	0.96	0.00	0.13	0.73	0.00	0.03
	2.56	0.04	0.04	1.92	0.00	0.20
	0.92	0.04	0.22	1.42	0.00	0.24
	1.49	0.00	0.01	4.06	0.00	0.24
	2.35	0.13	0.19	0.96	0.00	0.00
	6.19	0.05	0.54	0.34	-	-
	0.96	0.00	0.06	0.34	_	_
mean	2.31	0.05	0.18	1.31	0.00	0.16
max	6.19	0.13	0.54	4.06	0.00	0.33
min	0.92	0.00	0.01	0.34	0.00	0.00

Note: Bolded values are the spectrophotometer error detection limit, chlor-a not detected.

Appendix A.—Page 3 of 3.

		July 2011	1	•		July 2012	2
mg/m²		chlor-b	chlor-c	-	chlor-a	chlor-b	chlor-c
Cl	C	I- CI	- 64- 1				
Snerm		k Sample		-	1.07	0.00	0.14
	1.28	0.00	0.05		1.07	0.00	0.14
	5.34	0.00	0.36		2.88	0.87	0.16
	5.98	0.00	0.54		0.41	0.04	0.04
	3.84	0.10	0.48		2.67	1.27	0.00
	15.59	3.98	0.17		0.60	0.00	0.12
	11.11	2.64	0.28		1.07	0.00	0.11
	19.33	0.00	1.65		3.63	1.56	0.03
	7.26	0.00	0.74		9.61	4.12	0.08
	1.92	0.04	0.19		2.99	1.43	0.02
	4.38	0.17	0.44		0.43	0.00	0.06
mean	7.60	0.69	0.49		2.54	0.93	0.08
max	19.33	3.98	1.65		9.61	4.12	0.16
min	1.28	0.00	0.05		0.41	0.00	0.00
Sherm	an Cree	k Sample	e Site 2				
	3.10	0.00	0.26	•	1.05	0.04	0.12
	6.30	0.19	0.62		0.64	0.00	0.11
	4.59	0.00	0.38		0.73	0.00	0.07
	0.32	0.00	0.00		0.50	0.07	0.10
	13.88	0.00	0.54		0.34	-	-
	7.37	0.00	0.46		0.51	0.00	0.06
	1.50	0.00	0.09		0.96	0.00	0.16
	14.31	0.00	0.59		0.37	0.00	0.00
	0.85	0.00	0.01		1.28	0.00	0.09
	3.84	0.00	0.25		0.34	-	-
mean	5.61	0.02	0.32	-	0.67	0.01	0.09
max	14.31	0.19	0.62		1.28	0.07	0.16
min	0.32	0.00	0.00		0.34	0.00	0.00

Note: Bolded values are the spectrophotometer error detection limit, chlor-a not detected.

APPENDIX B: BENTHIC MACROINVERTEBRATE DATA

Appendix B.—Benthic macroinvertebrate data for samples collected near Kensington Gold Mine, 2011-2012.

Lower Slate Creek Bentl	Lower Slate Creek Benthic Macroinvertebrate Sample Data		a	East Fork Slate Creek Benthic Macroinvertebrate Sample Data				
	May 2011	Feb 2012	May 2012		May 2011	Feb 2012	April 2012	
Total Aquatic Invert Taxa Counted	29	30	32	Total Aquatic Invert Taxa Counted	27	33	33	
Total Ephemeroptera	85	213	387	Total Ephemeroptera	387	1069	490	
Total Plecoptera	70	297	274	Total Plecoptera	70	194	73	
Total Trichoptera	2	15	8	Total Trichoptera	28	44	23	
Total Aquatic Diptera	862	422	975	Total Aquatic Diptera	507	1427	547	
Total Other	129	421	116	Total Other	1624	3238	1451	
% Ephemeroptera	7%	16%	22%	% Ephemeroptera	15%	18%	19%	
% Plecoptera	6%	22%	16%	% Plecoptera	3%	3%	3%	
% Trichoptera	0%	1%	1%	% Trichoptera	1%	1%	1%	
% Aquatic Diptera	75%	31%	55%	% Aquatic Diptera	19%	24%	21%	
% Other	11%	31%	7%	% Other	62%	54%	56%	
% EPT	14%	38%	38%	% EPT	19%	22%	23%	
% Chironomidae	72%	29%	53%	% Chironomidae	17%	20%	15%	
% Dominant Aquatic Taxon	72%	41%	53%	% Dominant Aquatic Taxon	55%	46%	45%	
Total Aquatic Inverts Counted	1148	1368	1760	Total Aquatic Inverts Counted	2616	5972	2585	
Total Terrestrial Inverts Counted	0	1	4	Total Terrestrial Inverts Counted	3	0	1	
Total Inverts Counted	1148	1369	1764	Total Inverts Counted	2619	5972	2586	
% Sample Aquatic	100%	100%	100%	% Sample Aquatic	100%	100%	100%	
% Sample Terrestrial	0%	0%	0%	% Sample Terrestrial	0%	0%	0%	
Sample Size (m ²)	0.093	0.093	0.093	Sample Size (m ²)	0.093	0.093	0.093	
Mean # Aquatic Inverts / Sample	191	228	293	Mean # Aquatic Inverts / Sample	436	995	431	
1 StDev	97	88	172	1 StDev	101	699	123	
Estimated Mean # Aquatic Inverts / m ²	2057	2452	3154	Estimated Mean # Aquatic Inverts / m ²	4688	10703	4633	
1 StDev	1046	944	1849	1 StDev	1081	7521	1325	
Juvenile Fish	1	0	0	Juvenile Fish	0	0	0	

Appendix B.—Page 2 of 4.

West Fork Slate Creek Benthic Ma	May 2011	May 2012	Upper Slate Creek Benthic Macro	May 2011	April 2012
	111ay 2011	111dy 2012		141dy 2011	71pm 2012
Total Aquatic Invert Taxa Counted	21	31	Total Aquatic Invert Taxa Counted	33	39
Total Ephemeroptera	181	634	Total Ephemeroptera	368	454
Total Plecoptera	41	166	Total Plecoptera	401	349
Total Trichoptera	3	11	Total Trichoptera	116	48
Total Aquatic Diptera	35	175	Total Aquatic Diptera	248	273
Total Other	20	29	Total Other	275	135
% Ephemeroptera	65%	63%	% Ephemeroptera	26%	36%
% Plecoptera	15%	16%	% Plecoptera	29%	28%
% Trichoptera	1%	1%	% Trichoptera	8%	4%
% Aquatic Diptera	13%	17%	% Aquatic Diptera	18%	22%
% Other	7%	3%	% Other	20%	11%
% EPT	80%	80%	% EPT	63%	68%
% Chironomidae	10%	15%	% Chironomidae	15%	20%
% Dominant Aquatic Taxon	39%	37%	% Dominant Aquatic Taxon	20%	24%
Total Aquatic Inverts Counted	280	1015	Total Aquatic Inverts Counted	1408	1259
Total Terrestrial Inverts Counted	2	0	Total Terrestrial Inverts Counted	1	0
Total Inverts Counted	282	1015	Total Inverts Counted	1409	1259
% Sample Aquatic	99%	100%	% Sample Aquatic	100%	100%
% Sample Terrestrial	1%	0%	% Sample Terrestrial	0%	0%
Sample Size (m ²)	0.093	0.093	Sample Size (m ²)	0.093	0.093
Mean # Aquatic Inverts / Sample	47	169	Mean # Aquatic Inverts / Sample	235	210
1 StDev	38	94	1 StDev	109	123
Estimated Mean # Aquatic Inverts / m ²	502	1819	Estimated Mean # Aquatic Inverts / m ²	2523	2256
1 StDev	410	1009	1 StDev	1173	1321
Juvenile Fish	0	0	Juvenile Fish	0	0

Appendix B.—Page 3 of 4.

962 114 59 619 330	April 2012 28 1139 163 118 586
962 114 59 619	1139 163 118 586
114 59 619	163 118 586
59 619	118 586
619	586
330	200
	208
46%	51%
6%	7%
3%	5%
30%	27%
16%	9%
55%	64%
29%	26%
37%	34%
2084	2214
1	1
2085	2215
100%	100%
0%	0%
0.093	0.093
347	369
178	214
3735	3968
1918	2305
	29% 37% 2084 1 2085 100% 0% 0.093 347 178 3735

Appendix B.—Page 4 of 4.

Sherman Creek Sample Point 1 Benthic Macroinvertebrate Sample Data			Sherman Creek Sample Point 2 Benthic Macroinvertebrate Sample Data				
	May 2011	April 2012		May 2011	April 2012		
Total Aquatic Invert Taxa Counted	26	31	Total Aquatic Invert Taxa Counted	30	37		
Total Ephemeroptera	157	876	Total Ephemeroptera	548	1143		
Total Plecoptera	36	103	Total Plecoptera	137	77		
Total Trichoptera	7	14	Total Trichoptera	14	26		
Total Aquatic Diptera	89	160	Total Aquatic Diptera	143	254		
Total Other	335	363	Total Other	79	75		
% Ephemeroptera	25%	58%	% Ephemeroptera	60%	73%		
% Plecoptera	6%	7%	% Plecoptera	15%	5%		
% Trichoptera	1%	1%	% Trichoptera	2%	2%		
% Aquatic Diptera	14%	11%	% Aquatic Diptera	16%	16%		
% Other	54%	24%	% Other	9%	5%		
% EPT	32%	66%	% EPT	76%	79%		
% Chironomidae	6%	8%	% Chironomidae	11%	15%		
% Dominant Aquatic Taxon	53%	45%	% Dominant Aquatic Taxon	30%	57%		
Total Aquatic Inverts Counted	624	1525	Total Aquatic Inverts Counted	921	1575		
Total Terrestrial Inverts Counted	1	0	Total Terrestrial Inverts Counted	1	2		
Total Inverts Counted	625	1525	Total Inverts Counted	922	1575		
% Sample Aquatic	100%	100%	% Sample Aquatic	100%	100%		
% Sample Terrestrial	0%	0%	% Sample Terrestrial	0%	0%		
Sample Size (m ²)	0.093	0.093	Sample Size (m ²)	0.093	0.093		
Mean # Aquatic Inverts / Sample	104	254	Mean # Aquatic Inverts / Sample	154	263		
1 StDev	93	131	1 StDev	86	109		
Estimated Mean # Aquatic Inverts / m ²	1118	2733	Estimated Mean # Aquatic Inverts / m ²	1651	2823		
1 StDev	1000	1410	1 StDev	927	1174		
Juvenile Fish	10	12	Juvenile Fish	0	0		

APPENDIX C: RESIDENT FISH POPULATION AND CONDITION DATA

Table C1.—East Fork and Upper Slate Creek resident fish capture data and population estimates by reach near Kensington Gold Mine, 2011–2012.

				Numb	er of I	Fish Ca	ptured				
Site	Year	Species	FL (mm)	Set 1	Set 2	Set 3	Total	MLE	95% CI	Precision	Power
East Fork Slate Creek	2011	DV	105-140	6	2	2	10	40		n/a	
	2012	DV	165-175	2	1	2	5	20		n/a	n/a
Upper Slate Creek	2011	DV	35-145	14	12	2	28	120	104-136	13%	
	2012	DV	60-164	23	14	6	43	192	156-228	17%	0.44

Note: Precision and power of the East Fork Slate Creek population estimates could not calculated due to small sample size.

Table C2.—East Fork and Upper Slate Creek resident fish capture data and population estimates by habitat type and by reach near Kensington Gold Mine, 2011–2012.

			Habitat	Numb	er of I	Fish Ca	ptured		
Site	Year	Species	Type	Set 1	Set 2	Set 3	Total	MLE	95% CI
East Fork Slate Creek	2011	DV	Riffle	3	0	0	3	12	
East Fork Slate Creek	2011	DV	Pool	3	1	2	6	24	
East Fork Slate Creek	2011	DV	Glide	0	1	0	1	4	
East Fork Slate Creek	2012	DV	Riffle	0	0	1	1	4	
East Fork Slate Creek	2012	DV	Pool	2	1	1	4	16	
East Fork Slate Creek	2012	DV	Glide	0	0	0	0	0	
Upper Slate Creek	2011	DV	Riffle	2	2	0	4	16	
Upper Slate Creek	2011	DV	Pool	11	9	1	22	88	76-100
Upper Slate Creek	2011	DV	Glide	1	1	1	3	12	
Upper Slate Creek	2012	DV	Riffle	2	4	4	10	40	
Upper Slate Creek	2012	DV	Pool	20	3	2	25	100	100-100
Upper Slate Creek	2012	DV	Glide	1	7	0	8	36	

—Fork length weight and mean condition factor (K) of resident fish captured in East Fork and

	East	Slate C	'reek			Uppe	er Slate	Creek	
		FL	Weight				FL	Weight	
Pass #	Species	(mm)	(g)	K	Pass #	Species	(mm)	(g)	K
1	DV	166	58.2	1.27	1	DV	94	9.1	1.10
1	DV	165	n/a	n/a	1	DV	96	9.7	1.1
2	DV	165	44.5	0.99	1	DV	105	15.6	1.3
3	DV	165	46.4	1.03	1	DV	97	13.9	1.5
3	DV	175	55.6	1.04	1	DV	100	10.2	1.0
		M	lean K =	1.08	1	DV	86	6.35	1.0
					1	DV	87	6.5	0.9
					1	DV	92	8	1.0
					1	DV	155	36.5	0.9
					1	DV	96	8.8	0.9
					1	DV	65	2.6	0.9
					1	DV	68	2.9	0.9
					1	DV	65	2.7	0.9
					1	DV	66	3.7	1.2
					1	DV	68	3.6	1.1
					1	DV	66	2.3	0.8
					1	DV	72	3.8	1.0
					1	DV	71	2.7	0.7
					1	DV	69	2.4	0.7
					1	DV	68	3.1	0.9
					1	DV	65	2	0.7
					1	DV	70	3.4	0.9
					1	DV	60	2.3	1.0

2

2

2

2

2

2

2 2

2

2

2

2

2

2

3

3

3

3

3

3

DV

23.9

17

12.6

16

6.7

14.2

15.7

2.5

2.1

2.2

2

2.8

2.7

2.7

43.4

10.6

3.8

12.4

9.8

5.2

Mean K =

134

124

114

115

90

112

118

62

60

60

60

65

70

70

164

113

70

102

98

80

0.99

0.89

0.85

1.05

0.92

1.01

0.96

1.05

0.97

1.02

0.93

1.02

0.79

0.79

0.98

0.73

1.11

1.17

1.04

1.02

0.99

APPENDIX D: RESIDENT FISH METALS CONCENTRATIONS LAB REPORT

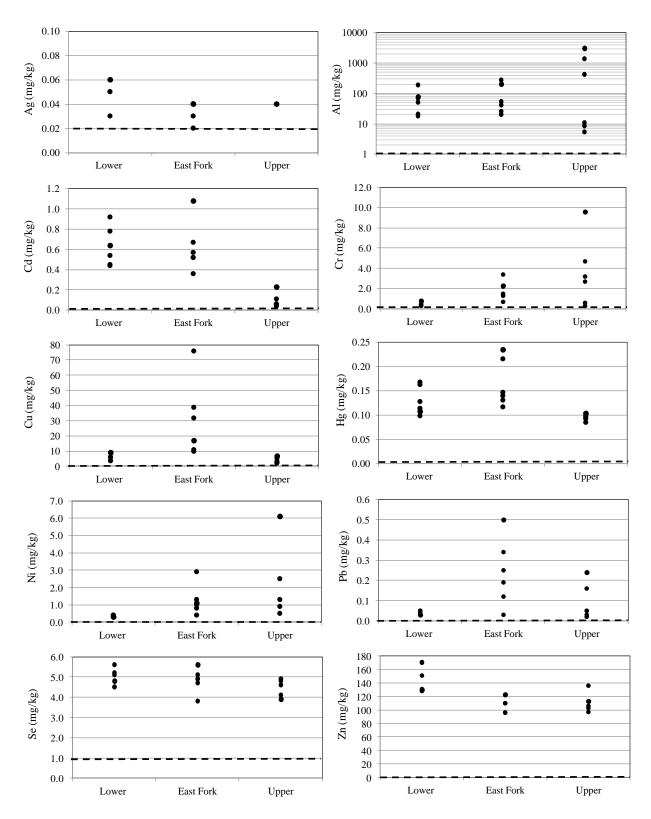


Figure D1.—Whole body metals concentrations for Dolly Varden char collected in Lower, East Fork, and Upper Slate Creek near Kensington Gold Mine in 2012.

Table D1.—Whole body metals concentrations data for Dolly Varden char collected in Lower, East Fork, and Upper Slate Creek near Kensington Gold Mine, 2011–2012.

Date		FL	Mass	Ag	Al	Cd	Cr	Cu	Hg	Ni	Pb	Se	Zn
Collected	Sample Site	(mm)	(g)	(mg/kg)									
	Method Reporting Limit			0.02	2.0	0.02	0.2	0.10	0.005	0.2	0.02	1.0	0.5
10/11/11	Lower Slate Creek	110-130	14.9-23.2	0.05	2430.0	0.72	17.3	15.5	0.0674	6.2	0.50	3.8	195
8/20/12	Lower Slate Creek	95	7.7	ND	50.9	0.45	0.5	3.5	0.167	0.3	0.05	5.6	128
8/20/12	Lower Slate Creek	115	15.5	0.06	78.0	0.64	0.8	9.0	0.107	0.3	0.03	4.8	130
8/20/12	Lower Slate Creek	110	14.2	0.05	20.8	0.54	0.4	6.0	0.162	ND	0.03	4.5	171
8/20/12	Lower Slate Creek	115	17.6	0.05	69.3	0.78	0.4	8.9	0.113	0.4	0.03	5.1	170
8/20/12	Lower Slate Creek	90	9.6	ND	18.0	0.44	0.3	3.6	0.0977	ND	0.04	4.5	131
8/20/12	Lower Slate Creek	105	12.7	0.03	189	0.92	0.8	5.8	0.127	0.4	0.05	5.2	151
9/13/11	East Fork Slate Creek	115-125	13.4-19.5	0.02	46.3	1.99	1.3	14.6	0.107	1.1	0.04	4.6	133
8/1/12	East Fork Slate Creek	166	58.2	0.04	53.8	0.57	1.5	75.8	0.130	1.0	0.03	5.1	96.3
8/1/12	East Fork Slate Creek	165	44.5	0.04	204	1.08	2.3	16.9	0.234	1.1	0.50	5.6	123
8/1/12	East Fork Slate Creek	165	46.4	0.02	20.2	0.52	0.7	10.8	0.116	0.4	0.12	4.9	95.9
8/1/12	East Fork Slate Creek	175	55.6	0.04	25.4	0.67	1.3	31.7	0.215	0.8	0.19	4.9	110
8/1/12	East Fork Slate Creek	163	56.4	0.02	275	0.52	3.4	9.7	0.146	2.9	0.25	4.7	122
8/1/12	East Fork Slate Creek	165	62.7	0.03	41.6	0.36	2.2	38.7	0.139	1.3	0.34	3.8	110
8/10/11	Upper Slate Creek	55-125	5-21.6	ND	1630	0.14	13.5	11.3	0.112	5.5	0.20	4.4	115
8/2/12	Upper Slate Creek	94	9.1	ND	1380	0.11	4.7	5.2	0.0919	2.5	0.16	4.8	103
8/2/12	Upper Slate Creek	96	9.7	0.04	3080	0.23	9.6	6.7	0.103	6.1	0.24	3.9	113
8/2/12	Upper Slate Creek	105	15.6	ND	421	0.06	2.7	3.1	0.0938	0.9	0.05	4.6	106
8/2/12	Upper Slate Creek	97	13.9	ND	5.4	0.05	0.6	2.1	0.102	ND	0.02	4.9	97.0
8/2/12	Upper Slate Creek	100	10.2	ND	10.8	0.04	0.3	2.2	0.0972	0.5	0.03	4.1	113
8/2/12	Upper Slate Creek	86	6.5	ND	8.5	0.06	3.2	2.6	0.0842	1.3	0.05	4.9	136

November 8, 2012

Analytical Report for Service Request No: K1209738

Ben Brewster Alaska Department of Fish and Game Division of Habitat P.O. Box 110024 Juneau, AK 99811

RE: Kensington Gold Mine Whole Fish Analysis/Coeur Alaska Mining Company

Dear Ben:

Enclosed are the results of the samples submitted to our laboratory on September 28, 2012. For your reference, these analyses have been assigned our service request number K1209738.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3363. You may also contact me via Email at Lisa.Domenighini@alsglobal.com.

Respectfully submitted,

Columbia Analytical Services, Inc. dba ALS Environmental

Lisa Domenighini Project Manager

_

LD/jw Page 1 of <u>41</u>

ADDRESS 1317 S. 13th Avenue, Kelso, WA 98626
PHONE +1 360 577 7222 FAX +1 360 636 1068
Columbia Analytical Services, Inc.
Part of the ALS Group A Campbell Brothers Limited Company

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- \boldsymbol{Q} $\;\;$ See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Columbia Analytical Services, Inc. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Web Site	Number
http://dec.alaska.gov/applications/eh/ehllabreports/USTLabs.aspx	UST-040
http://www.azdhs.gov/lab/license/env.htm	AZ0339
http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2286
http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L12-28
http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
http://www.gaepd.org/Documents/techguide_pcb.html#cel	881
Not available	1
http://www.healthandwelfare.idaho.gov/Health/Labs/CertificationDrinkingWaterLabs/tabid/1833/Default.aspx	-
-	C-WA-01
http://www.pjlabs.com/	L12-27
http://www.deq.louisiana.gov/portal/DIVISIONS/PublicParticipationandPermitSupport/LouisianaLaboratoryAccreditationProgram.aspx	3016
Not available	LA110003
Not available	WA0035
http://www.michigan.gov/deq/0,1607,7-135-3307_4131_4156,00.html	9949
http://www.health.state.mn.us/accreditation	053-999-368
http://www.dphhs.mt.gov/publichealth/	CERT0047
http://ndep.nv.gov/bsdw/labservice.htm	WA35
http://www.nj.gov/dep/oqa/	WA005
http://www.nmenv.state.nm.us/dwb/Index.htm	-
http://www.dwqlab.org/	605
http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	WA200001
http://www.scdhec.gov/environment/envserv/	61002
http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	1704427-08-TX
http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C1203
http://dnr.wi.gov/	998386840
http://www.epa.gov/region8/water/dwhome/wyomingdi.html	
www.caslab.com	NA
	http://dec.alaska.gov/applications/eh/ehllabreports/USTLabs.aspx http://www.azdhs.gov/lab/license/env.htm http://www.adeq.state.ar.us/techsvs/labcert.htm http://www.adeq.state.ar.us/techsvs/labcert.htm http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm http://www.gaepd.org/Documents/techguide_pcb.html#cel Not available http://www.healthandwelfare.idaho.gov/Health/Labs/CertificationDrinkingWaterLabs/tabid/1833/Default.aspx http://www.nj.gov/isdh/24859.htm http://www.pjlabs.com/ http://www.pjlabs.com/ http://www.deq.louisiana.gov/portal/DIVISIONS/PublicParticipationandPermitSupport/LouisianaLaboratoryAccreditationProgram.aspx Not available Not available http://www.michigan.gov/deq/0,1607,7-135-3307_4131_4156,00.html http://www.health.state.mn.us/accreditation http://www.health.state.mn.us/accreditation http://www.dphhs.mt.gov/publichealth/ http://www.nj.gov/dep/oqa/ http://www.nj.gov/dep/oqa/ http://www.nj.gov/dep/oqa/ http://www.nmenv.state.nm.us/dwb/Index.htm http://www.deq.state.ok.us/CSDnew/labcert.htm http://www.deq.state.ok.us/CSDnew/labcert.htm http://www.deq.state.ok.us/CSDnew/labcert.htm http://www.deq.state.ok.us/CSDnew/labcert.htm http://www.scdhec.gov/environment/envserv/ http://www.scdhec.gov/environment/envserv/ http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html http://www.epa.gov/region8/water/dwhome/wyomingdi.html

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.caslab.com or at the accreditation bodies web site Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

ALS ENVIRONMENTAL

Client: Alaska Department of Fish and Game Service Request No.: K1209738

Project: Coeur Alaska Mining Company Date Received: 9/28/12-10/9/12

Sample Matrix: Tissue

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Additional quality control analyses reported herein include: Matrix/Duplicate Matrix Spike (MS/DMS), and Laboratory/Duplicate Laboratory Control Sample (LCS/DLCS).

Sample Receipt

Eighteen tissue samples were received for analysis at ALS Environmental on 9/28/12-10/9/12. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C and frozen at -20°C upon receipt at the laboratory.

Total Metals

Relative Percent Difference Exceptions:

The Relative Percent Difference (RPD) for the replicate analysis of Aluminum in sample East Fork Slate Creek #1 was outside the project specified control limits. The samples were homogenized, freeze dried, then ground prior to digestion, however this was not sufficient to achieve a completely uniform distribution of Aluminum in the tissue.

No other anomalies associated with the analysis of these samples were observed.

Approved by Approved by

CHAIN OF CUSTODY

SR#: 1(109738

An Employee - Owned Company	131	7 South 13t	h Ave. • Ke	Iso, WA 9	8626 •	(360)	577-72	22 •	(800) €	395-72	22x07	• FAX	(360)	636-10)68	Ł.	AGL			_ 01	3		_ 'UU'	→ #	
PROJECT NAME KENSING-	ING G	NA Min	e ulal	e Ca	· Aus	1.0015/	7	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7	7	./	7	7	7	7 6	7	7	7	7	7	7	7	7	7	/ / /
PROJECT NUMBER (OCAL A						7		/	/	/ 5	/	/ .	10 1	/ /	1 3	/ /	/ /	/	/ /	/ _ /	/ .	10,	(m)	L /	' / /
					. 6 %	_/	Seminolatie C.	/5		BIEX		1664 6.	6	/	8757A	/	Cyanide Callor Dissolved			S~ /5	ç /	7905	3		/ /
COMPANY/ADDRESS & .		Seems 9	ADFG.		tert	CONTAINERS	o /	/5	9/	4/_	\neg	/6	Pesticides/Longen	17	$\tilde{\alpha}$			10	J/4	100	: /.	5/	. 7		/ /
Alagka	Dec		a all	Grans	C.	1 E		18	<u> </u>	9/ð	3/8	/		$\frac{2}{2}$,	7/2	al m	100	186	10g	<u> </u>	.m/ &	3/	7	/	
802	West	- 312	St.			\ \times \ \\ \times \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	/	82,58	1/ 8	[v]	1/2		1 8		157	7 3	180	18	100	8/2-8	9/ 6	1	.¥		/ /
CITVISTATE/ZIP JUNEQU	Α.		801		/	\\[\bar{\gamma}\]	′ /	130	/ °) ge/	1 2 8	I I		100	/® ,	/ 8	/iši /	1 8 1	001	150	18	Mess	7 ,	/ /	′ /
CAMIL ACCRECC	*.	(1)	1 1		-	ŏ/	/d	SE/	` <i>ĕ</i> ₽/	$\frac{c}{c}$	(2/5/	EZI	(ŏ/,	44		9/	52/	I	55	[∞] ≥ /	` <i>*</i> /	3	/	/	/
PHONE # O					/	5/	tile.	8/ /	89/j		<u> </u>	2 2 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- /S	8/8		370		7/3	9.6	100	27.	_/			/
PHONE # 107-165-6		<u> </u>	7-465	-745	NUMBED		100			7/0	J. J. J. S.	8/2	Side	8/g		0/5	15 p	1/5	O_{\sim}^{B}	9/ 8	ÿ /_	2/	/		
Bank Bank					/ ME		9mi	Jati]/ğ	S 12 3	\$\\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		0/3/8 0/3/8]/\$E	7/ ž	eta/	(a) (a)	100		3/ ž	1/5	9	/	/	
SAMPLE I.D. E	DATE	TIME	LAB I.D.	MATRIX	1 <i>2</i>	/	100	720	Hydrocarts (Section 1978)	1/40	0	\g \\	Pesticides/L. Congen.	105	()	120	Cyanige C	/d -	/ * ~	12		7	/	/	/ REMARKS
	15+	77		time	18											χ					X			Mila annual Mina and U	And the state of t
of regident fol	(1	ole.																			1				(edi para para para para da 1964 (e. 1965 e. 1964 e. 1
body Gomples	1	1										ALBERT PRINCIPAL								a augus ammagapahapai j					Action to the second se
Will wright												rismia hanadran dertu												-	american de la companya de la compa
· · · · · · · · · · · · · · · · · · ·																			Administrative chara						
	-				į																				
																									and the state of t
										<u> </u>															
	-																and the second	and the same of th							
																									Make September 1974 1974 1974 1974 1974 1974 1974 1974
																								e transitionistis and t	
					1													-							
anne e e e e e e e e e e e e e e e e e e		abanenenenen saartsoors INVOI	ICE INFOR	MATION	ALIEN SERVICES	Cirolo	u doiota e	notolo	oro to	h	h				L		1	1			L	L	I		enne erretien erretiete (i.e., r. 2000), een een een erretien aan een een een een een een een een e
REPORT REQUIREMENT	TS	P.O. #					which r						_		α A		_			-			en.		^
I. Routine Report: Mett	hod		Coenr	Alach	10	Tot	al Meta	ls: (Al) As	Sb B	a Be	В Са		00	3)(G)) Fe (Pb) N	lg Mr	т Мо		K. (Ag) Na (Se)S	r TI	Sn V (Zn) Hg
Blank, Surrogate, as	8	3031	Clinton	70												-	wildow.				"Australian Park				Sn V Zn Hg
required			202			***		O# 15																	
II. Report Dup., MS, MS	SD as	Commence of the same of the sa	OUND REC	ALLE CAN	LITC	INDI	ICATE	SIA	EHY	DHO	SAHBO	JN PF	HOCE	JUHE	: AK	CA	VVI	NOF	HW	ESI	OTH	<u> </u>		_ (CIH	CLE ONE)
required					1412	SPEC	CIAL IN	ISTR	UCTIO	DNS/C	OMM	ENTS	:												
III. Data Validation Repo	ort		r	48 hr.	Į		11 u	197	ba	6:5	ء مسد،	Rel	ort	8/	Me	015 }~	12								
(includes all raw data	1	5 Da	•				1	v ·	45	,,		1	,	10		,									
·	·	_X Stan	dard (10-15	working c	lays)	6	and	gatile.	1 000	V a	,J	hore	deop	V	to -	Ro	ia i zia	n. In	R	(Das.	271				
IV. CLP Deliverable Rep	oort	Prov	ide FAX Res	sults	ĺ	Ų	~	~	" CA				•	1		Δī	VE.	e	المرا						
V. EDD																Ø.	010	m l	TT41	110	\ }				
		Rec	juested Rep	ort Date			CLATE CIAL IN									CO	Time	sen 1 Ocas 1	Ã	K,	946	hi			
RELINQUISHED	O BY:			***************************************	RECE	IVED	BY	á	196	40	*********		pri	INOU	ISHE) BV:	A NOW	WAND.	`		4 8.6	DE	CENT	D BY	
Berger Frent			in in	W. 120	m-	Z	äln	Qli.	n^{\vee} 1	M			1 1 Im il		.0.166	F F			-			nc	OEIVE	ומטי	•
Signature Dat	te/Time		Simo	<i>ULC</i>	V/VU	- T	ate/fin	<u>0/1</u>	4.	ne,	Qia	ature			<u> </u>	te/Tim	0			Ciana	tire	***************************************		Date	Tima
Benjamin Breush	te/Time A-T	15-6n	1 777	HUS	MH	7	*		AL	>							C			Signa	aui e			Date	rime
Printed Name Fire	m		Printe	d Name		Fi	irm				Prin	ted N	ame		Fir	m	MITTER STREET PRINTING BOOK OF THE P	THE COLUMN TO		Printe	d Nar	ne		Firm	

				Page 1	K120 973	KGMFis	hMetals2
Kensington Gold Mi	ne Biomonitorin	g - 2012			MAD IN		
Resident Fish for WI	hole Body Metal:	S	(COOLER 1/1			4. T. J. (11 TH. 11 TH. 11 TH. 12
Basis, all samples: I	Ory Weight, Repo	ort %Moisture		***************************************			
No preservative adde	ed; all fish frozer	1					
Requested Analyses:	: Al,Ag,Cd,Cr,Cı	ı,Pb,Ni,Ag,Se,Zn,T	Total Hg				
		Date	Sample	Sample	Analysis	Fk Length	Weight
Matrix	Collector	Collected	Number	Location	Requested	(mm)	(g)
Whole Body	ADF&G	7/21/2012	East Fork Slate Creek Sample #1	East Fork Slate Creek (EFSC)	Al,Ag, Cd, Cr,Cu, Pb, Ni,Se, Zn,Hg	166	58.2
Whole Body	ADF&G	7/21/2012	East Fork Slate Creek Sample #2	East Fork Slate Creek (EFSC)	Al,Ag, Cd, Cr,Cu, Pb, Ni,Se, Zn,Hg	165	44.5
Whole Body	ADF&G	7/21/2012	East Fork Slate Creek Sample #3	East Fork Slate Creek (EFSC)	Al,Ag, Cd, Cr,Cu, Pb, Ni,Se, Zn,Hg	165	46.4
Whole Body	ADF&G	7/21/2012	East Fork Slate Creek Sample #4	East Fork Slate Creek (EFSC)	Al, Ag, Cd, Cr, Cu, Pb, Ni, Se, Zn, Hg	175	55.6
Whole Body	ADF&G	7/21/2012	East Fork Slate Creek Sample #5	East Fork Slate Creek (EFSC)	Al, Ag, Cd, Cr, Cu, Pb, Ni, Se, Zn, Hg	163	56.4
Whole Body	ADF&G	7/21/2012	East Fork Slate Creek Sample #6	East Fork Slate Creek (EFSC)	Al,Ag, Cd, Cr,Cu, Pb, Ni,Se, Zn,Hg	165	62.7
Whole Body	ADF&G	8/2/2012	Upper Slate Creek Sample #1	Upper Slate Creek(USL)	Al,Ag, Cd, Cr,Cu, Pb, Ni,Se, Zn,Hg	94	9.1
Whole Body	ADF&G	8/2/2012	Upper Slate Creek Sample #2	Upper Slate Creek(USL)	Al, Ag, Cd, Cr, Cu, Pb, Ni, Se, Zn, Hg	96	9.7
Whole Body	ADF&G	8/2/2012	Upper Slate Creek Sample #3	Upper Slate Creek(USL)	Al, Ag, Cd, Cr, Cu, Pb, Ni, Se, Zn, Hg	105	15.6
Whole Body	ADF&G	8/2/2012	Upper Slate Creek Sample #4	Upper Slate Creek(USL)	Al, Ag, Cd, Cr, Cu, Pb, Ni, Se, Zn, Hg	97	13.9
Whole Body	ADF&G	8/2/2012	Upper Slate Creek Sample #5	Upper Slate Creek(USL)	Al, Ag, Cd, Cr, Cu, Pb, Ni, Se, Zn, Hg	100	10.2
Whole Body	ADF&G	8/2/2012	Upper Slate Creek Sample #6	Upper State Creek(USL)	Al,Ag, Cd, Cr,Cu, Pb, Ni,Se, Zn,Hg	86	6.5
Whole Body	ADF&G	7/22/2012	Lower Slate Creek Sample #1	Lower Slate Creek(LSC)	Al,Ag, Cd, Cr,Cu, Pb, Ni,Se, Zn,Hg	95	7.7
Whole Body	ADF&G	7/22/2012	Lower Slate Creek Sample #2	Lower Slate Creek(LSC)	Al, Ag, Cd, Cr, Cu, Pb, Ni, Se, Zn, Hg	115	15.5
Whole Body	ADF&G	7/22/2012	Lower Slate Creek Sample #3	Lower Slate Creek(LSC)	Al, Ag, Cd, Cr, Cu, Pb, Ni, Se, Zn, Hg	110	14.2
Whole Body	ADF&G	7/22/2012	Lower Slate Creek Sample #4	Lower Slate Creek(LSC)	Al, Ag, Cd, Cr, Cu, Pb, Ni, Se, Zn, Hg	115	17.6
Whole Body	ADF&G	7/22/2012	Lower Slate Creek Sample #5	Lower Slate Creek(LSC)	Al,Ag, Cd, Cr,Cu, Pb, Ni,Se, Zn,Hg	90	9.6
Whole Body	ADF&G	7/22/2012	Lower Slate Creek Sample #6:	Lower Slate Creek(LSC)	Al,Ag, Cd, Cr,Cu, Pb, Ni,Se, Zn,Hg	105	12.7

Cooler Receipt and Preservation Form

0	p
PCYTREE	

Client / Project: Cogur	Cooler Rece	npi and Freser	v ation Form xice Request <i>K12</i> _	09738		
alaction	pened: 9/28/19	By: 45	Unloaded:	9/18/12	By: K)
7	- Immedia				Jy J	
*		PS DHL	PDX Courier	Hand Delivered		
2. Samples were received in: (circl	A sussimilar management of the state of the	•	Other	1 (250)	NA NA	
3. Were <u>custody seals</u> on coolers?		•	ow many and where	7	$U_{\overline{Q}}$	<u> </u>
If present, were custody seals in			esent, were they sign	ed and dated?	Y) N
Cooler Temp Temp°C Blank°C	Thermometer Co	ooler/COC ID NA	Tra	cking Number	NA	Filed
5:4	318		3015 37	50 O70A	·	
		and the second s				
7. Packing material: Inserts Ba	aggies Bubble Wrap (Gel Packs Wet	Ice Dry Ice Slee	ves	,	
3. Were custody papers properly fi		The state of the s			NA (Y)) N
9. Did all bottles arrive in good cor			elow.	.]	NA (Y)	N
10. Were all sample labels complet	e (i.e analysis, preservati	on, etc.)?			na 🏹	N
11. Did all sample labels and tags a	gree with custody papers	s? Indicate major (discrepancies in the t	able on page 2.	NA Y) N
2. Were appropriate bottles/contai	ners and volumes receive	ed for the tests indi	cated?		NA (Y)	N
13. Were the pH-preserved bottles	(see SMO GEN SOP) recei	ved at the appropri	ate pH? <i>Indicate in i</i>	he table below	MA) Y	N
14. Were VOA vials received with	out headspace? Indicate	in the table below.			NA Y	N
15. Was C12/Res negative?				2	NA) Y	N
Sample ID on Bottle	Samp	le ID on COC		Identified by:		

Sample ID	Bottle Count Out of Bottle Type Temp	Head- space Broke pH		ume Reagent Lot ded Number	Initials	Time
					i	
Notes, Discrepancies, & Resolut	tions:					
e and the second of the second						
		-				
				·		

COLUMBIA ANALYTICAL SERVICES, INC.

Now part of the ALS Group

Analytical Report

Client: Alaska Department of Fish and Game

Project: Date Collected: 07/21-08/02/12 Kensington Gold Mine Whole Fish Analysis/Coeur Alaska Mining Company

Sample Matrix:

Moisture

Prep Method: NONE Units: PERCENT Analysis Method: Freeze Dry

Basis: Wet

Service Request: K1209738

Date Received: 09/28/12

Test Notes:

		Date		Result
Sample Name	Lab Code	Analyzed	Result	Notes
East Fork Slate Creek Sample #1	K1209738-001	10/24/12	73.9	
East Fork Slate Creek Sample #2	K1209738-002	10/24/12	74.3	
East Fork Slate Creek Sample #3	K1209738-003	10/24/12	71.2	
East Fork Slate Creek Sample #4	K1209738-004	10/24/12	74.5	
East Fork Slate Creek Sample #5	K1209738-005	10/24/12	74.6	
East Fork Slate Creek Sample #6	K1209738-006	10/24/12	73.7	
Upper State Creek Sample #1	K1209738-007	10/24/12	75.6	
Upper State Creek Sample #2	K1209738-008	10/24/12	75.4	
Upper State Creek Sample #3	K1209738-009	10/24/12	76.5	
Upper State Creek Sample #4	K1209738-010	10/24/12	78.1	
Upper State Creek Sample #5	K1209738-011	10/24/12	75.9	
Upper State Creek Sample #6	K1209738-012	10/24/12	76.7	
Lower Slate Creek Sample #1	K1209738-013	10/24/12	75.5	
Lower Slate Creek Sample #2	K1209738-014	10/24/12	75.8	
Lower Slate Creek Sample #3	K1209738-015	10/24/12	77.2	
Lower Slate Creek Sample #4	K1209738-016	10/24/12	78.5	
Lower Slate Creek Sample #5	K1209738-017	10/24/12	74.9	
Lower Slate Creek Sample #6	K1209738-018	10/24/12	75.6	

COLUMBIA ANALYTICAL SERVICES, INC.

Now part of the ALS Group QA/QC Report

Client: Alaska Department of Fish and Game

Project: Kensington Gold Mine Whole Fish Analysis/Coeur Alaska Mining Company

Sample Matrix: Tissue

Service Request: K1209738
Date Collected: 07/21/12
Date Received: 09/28/12
Date Extracted: NA
Date Analyzed: 10/24/12

Units: PERCENT

Basis: Wet

Duplicate Summary

Sample Name: East Fork Slate Creek Sample #1

Lab Code: K1209738-001D

Test Notes:

Analyte	Prep Method	Analysis Method	Sample Result	Duplicate Sample Result	Average	Relative Percent Difference	Result Notes
Moisture	NA	Freeze Dry	73.9	72.8	73.4	1	

K1209738ICP.ea1 - DUP (2) 11/07/12 Page No.:

COLUMBIA ANALYTICAL SERVICES, INC. Now part of the ALS Group

- Cover Page -INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Game Service Request: K1209738

Kensington Gold Mine Whole Fish Analysis **Project Name:**

Project No.: Coeur Alaska Mining Company

Sample Name:	Lab Code:
East Fork Slate Creek Sample #1	K1209738-001
East Fork Slate Creek Sample #1D	K1209738-001D
East Fork Slate Creek Sample #1S	K1209738-001S
East Fork Slate Creek Sample #2	K1209738-002
East Fork Slate Creek Sample #3	K1209738-003
East Fork Slate Creek Sample #4	K1209738-004
East Fork Slate Creek Sample #5	K1209738-005
East Fork Slate Creek Sample #6	K1209738-006
Upper State Creek Sample #1	K1209738-007
Upper State Creek Sample #2	K1209738-008
Upper State Creek Sample #3	K1209738-009
Upper State Creek Sample #4	K1209738-010
Upper State Creek Sample #5	K1209738-011
Upper State Creek Sample #6	K1209738-012
Lower Slate Creek Sample #1	K1209738-013
Lower Slate Creek Sample #2	K1209738-014
Lower Slate Creek Sample #3	K1209738-015
Lower Slate Creek Sample #4	K1209738-016
Lower Slate Creek Sample #5	K1209738-017
Lower Slate Creek Sample #6	K1209738-018
Method Blank	K1209738-MB

Comments:

COLUMBIA ANALYTICAL SERVICES, INC. Now part of the ALS Group

Metals

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1209738

Project No.: Coeur Alaska Mining Company Date Collected: 07/21/12

Project Name: Kensington Gold Mine Whole Fish Date Received: 09/28/12

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: East Fork Slate Creek Sample #1 Lab Code: K1209738-001

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Aluminum	200.8	2.0	5.0	10/23/12	11/05/12	53.8		*
Cadmium	200.8	0.02	5.0	10/23/12	11/05/12	0.57		
Chromium	200.8	0.2	5.0	10/23/12	11/05/12	1.5		
Copper	200.8	0.1	5.0	10/23/12	11/05/12	75.8		
Lead	200.8	0.02	5.0	10/23/12	11/05/12	0.03		
Nickel	200.8	0.2	5.0	10/23/12	11/05/12	1.0		
Selenium	200.8	1.0	5.0	10/23/12	11/05/12	5.1		
Silver	200.8	0.02	5.0	10/23/12	11/05/12	0.04		
Zinc	200.8	0.5	5.0	10/23/12	11/05/12	96.3		

Comments:

Metals

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1209738

Project No.: Coeur Alaska Mining Company Date Collected: 07/21/12

Project Name: Kensington Gold Mine Whole Fish Date Received: 09/28/12

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: East Fork Slate Creek Sample #2 Lab Code: K1209738-002

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Aluminum	200.8	2.0	5.0	10/23/12	11/05/12	204		*
Cadmium	200.8	0.02	5.0	10/23/12	11/05/12	1.08		
Chromium	200.8	0.2	5.0	10/23/12	11/05/12	2.3		
Copper	200.8	0.1	5.0	10/23/12	11/05/12	16.9		
Lead	200.8	0.02	5.0	10/23/12	11/05/12	0.50		
Nickel	200.8	0.2	5.0	10/23/12	11/05/12	1.1		
Selenium	200.8	1.0	5.0	10/23/12	11/05/12	5.6		
Silver	200.8	0.02	5.0	10/23/12	11/05/12	0.04		
Zinc	200.8	0.5	5.0	10/23/12	11/05/12	123		

Metals

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1209738

Project No.: Coeur Alaska Mining Company Date Collected: 07/21/12

Project Name: Kensington Gold Mine Whole Fish Date Received: 09/28/12

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: East Fork Slate Creek Sample #3 Lab Code: K1209738-003

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Aluminum	200.8	2.0	5.0	10/23/12	11/05/12	20.2		*
Cadmium	200.8	0.02	5.0	10/23/12	11/05/12	0.52		
Chromium	200.8	0.2	5.0	10/23/12	11/05/12	0.7		
Copper	200.8	0.1	5.0	10/23/12	11/05/12	10.8		
Lead	200.8	0.02	5.0	10/23/12	11/05/12	0.12		
Nickel	200.8	0.2	5.0	10/23/12	11/05/12	0.4		
Selenium	200.8	1.0	5.0	10/23/12	11/05/12	4.9		
Silver	200.8	0.02	5.0	10/23/12	11/05/12	0.02		
Zinc	200.8	0.5	5.0	10/23/12	11/05/12	95.9		

Metals

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1209738

Project No.: Coeur Alaska Mining Company Date Collected: 07/21/12

Project Name: Kensington Gold Mine Whole Fish Date Received: 09/28/12

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: East Fork Slate Creek Sample #4 Lab Code: K1209738-004

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Aluminum	200.8	2.0	5.0	10/23/12	11/05/12	25.4		*
Cadmium	200.8	0.02	5.0	10/23/12	11/05/12	0.67		
Chromium	200.8	0.2	5.0	10/23/12	11/05/12	1.3		
Copper	200.8	0.1	5.0	10/23/12	11/05/12	31.7		
Lead	200.8	0.02	5.0	10/23/12	11/05/12	0.19		
Nickel	200.8	0.2	5.0	10/23/12	11/05/12	0.8		
Selenium	200.8	1.0	5.0	10/23/12	11/05/12	4.9		
Silver	200.8	0.02	5.0	10/23/12	11/05/12	0.04		
Zinc	200.8	0.5	5.0	10/23/12	11/05/12	110		

Metals

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1209738

Project No.: Coeur Alaska Mining Company Date Collected: 07/21/12

Project Name: Kensington Gold Mine Whole Fish Date Received: 09/28/12

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: East Fork Slate Creek Sample #5 Lab Code: K1209738-005

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	C	Q
Aluminum	200.8	2.0	5.0	10/23/12	11/05/12	275		*
Cadmium	200.8	0.02	5.0	10/23/12	11/05/12	0.52		
Chromium	200.8	0.2	5.0	10/23/12	11/05/12	3.4		
Copper	200.8	0.1	5.0	10/23/12	11/05/12	9.7		
Lead	200.8	0.02	5.0	10/23/12	11/05/12	0.25		
Nickel	200.8	0.2	5.0	10/23/12	11/05/12	2.9		
Selenium	200.8	1.0	5.0	10/23/12	11/05/12	4.7		
Silver	200.8	0.02	5.0	10/23/12	11/05/12	0.02		
Zinc	200.8	0.5	5.0	10/23/12	11/05/12	122		·

Metals

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1209738

Project No.: Coeur Alaska Mining Company Date Collected: 07/21/12

Project Name: Kensington Gold Mine Whole Fish Date Received: 09/28/12

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: East Fork Slate Creek Sample #6 Lab Code: K1209738-006

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Aluminum	200.8	2.0	5.0	10/23/12	11/05/12	41.6		*
Cadmium	200.8	0.02	5.0	10/23/12	11/05/12	0.36		
Chromium	200.8	0.2	5.0	10/23/12	11/05/12	2.2		
Copper	200.8	0.1	5.0	10/23/12	11/05/12	38.7		
Lead	200.8	0.02	5.0	10/23/12	11/05/12	0.34		
Nickel	200.8	0.2	5.0	10/23/12	11/05/12	1.3		
Selenium	200.8	1.0	5.0	10/23/12	11/05/12	3.8		
Silver	200.8	0.02	5.0	10/23/12	11/05/12	0.03		
Zinc	200.8	0.5	5.0	10/23/12	11/05/12	110		

Metals

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1209738

Project No.: Coeur Alaska Mining Company Date Collected: 08/02/12

Project Name: Kensington Gold Mine Whole Fish Date Received: 09/28/12

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: Upper State Creek Sample #1 Lab Code: K1209738-007

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Aluminum	200.8	2.0	5.0	10/23/12	11/05/12	1380		*
Cadmium	200.8	0.02	5.0	10/23/12	11/05/12	0.11		
Chromium	200.8	0.2	5.0	10/23/12	11/05/12	4.7		
Copper	200.8	0.1	5.0	10/23/12	11/05/12	5.2		
Lead	200.8	0.02	5.0	10/23/12	11/05/12	0.16		
Nickel	200.8	0.2	5.0	10/23/12	11/05/12	2.5		
Selenium	200.8	1.0	5.0	10/23/12	11/05/12	4.8		
Silver	200.8	0.02	5.0	10/23/12	11/05/12	0.02	U	
Zinc	200.8	0.5	5.0	10/23/12	11/05/12	103		

Metals

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1209738

Project No.: Coeur Alaska Mining Company Date Collected: 08/02/12

Project Name: Kensington Gold Mine Whole Fish Date Received: 09/28/12

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: Upper State Creek Sample #2 Lab Code: K1209738-008

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Aluminum	200.8	2.0	5.0	10/23/12	11/05/12	3080		*
Cadmium	200.8	0.02	5.0	10/23/12	11/05/12	0.23		
Chromium	200.8	0.2	5.0	10/23/12	11/05/12	9.6		
Copper	200.8	0.1	5.0	10/23/12	11/05/12	6.7		
Lead	200.8	0.02	5.0	10/23/12	11/05/12	0.24		
Nickel	200.8	0.2	5.0	10/23/12	11/05/12	6.1		
Selenium	200.8	1.0	5.0	10/23/12	11/05/12	3.9		
Silver	200.8	0.02	5.0	10/23/12	11/05/12	0.04		
Zinc	200.8	0.5	5.0	10/23/12	11/05/12	113		

Metals

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1209738

Project No.: Coeur Alaska Mining Company Date Collected: 08/02/12

Project Name: Kensington Gold Mine Whole Fish Date Received: 09/28/12

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: Upper State Creek Sample #3 Lab Code: K1209738-009

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Aluminum	200.8	2.0	5.0	10/23/12	11/05/12	421		*
Cadmium	200.8	0.02	5.0	10/23/12	11/05/12	0.06		
Chromium	200.8	0.2	5.0	10/23/12	11/05/12	2.7		
Copper	200.8	0.1	5.0	10/23/12	11/05/12	3.1		
Lead	200.8	0.02	5.0	10/23/12	11/05/12	0.05		
Nickel	200.8	0.2	5.0	10/23/12	11/05/12	0.9		
Selenium	200.8	1.0	5.0	10/23/12	11/05/12	4.6		
Silver	200.8	0.02	5.0	10/23/12	11/05/12	0.02	U	
Zinc	200.8	0.5	5.0	10/23/12	11/05/12	106		

Metals

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1209738

Project No.: Coeur Alaska Mining Company Date Collected: 08/02/12

Project Name: Kensington Gold Mine Whole Fish Date Received: 09/28/12

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: Upper State Creek Sample #4 Lab Code: K1209738-010

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Aluminum	200.8	2.0	5.0	10/23/12	11/05/12	5.4		*
Cadmium	200.8	0.02	5.0	10/23/12	11/05/12	0.05		
Chromium	200.8	0.2	5.0	10/23/12	11/05/12	0.6		
Copper	200.8	0.1	5.0	10/23/12	11/05/12	2.1		
Lead	200.8	0.02	5.0	10/23/12	11/05/12	0.02		
Nickel	200.8	0.2	5.0	10/23/12	11/05/12	0.2	ŭ	
Selenium	200.8	1.0	5.0	10/23/12	11/05/12	4.9		
Silver	200.8	0.02	5.0	10/23/12	11/05/12	0.02	U	
Zinc	200.8	0.5	5.0	10/23/12	11/05/12	97.0		

Metals

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1209738

Project No.: Coeur Alaska Mining Company Date Collected: 08/02/12

Project Name: Kensington Gold Mine Whole Fish Date Received: 09/28/12

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: Upper State Creek Sample #5 Lab Code: K1209738-011

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Aluminum	200.8	2.0	5.0	10/23/12	11/05/12	10.8		*
Cadmium	200.8	0.02	5.0	10/23/12	11/05/12	0.04		
Chromium	200.8	0.2	5.0	10/23/12	11/05/12	0.3		
Copper	200.8	0.1	5.0	10/23/12	11/05/12	2.2		
Lead	200.8	0.02	5.0	10/23/12	11/05/12	0.03		
Nickel	200.8	0.2	5.0	10/23/12	11/05/12	0.5		
Selenium	200.8	1.0	5.0	10/23/12	11/05/12	4.1		
Silver	200.8	0.02	5.0	10/23/12	11/05/12	0.02	Ŭ	
Zinc	200.8	0.5	5.0	10/23/12	11/05/12	113		

Metals

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1209738

Project No.: Coeur Alaska Mining Company Date Collected: 08/02/12

Project Name: Kensington Gold Mine Whole Fish Date Received: 09/28/12

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: Upper State Creek Sample #6 Lab Code: K1209738-012

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	C	Q
Aluminum	200.8	2.0	5.0	10/23/12	11/05/12	8.5		*
Cadmium	200.8	0.02	5.0	10/23/12	11/05/12	0.06		
Chromium	200.8	0.2	5.0	10/23/12	11/05/12	3.2		
Copper	200.8	0.1	5.0	10/23/12	11/05/12	2.6		
Lead	200.8	0.02	5.0	10/23/12	11/05/12	0.05		
Nickel	200.8	0.2	5.0	10/23/12	11/05/12	1.3		
Selenium	200.8	1.0	5.0	10/23/12	11/05/12	4.9		
Silver	200.8	0.02	5.0	10/23/12	11/05/12	0.02	ŭ	
Zinc	200.8	0.5	5.0	10/23/12	11/05/12	136		

Metals

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1209738

Project No.: Coeur Alaska Mining Company Date Collected: 07/22/12

Project Name: Kensington Gold Mine Whole Fish Date Received: 09/28/12

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: Lower Slate Creek Sample #1 Lab Code: K1209738-013

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Aluminum	200.8	2.0	5.0	10/23/12	11/05/12	50.9		*
Cadmium	200.8	0.02	5.0	10/23/12	11/05/12	0.45		
Chromium	200.8	0.2	5.0	10/23/12	11/05/12	0.5		
Copper	200.8	0.1	5.0	10/23/12	11/05/12	3.5		
Lead	200.8	0.02	5.0	10/23/12	11/05/12	0.05		
Nickel	200.8	0.2	5.0	10/23/12	11/05/12	0.3		
Selenium	200.8	1.0	5.0	10/23/12	11/05/12	5.6		
Silver	200.8	0.02	5.0	10/23/12	11/05/12	0.02	U	
Zinc	200.8	0.5	5.0	10/23/12	11/05/12	128		

Metals

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1209738

Project No.: Coeur Alaska Mining Company Date Collected: 07/22/12

Project Name: Kensington Gold Mine Whole Fish Date Received: 09/28/12

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: Lower Slate Creek Sample #2 Lab Code: K1209738-014

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Aluminum	200.8	2.0	5.0	10/23/12	11/05/12	78.0		*
Cadmium	200.8	0.02	5.0	10/23/12	11/05/12	0.64		
Chromium	200.8	0.2	5.0	10/23/12	11/05/12	0.8		
Copper	200.8	0.1	5.0	10/23/12	11/05/12	9.0		
Lead	200.8	0.02	5.0	10/23/12	11/05/12	0.03		
Nickel	200.8	0.2	5.0	10/23/12	11/05/12	0.3		
Selenium	200.8	1.0	5.0	10/23/12	11/05/12	4.8		
Silver	200.8	0.02	5.0	10/23/12	11/05/12	0.06		
Zinc	200.8	0.5	5.0	10/23/12	11/05/12	130		

Metals

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1209738

Project No.: Coeur Alaska Mining Company Date Collected: 07/22/12

Project Name: Kensington Gold Mine Whole Fish Date Received: 09/28/12

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: Lower Slate Creek Sample #3 Lab Code: K1209738-015

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Aluminum	200.8	2.0	5.0	10/23/12	11/05/12	20.8		*
Cadmium	200.8	0.02	5.0	10/23/12	11/05/12	0.54		
Chromium	200.8	0.2	5.0	10/23/12	11/05/12	0.4		
Copper	200.8	0.1	5.0	10/23/12	11/05/12	6.0		
Lead	200.8	0.02	5.0	10/23/12	11/05/12	0.03		
Nickel	200.8	0.2	5.0	10/23/12	11/05/12	0.2	ŭ	
Selenium	200.8	1.0	5.0	10/23/12	11/05/12	4.5		
Silver	200.8	0.02	5.0	10/23/12	11/05/12	0.05		
Zinc	200.8	0.5	5.0	10/23/12	11/05/12	171		

Metals

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1209738

Project No.: Coeur Alaska Mining Company Date Collected: 07/22/12

Project Name: Kensington Gold Mine Whole Fish Date Received: 09/28/12

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: Lower Slate Creek Sample #4 Lab Code: K1209738-016

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Aluminum	200.8	2.0	5.0	10/23/12	11/05/12	69.3		*
Cadmium	200.8	0.02	5.0	10/23/12	11/05/12	0.78		
Chromium	200.8	0.2	5.0	10/23/12	11/05/12	0.4		
Copper	200.8	0.1	5.0	10/23/12	11/05/12	8.9		
Lead	200.8	0.02	5.0	10/23/12	11/05/12	0.03		
Nickel	200.8	0.2	5.0	10/23/12	11/05/12	0.4		
Selenium	200.8	1.0	5.0	10/23/12	11/05/12	5.1		
Silver	200.8	0.02	5.0	10/23/12	11/05/12	0.05		
Zinc	200.8	0.5	5.0	10/23/12	11/05/12	170		

Metals

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1209738

Project No.: Coeur Alaska Mining Company Date Collected: 07/22/12

Project Name: Kensington Gold Mine Whole Fish Date Received: 09/28/12

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: Lower Slate Creek Sample #5 Lab Code: K1209738-017

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Aluminum	200.8	2.0	5.0	10/23/12	11/05/12	18.0		*
Cadmium	200.8	0.02	5.0	10/23/12	11/05/12	0.44		
Chromium	200.8	0.2	5.0	10/23/12	11/05/12	0.3		
Copper	200.8	0.1	5.0	10/23/12	11/05/12	3.6		
Lead	200.8	0.02	5.0	10/23/12	11/05/12	0.04		
Nickel	200.8	0.2	5.0	10/23/12	11/05/12	0.2	ŭ	
Selenium	200.8	1.0	5.0	10/23/12	11/05/12	4.5		
Silver	200.8	0.02	5.0	10/23/12	11/05/12	0.02	U	
Zinc	200.8	0.5	5.0	10/23/12	11/05/12	131		

Metals

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1209738

Project No.: Coeur Alaska Mining Company Date Collected: 07/22/12

Project Name: Kensington Gold Mine Whole Fish Date Received: 09/28/12

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: Lower Slate Creek Sample #6 Lab Code: K1209738-018

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Aluminum	200.8	2.0	5.0	10/23/12	11/05/12	189		*
Cadmium	200.8	0.02	5.0	10/23/12	11/05/12	0.92		
Chromium	200.8	0.2	5.0	10/23/12	11/05/12	0.8		
Copper	200.8	0.1	5.0	10/23/12	11/05/12	5.8		
Lead	200.8	0.02	5.0	10/23/12	11/05/12	0.05		
Nickel	200.8	0.2	5.0	10/23/12	11/05/12	0.4		
Selenium	200.8	1.0	5.0	10/23/12	11/05/12	5.2		
Silver	200.8	0.02	5.0	10/23/12	11/05/12	0.03		
Zinc	200.8	0.5	5.0	10/23/12	11/05/12	151		

Metals

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1209738

Project No.: Coeur Alaska Mining Company

Date Collected:

Project Name: Kensington Gold Mine Whole Fish

Date Received:

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: Method Blank Lab Code: K1209738-MB

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Aluminum	200.8	2.0	5.0	10/23/12	11/05/12	2.0	U	*
Cadmium	200.8	0.02	5.0	10/23/12	11/05/12	0.02	Ū	
Chromium	200.8	0.2	5.0	10/23/12	11/05/12	0.2	ŭ	
Copper	200.8	0.1	5.0	10/23/12	11/05/12	0.1	Ū	
Lead	200.8	0.02	5.0	10/23/12	11/05/12	0.02	ŭ	
Nickel	200.8	0.2	5.0	10/23/12	11/05/12	0.2	ŭ	
Selenium	200.8	1.0	5.0	10/23/12	11/05/12	1.0	Ŭ	
Silver	200.8	0.02	5.0	10/23/12	11/05/12	0.02	Ŭ	
Zinc	200.8	0.5	5.0	10/23/12	11/05/12	0.5	U	

Coeur Alaska Mining Company

Metals - 5A -SPIKE SAMPLE RECOVERY

MG/KG

Client: Alaska Department of Fish and Ga Service Request: K1209738

Project No.: Units:

Project Name: Kensington Gold Mine Whole Fish Basis: DRY

Matrix: TISSUE

> Sample Name: Lab Code: K1209738-001S East Fork Slate Creek Samp

Analyte	Control Limit %R	Spike Result	Sample Result	Spike Added	%R	Q	Method
Aluminum	70 - 130	217.5	53.8	199.3	82		200.8
Cadmium	70 - 130	5.60	0.57	4.98	101		200.8
Chromium	70 - 130	20.2	1.5	19.9	94		200.8
Copper	70 - 130	94.7	75.8	24.9	76		200.8
Lead	70 - 130	44.17	0.03	49.83	89		200.8
Nickel	70 - 130	47.2	1.0	49.8	93		200.8
Selenium	70 - 130	24.8	5.1	16.6	119		200.8
Silver	70 - 130	4.95	0.04	4.98	99		200.8
Zinc	70 - 130	137.9	96.3	49.8	84		200.8

Metals

- 6 -**DUPLICATES**

Alaska Department of Fish and Ga Client: Service Request: K1209738

Project No.: Coeur Alaska Mining Company Units: MG/KG

Project Name: Kensington Gold Mine Whole Fish Basis: DRY

Matrix: TISSUE

Sample 1	Name: East	Fork Slate Creek S	Sam Lab Code: K	1209	9738-00)1D	
Analyte	Control Limit	Sample (S) C	Duplicate (D)	С	RPD	Q	Method
Aluminum	20	53.8	32.7		48.8	*	200.8
Cadmium	20	0.57	0.59		3.4		200.8
Chromium	20	1.5	1.3		14.3		200.8
Copper	20	75.8	73.6		2.9		200.8
Lead		0.03	0.03		0.0		200.8
Nickel		1.0	1.0		0.0		200.8
Selenium	20	5.1	5.2		1.9		200.8
Silver		0.04	0.03		28.6		200.8
Zinc	20	96.3	98.2		2.0		200.8

Metals - 7 -

LABORATORY CONTROL SAMPLE

Client: Alaska Department of Fish and Ga Service Request: K1209738

Project No.: Coeur Alaska Mining Company

Project Name: Kensington Gold Mine Whole Fish

Aqueous LCS Source: CAS MIXED Solid LCS Source:

	Aqueou	s (ug/L)		Solid (mg/kg)				
Analyte	True	Found	%R	True	Found	С	Limits	%R
Aluminum	2000.0	1860.0	93					
Cadmium	50.0	49.1	98					
Chromium	200.0	195.2	98					
Copper	250.0	235.5	94					
Lead	500.0	480.6	96					
Nickel	500.0	484.0	97					
Selenium	167.0	176.1	105			Πİ		
Silver	50.0	52.3	105					
Zinc	500.0	453.7	91					

Now part of the ALS Group QA/QC Report

Client: Alaska Department of Fish and Game Service Request: K1209738

Project: Kensington Gold Mine Whole Fish Analysis/Coeur Alaska Mining Co. Date Collected: NA

Project: Kensington Gold Mine Whole Fish Analysis/Coeur Alaska Mining Co. **Date Collected:** NA **LCS Matrix:** Tissue **Date Received:** NA

Date Extracted: 10/23/12
Date Analyzed: 11/05/12

Standard Reference Material Summary

Total Metals

Sample Name: Standard Reference Material Units: mg/Kg (ppm)

Lab Code: K1209738-SRM Basis: Dry

Test Notes:

Source: N.R.C.C. Dorm-3

Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Control Limits	Result Notes
Cadmium	PSEP Tissue	200.8	0.29	0.30	103	0.216 - 0.372	
Chromium	PSEP Tissue	200.8	1.89	1.61	85	1.38 - 2.47	
Copper	PSEP Tissue	200.8	15.5	14.2	92	11.9 - 19.4	
Lead	PSEP Tissue	200.8	0.395	0.296	75	0.276 - 0.534	
Nickel	PSEP Tissue	200.8	1.28	1.18	92	0.83 - 1.82	
Zinc	PSEP Tissue	200.8	51.3	47.8	93	38.6 - 65.3	

K1209738ICP.EA2 - DORM3 11/07/12 Page No.:

Now part of the ALS Group QA/QC Report

Client: Alaska Department of Fish and Game Service Request: K1209738

Project: Kensington Gold Mine Whole Fish Analysis/Coeur Alaska Mining Co. Date Collected: NA

Project: Kensington Gold Mine Whole Fish Analysis/Coeur Alaska Mining Co. **Date Collected:** NA **LCS Matrix:** Tissue **Date Received:** NA

Date Extracted: 10/23/12
Date Analyzed: 11/05/12

Standard Reference Material Summary

Total Metals

Sample Name: Standard Reference Material Units: mg/Kg (ppm)

Lab Code: K1209738-SRM Basis: Dry

Test Notes:

Source: N.R.C.C. Tort-2

Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Control Limits	Result Notes
Cadmium	PSEP Tissue	200.8	26.7	28.8	108	20.9-32.8	
Chromium	PSEP Tissue	200.8	0.77	0.69	90	0.5-1.1	
Copper	PSEP Tissue	200.8	106	96.8	91	77-139	
Lead	PSEP Tissue	200.8	0.35	0.33	94	0.18-0.58	
Nickel	PSEP Tissue	200.8	2.5	2.3	92	1.85-3.23	
Selenium	PSEP Tissue	200.8	5.63	6.79	121	3.97-7.56	
Zinc	PSEP Tissue	200.8	180	180	100	139-223	

K1209738ICP.EA2 - TORT2 11/07/12 Page No.:

Now part of the ALS Group

Analytical Report

Client: Alaska Department of Fish and Game

Project: Kensington Gold Mine Whole Fish Analysis/Coeur Alaska Mining Company

Sample Matrix: Animal tissue

Service Request: K1209738 **Date Collected:** 07/21-08/02/2012 **Date Received:** 09/28/12

Mercury, Total

Test Notes:

Prep Method:METHODUnits:ng/gAnalysis Method:1631EBasis:Dry

Sample Name	Lab Code	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
East Fork Slate Creek Sample #1	K1209738-001	5.0	100	10/22/12	10/23/12	130	
East Fork Slate Creek Sample #2	K1209738-002	4.9	100	10/22/12	10/23/12	234	
East Fork Slate Creek Sample #3	K1209738-003	4.9	100	10/22/12	10/23/12	116	
East Fork Slate Creek Sample #4	K1209738-004	5.0	100	10/22/12	10/23/12	215	
East Fork Slate Creek Sample #5	K1209738-005	5.0	100	10/22/12	10/23/12	146	
East Fork Slate Creek Sample #6	K1209738-006	4.8	100	10/22/12	10/23/12	139	
Upper State Creek Sample #1	K1209738-007	5.0	100	10/22/12	10/23/12	91.9	
Upper State Creek Sample #2	K1209738-008	5.0	100	10/22/12	10/23/12	103	
Upper State Creek Sample #3	K1209738-009	5.0	100	10/22/12	10/23/12	93.8	
Upper State Creek Sample #4	K1209738-010	5.0	100	10/22/12	10/23/12	102	
Upper State Creek Sample #5	K1209738-011	5.0	100	10/22/12	10/23/12	97.2	
Upper State Creek Sample #6	K1209738-012	5.0	100	10/22/12	10/23/12	84.2	
Lower Slate Creek Sample #1	K1209738-013	4.9	100	10/22/12	10/23/12	167	
Lower Slate Creek Sample #2	K1209738-014	5.0	100	10/22/12	10/23/12	107	
Lower Slate Creek Sample #3	K1209738-015	4.9	100	10/22/12	10/23/12	162	
Lower Slate Creek Sample #4	K1209738-016	4.8	100	10/22/12	10/23/12	113	
Lower Slate Creek Sample #5	K1209738-017	4.9	100	10/22/12	10/23/12	97.7	
Lower Slate Creek Sample #6	K1209738-018	5.0	100	10/22/12	10/23/12	127	
Method Blank 1	K1209738-MB1	1.0	100	10/22/12	10/23/12	ND	
Method Blank 2	K1209738-MB2	1.0	100	10/22/12	10/23/12	ND	
Method Blank 3	K1209738-MB3	1.0	100	10/22/12	10/23/12	ND	

K1209738ICP.DJ1 - Sample 11/08/12

Now part of the ALS Group

QA/QC Report

Client: Alaska Department of Fish and Game
Project: Kensington Gold Mine Whole Fish An

Kensington Gold Mine Whole Fish Analysis/Coeur Alaska Mining Company

Sample Matrix: Animal tissue

 Date Collected:
 07/21/12

 Date Received:
 09/28/12

 Date Extracted:
 10/22/12

 Date Analyzed:
 10/23/12

Service Request: K1209738

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name:

East Fork Slate Creek Sample #1

Lab Code: K1209738-001MS,

K1209738-001DMS

Units: ng/g Basis: Dry

Test Notes:

Percent Recovery

Analyte	Prep Method	Analysis Method	MRL	•	Level DMS	Sample Result	Spike MS	Result DMS	MS	DMS	CAS Acceptance Limits	Relative Percent Difference	Result Notes
Mercury	METHOD	1631E	5.0	249	249	130	360	347	92	87	70-130	6	

K1209738ICP.DJ1 - DMS 10/29/2012 Page No.:

Now part of the ALS Group

QA/QC Report

Client: Alaska Department of Fish and Game **Project:**

Kensington Gold Mine Whole Fish Analysis/Coeur Alaska Mining Company

Sample Matrix: Animal tissue

Date Collected: 07/21/12 **Date Received:** 09/28/12 **Date Extracted:** 10/22/12 **Date Analyzed:** 10/23/12

Service Request: K1209738

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name: Lab Code:

East Fork Slate Creek Sample #5

K1209738-005MS

K1209738-005DMS

Units: ng/g Basis: Dry

Test Notes:

Percent Recovery

	Prep	Analysis		Spike	Level	Sample	Spike	Result	101	ссис	CAS Acceptance	Relative	Result
Analyte	Method	Method	MRL			Result	MS	DMS	MS	DMS	Limits	Difference	Notes
Mercury	METHOD	1631E	5.0	249	247	146	397	365	101	89	70-130	13	

Page No.: K1209738ICP.DJ1 - DMS (2) 10/29/2012

Now part of the ALS Group

QA/QC Report

Client: Alaska Department of Fish and Game Service Request: K1209738

Project: Kensington Gold Mine Whole Fish Analysis/Coeur Alaska Mining Company
LCS Matrix: Water Date Collected: NA
Date Received: NA

Date Extracted: NA **Date Analyzed:** 10/23/12

Ongoing Precision and Recovery (OPR) Sample Summary

Total Metals

Sample Name: Ongoing Precision and Recovery (Initial)

Units: ng/g

Basis: NA

Test Notes:

						CAS Percent	
Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Recovery Acceptance Limits	Result Notes
Mercury	METHOD	1631E	5.00	5.30	106	70-130	

Now part of the ALS Group

QA/QC Report

Client: Alaska Department of Fish and Game Service Request: K1209738

Project: Kensington Gold Mine Whole Fish Analysis/Coeur Alaska Mining Company
LCS Matrix: Water Date Collected: NA
Date Received: NA

Date Extracted: NA **Date Analyzed:** 10/23/12

Ongoing Precision and Recovery (OPR) Sample Summary

Total Metals

Sample Name: Ongoing Precision and Recovery (Final)

Units: ng/g

Basis: NA

Test Notes:

						CAS Percent	
Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Recovery Acceptance Limits	Result Notes
Mercury	METHOD	1631E	5.00	4.10	82	70-130	

Now part of the ALS Group QA/QC Report

Client: Alaska Department of Fish and Game Service Request: K1209738

Project:Kensington Gold Mine Whole Fish Analysis/Coeur Alaska Mining CompanyDate Collected:NALCS Matrix:Animal tissueDate Received:NA

Date Extracted: 10/22/12 Date Analyzed: 10/23/12

Quality Control Sample (QCS) Summary

Total Metals

Sample Name: Quality Control Sample Units: ng/g

Lab Code: Basis: Dry

Test Notes:

Source: TORT CAS

Percent Recovery True Percent Acceptance Result Prep **Analysis** Method Limits Analyte Method Value Result Recovery **Notes** 278 **METHOD** 1631E 270.0 103 70-130 Mercury

K1209738ICP.DJI - QCS (icv) 10/29/2012 Page No.:

APPENDIX E: SEDIMENT METALS CONCENTRATIONS & TOXICITY LAB REPORTS

Table E1.—Sediment compositions for stream sediments sampled near Kensington Gold Mine, 2011–2012.

Particle Size Data ^a										
	Sample			G1	% Course material	_	% Total	% Total Volitile	Acid Volitile Sulfide	% Total Organic
Site	Date	% Sand	% Silt	% Clay	(> 2 mm)	Texture	Solids	Solids	(µmoles/g)	Carbon ^b
Lower Slate Creek	10/03/11	94.0	4.0	2.0	0.44	sand	78.00	3.38	ND	2.04
East Fork Slate Creek	10/03/11	86.0	4.0	10.0	1.65	loamy sand	60.17	7.81	ND	11.00
Upper Slate Creek	10/06/11	94.0	2.0	4.0	ND	sand	72.10	4.12	1.39	5.46
Lower Johnson Creek	10/03/11	96.0	2.0	2.0	ND	sand	74.28	2.01	ND	0.89
Lower Sherman Creek	10/04/11	96.0	2.0	2.0	0.11	sand	73.15	2.75	1.50	0.54
Middle Sherman Creek	10/03/11	96.0	2.0	2.0	0.22	sand	72.45	2.82	1.01	1.17
Lower Slate Creek	07/03/12	98.0	ND	2.0	0.13	sand	79.22	3.37	0.99	1.67
East Fork Slate Creek	07/10/12	26.0	34.0	40.0	ND	clay	23.72	28.54	1.10	16.70
Upper Slate Creek	07/02/12	98.0	ND	2.0	0.32	sand	79.58	2.90	1.35	3.74
Lower Johnson Creek	07/02/12	92.0	ND	8.0	ND	sand	77.67	2.55	1.05	1.19
Lower Sherman Creek	07/03/12	96.0	ND	4.0	0.09	sand	78.55	3.05	ND	0.82
Middle Sherman Creek	07/03/12	96.0	ND	4.0	0.44	sand	77.09	4.10	0.93	1.05

^a Particle size determined by using ASTM Method D422 and Modified ASA 15-5.
^b Total organic carbon (dry) determined by using the Walkley Black Method.

ND = not detected at the method detection limit.

Table E2.—Sediment metallic and semi-metallic concentrations for stream sediments sampled near Kensington Gold Mine, 2011–2012.

					Analy	ytical Dat	a (mg/kg	dry weight)) ^a			
Site	Sample Date	Al	Ag	As	Cd	Cr	Cu	Hg	Ni	Se	Pb	Zn
Lower Slate Creek	10/03/11	13,600	0.134	16.2	1.460	29.4	56.7	0.0502	47.4	0.720	7.79	220
East Fork Slate Creek	10/03/11	20,100	0.233	30.0	20.900	29.5	88.4	0.0692	143.0	1.410	8.50	1,360
Upper Slate Creek	10/06/11	22,500	0.120	17.9	0.722	127.0	53.4	ND	87.5	0.809	3.37	130
Lower Johnson Creek	10/03/11	13,100	0.164	16.2	0.238	31.5	73.1	ND	27.3	ND	9.76	93.3
Lower Sherman Creek	10/04/11	18,200	0.137	28.9	0.389	46.2	94.0	ND	45.9	ND	6.70	110
Middle Sherman Creek	10/03/11	19,000	0.633	55.7	0.175	43.4	97.1	ND	44.0	ND	17.30	120
Lower Slate Creek	07/03/12	13,600	0.145	9.31	1.22	32.0	50.7	0.0994	43.2	ND	8.45	200
East Fork Slate Creek	07/10/12	15,300	0.513	24.0	23.2	38.9	159.0	0.3270	153.0	0.934	14.20	1,490
Upper Slate Creek	07/02/12	20,300	0.132	14.4	0.776	125.0	55.4	0.0625	78.4	0.606	4.05	134
Lower Johnson Creek	07/02/12	13,100	0.342	12.8	0.250	35.5	76.8	0.1190	23.4	ND	9.45	97.3
Lower Sherman Creek	07/03/12	17,900	0.289	24.3	0.578	51.4	79.1	0.0681	40.2	ND	8.43	128
Middle Sherman Creek	07/03/12	18,800	0.225	56.1	0.269	48.1	87.5	0.0581	39.3	ND	11.30	124

 $[^]a As, Cd, Cr, Cu, Pb, Ni, Se \ and \ Ag \ by \ SW-846 \ Method \ 6020; Al \ and \ Zn \ by \ SW-846 \ Method \ 6010B; Hg \ by \ SW-846 \ 7471B.$

Bolded values are the greatest amount observed for each analyte among sites each year.

ND = not detected at the method detection limit.

AECOM
Environmental Toxicology
4303 West LaPorte Avenue, Fort Collins, Colorado 80521-2154
T 970.416.0916 F 970.490.2963 www.aecom.com

September 28, 2012

Kevin Eppers
Coeur Alaska Inc.
Kensington Gold Mine
3031 Clinton Drive
Suite 202
Juneau AK 99801

Subject: Results of Chironomus dilutus sediment toxicity test

Dear Mr. Eppers:

Attached is a copy of the report for the sediment toxicity test conducted with *Chironomus dilutus* using sediment collected from six different sites. There were no statistically significant survival or growth (ash-free dry weight) effects in any of the six sampling sites. The analytical data including total metals, total organic carbon, and grain size determination and total solids and total suspended solids are included in this report.

We greatly appreciate the opportunity to complete this study for Coeur Alaska Inc.. Please do not hesitate to call us if you have any questions.

Sincerely,

Christina Needham

Data Analyst

christina.needham@aecom.com

Rami B. Naddy, Ph.D.

Study Director / Environmental Toxicologist

rami.naddy@aecom.com

Attachment:


60225262-058-(090-095)

Coeur Alaska, Inc. Juneau, Alaska

Report of Short-Term Toxicity of Whole Sediment to Chironomus dilutus

Prepared by

AECOM Environment Environmental Toxicology Fort Collins, CO

60225262-058-(090-095) August / September 2012

Report of Short-Term Toxicity of Whole Sediment to Chironomus dilutus

Project IDs: 60225262-058-(090-095) August / September 2012

Sponsor and Laboratory Information

	Coeur Alaska Inc.
	Kensington Gold Mine
Sponsor	3031 Clinton Drive
	Suite 202
	Juneau, Alaska 99801
Project Officer	Kevin Eppers (907) 523-3328
	AECOM Environment
	Fort Collins Environmental Toxicology Laboratory
Tooting Engility	4303 West LaPorte Ave.
Testing Facility	Fort Collins, CO 80521
	Fax: (970) 490-2963
	State of Florida NELAP Laboratory ID: E87972
Study Director	Rami B. Naddy, Ph.D. (970) 416-0916 email: rami.naddy@aecom.com
Report Author	Christina Needham (970) 416-0916 email: christina.needham@aecom.com

Test Information

Test	Short-term chronic screening toxicity test of sediment					
Basis	USEPA (2000) and ASTM (2009)					
Test Protocol	CT3AK.TIE058.008					
Test Period	August 31, 2012 @ 1330-1730 to	o September 10, 2012 @ 0845-1450				
Test Length	10 days					
Species	Chironomus dilutus					
Test Material	Whole sediment					
	Sample ID	AECOM Laboratory ID				
	LJH	25938, 25941				
	LSH	25939, 25942				
Sediment ID	MSH	25940, 25943				
	USC	25932, 25935				
	LSLA	25933, 25936				
	EFSC 25934, 25937					
Control Sediments	Silica Sand, Formulated Sediment					
Overlying water	Moderately hard reconstituted water prepared according to USEPA					
Overlying water	(2002), augmented with approximately 50 mg/L Cl ⁻ (as NaCl)					
Test Concentrations	0 (control) and 100% of each tes	t sediment				

- Results described in this report apply only to the samples submitted to the laboratory and analyzed, as listed in the report
- Test results comply with NELAC standards. Reports are intended to be considered in their entirety; AECOM is not responsible for consequences arising from use of a partial report
- This report contains 8 pages plus 3 appendices

Sediment Collection and Receipt

Sample ID	Collection Date and Time	AECOM No.a	Date of Receipt	Temp. at Arrival (°C) ^b
LJH	07/02/12 @ 1200	25938	07/20/12	17.1
LSH	07/03/12 @ 1100	25939	07/20/12	17.1
MSH	07/03/12 @ 1200	25940	07/20/12	17.1
USC	07/02/12 @ 0900	25932	07/20/12	19.6
LSLA	07/03/12 @ 0900	25933	07/20/12	19.6
EFSC	07/10/12 @ 1400	25934	07/20/12	19.6

^a Upon sample receipt, each 1-gallon sample container of sediment was assigned a different sample number than the 4-oz glass jar of the same sediment sample designated for AVS analysis. The number assigned to the 1-gallon sample container used for sediment testing will be used for reporting purposes.

^b Air temperature of cooler

Note: See Appendix A for copies of chain of custody records

Control Sediment

The primary control sediment was coarse silica sand, obtained from a local commercial supplier (manufactured by Unimin[®] Corporation). A second control, sediment with a smaller grain size and higher organic matter content, was prepared in the laboratory. The composition of the formulated sediment is given in the following table (Kemble et al. 1999).

Composition of Laboratory Formulated Sediment (Control)

Material	Source	Pre-Treatment	Weight (g)
Coarse	Unimin Corporation,	Rinsed with gentle mixing in deionized	1242
Quartz Sand	Emmett, ID	water until water ran clear. Dried in oven.	1272
Silt/Clay	Mozel, St. Louis, MO.	None	219
(ASP400)	Distributor = Englehardt	NOTIC	219
Dolomite	Grey Rock Clay Center,	None	7.5
Dolomite	Ft. Collins, CO.	NOTIC	7.5
α-cellulose	Sigma	None	77.3
Humic Acid	Fluka	None	0.15
Total			1545.95

Initial Overlying Water Characterization

Batch No.	рН	Hard. (mg/L) ^a	Alk. (mg/L) ^a	Spec. Cond. (μS/cm)	TRC (mg/L) ^b	NH ₃ -N (mg/L) ^c	Cl ⁻ (mg/L)
10453	8.0	88	60	464	0.02	<1.0	50.1

a As CaCO₃

b Total residual chlorine

^c Measured in source water

Test Sediment Preparation

Sample ID	Date Homogenized	Time Homogenized
Sand Control		1325 – 1328
Formulated Sediment		1327 - 1330
LJH		1340 – 1343
LSH	August 20, 2012	1346 – 1349
MSH	August 30, 2012	1332 – 1335
USC		1340 – 1344
LSLA		1321 – 1324
EFSC		1352 – 1355

Note: The formulated sediment was homogenized with overlying water on August 29, 2012 from 1607 to 1611 and held at 25°C overnight prior to test setup. Sediment was re-homogenized prior to addition to test chambers.

Overlying water was added to the sand control and formulated sediment during the homogenization process to wet both controls prior to placement in test chambers. Before, during, and after homogenization, any noticeable debris (including sticks and other plant material) and large stones were removed from the test sediment and discarded.

Test Conditions

Test Type	Static sediment with continuous replacement of overlying water
Test Duration	10 days
Overlying Water Delivery	Continuous renewal (flow-through) ^a
System	Continuous renewar (now-tinough)
Test Endpoints	Survival, AFDW ^b per original and surviving organism
Test Chambers	500 ml glass beakers
Test Sediment Volume	100 ml
Overlying Water Volume	175 ml
Replicates per Treatment	8
Organisms per Replicate	10°
Test Temperature	23 ± 1°C
Lighting	Fluorescent, 16 hours light:8 hours dark
Chamber Placement	Randomized
Test Sediment Renewal	None
Test Overlying Water	Approximately two volume additions per test chamber per day
Renewal	Approximately two volume additions per test chamber per day

Continuous replacement via a drip system
b Ash-Free Dry Weight

^c Due to insufficient number of test organisms provided by supplier, 12 test chambers were initiated with only five organisms. No more than 2 test chambers per sediment were initiated in this manner.

Test Organism

From the lot of *Chironomus dilutus* received for use in the test, 20 were collected, preserved, and used to determine head capsule widths. The mean head capsule width of lot 12-026 was 0.52 mm and the range was 0.35 to 0.70 mm. The average size of the measured organisms was slightly above the upper limit of the third instar range of 0.33 to 0.45 (USEPA 2000), and some organisms fell in the fourth instar range (USEPA 2000). Discussions with the organism supplier (Aquatic BioSystems [ABS]) confirmed that the organisms used to initiate the test were within the specified age range based upon their culture records. Fourth instar chironomids generally emerge within about four days. Since emergence during the 10 day test was minimal, it is reasonable to conclude that tested organisms were generally within the acceptable age range. Since organism placement within test treatments was unbiased, some variation in organism age should not have affected test outcome.

Species and Lot Number	Chironomus dilutus, Lot 12-026
Age	3 rd to 4 th instar
Source	Aquatic BioSystems (ABS), Fort Collins, CO
Overlying Water	Moderately Hard Reconstituted Water with added chloride
Overlying Water	(50 mg/L) as NaCl, RW # 10453
Reference Toxicant Testing	Initiated August 31, 2012 using sodium chloride (NaCl)

TEST RESULTS

For each test endpoint (survival, AFDW/original organism, and AFDW/surviving organism), the sand and formulated sediment controls were compared using a T-test. If there was not a significant difference between the two, the controls were pooled and comparisons were made against the pooled control data. Since there wasn't a significant difference between the two controls for any of the endpoints, all comparisons were made against the pooled control data. None of the test sediments had a significant reduction relative to the pooled control data for any of the three test endpoints.

Biological Data - Survival and Ash-Free Dry Weights

		Ash-Free Dry Weight (mg)		
Sample ID	Percent Survival	Per original organism	Per surviving organism	
Sand Control	75.0	0.718	0.905	
Formulated Sediment	70.0	0.647	1.024	
LJH	77.9	0.861	1.122	
LSH	66.2	0.699	1.060	
MSH	70.8	0.802	1.211	
USC	67.5	0.777	1.228	
LSLA	71.2	0.872	1.243	
EFSC	66.2	0.634	0.955	

Note: None of the test sediments had any statistically significant reductions in survival or AFDW relative to the pooled control data. Analyses were completed using Toxstat Version 3.5 (WEST, Inc. and Gulley 1996). See Appendix B for test data sheets

AECOM Environment 60225262-058-(090-095)

Analytical Data

Doromotor	Sample Identification							
Parameter	Sand	Form. Sed.	LJH	LSH	MSH	USC	LSLA	EFSC ^a
Metals (mg/kg-dry) ^b								
Aluminum	181	609	13,100	17,900	18,800	20,300	13,600	15,300
Chromium	4.25	8.25	35.5	51.4	48.1	125	32.0	38.9
Zinc	ND	ND	97.3	128	124	134	200	1,490
Arsenic	ND	ND	12.8	24.3	56.1	14.4	9.31	24.0
Cadmium	0.073	0.072	0.250	0.578	0.269	0.776	1.22	23.2
Copper	0.324	0.783	76.8	79.1	87.5	55.4	50.7	159
Lead	0.165	0.380	9.45	8.43	11.3	4.05	8.45	14.2
Nickel	0.511	0.820	23.4	40.2	39.3	78.4	43.2	153
Selenium	ND	ND	ND	ND	ND	0.606	ND	0.934 J
Silver	ND	ND	0.342	0.289	0.225 J	0.132 J	0.145 J	0.513 J
Mercury	ND	ND	0.119 J	0.0681 J	0.0581 J	0.0625 J	0.0994 J	0.327 J
Particle Size (%) ^c		•		1				
Clay	ND	10.0	8.0	4.0	4.0	2.0	2.0	40.0
Sand	96.0	86.0	92.0	96.0	96.0	98.0	98.0	26.0
Silt	4.0	4.0	ND	ND	ND	ND	ND	34.0
Texture	Sand	Loamy Sand	Sand	Sand	Sand	Sand	Sand	Clay
Coarse Material (2 mm)	ND	ND	ND	0.09 J	0.44	0.32	0.13	ND
TOC (%-dry) ^d	ND	28.7	1.19	0.82	1.05	3.74	1.67	16.7
Acid Volatile Sulfide (µmoles/g)	NM	NM	1.05 J	ND	0.93 J	1.35 J	0.99 J	1.10 J

Note: See Appendix C for a copy of the reports from the analytical laboratory (MSE Analytical Laboratory, Butte, MT)

^a On one analytical report included in Appendix C, the sample ID for this site is labeled as "EFSA"; however, the correct sample ID is "EFSC".

^b As, Cd, Cr, Cu, Pb, Ni, Se, and Ag by SW-846 Method 6020; Al and Zn by SW-846 Method 6010B; Hg by SW-846 7471B (USEPA 1986)

^c Particle size was determined using ASTM Method D422 and Modified ASA 15-5

^d TOC was determined using the Walkley Black Method

J = The concentration was below the reporting limit but above the method detection limit

ND = Not detected at the method detection limit

NM = Parameter not measured for this sample

Total and Total Volatile Solids

Sample ID	Percent Total Solids ^a	Percent Total Volatile Solids ^b		
Sand	95.90	0.108		
Formulated Sediment	86.96	6.97		
LJH	77.67	2.55		
LSH	78.55	3.05		
MSH	77.09	4.10		
USC	79.58	2.90		
LSLA	79.22	3.37		
EFSC	23.72	28.54		

a Total solids were determined using Standard Methods 2540B (APHA 1998)
b Total volatile solids were determined using Standard Methods 2540E (APHA 1998)
Note: All values are means of duplicate analyses and determined at AECOM/FCETL. See Appendix C for data sheets.

Physical and Chemical Data (Min/Max)

Sample ID	pH (s.u.)	DO (mg/L)	Cond. (μS/cm)	Temp. (°C) ^a	Ammonia as N (mg/L)	Hardness (mg/L as CaCO ₃)	Alkalinity (mg/L as CaCO ₃)
Sand Control	7.8-8.1	5.5-6.5	448-527	22-24	<1.0-2.2	94-104	61-72
Formulated Sediment	7.8-8.1	4.6-6.5	479-577	22-24	<1.0	96-130	63-103
LJH	7.6-7.8	4.7-6.9	461-513	22-24	<1.0	94-102	62-64
LSH	7.7-8.1	4.5-6.4	456-521	22-24	<1.0	114	72-77
MSH	7.8-8.0	4.5-6.4	460-520	22-24	<1.0	94-106	60-65
USC	7.7-8.0	5.5-6.5	475-548	22-24	<1.0-2.1	112-120	71-85
LSLA	7.7-7.9	4.5-6.1	463-524	22-24	<1.0	114-116	65-71
EFSC	7.6-8.1	4.4-6.3	486-615	22-24	<1.0-3.9	120-172	92-128

^a Temperature in test chambers

Reference Toxicant Test Results for C. dilutus

Organism Lot	Test Dates	96-Hour LC ₅₀	AECOM/FCETL Historical 95% Control Limits				
Number			Low	High			
12-026	08/31/12-09/04/12	3,486	2,621	6,723			

Note: All values are expressed as mg/L chloride. This test did not meet the test acceptability criterion of ≥90% survival in the control; however, due to insufficient number of test organisms, this study could not be reset.

References

APHA. 1998. Standard Methods for the Examination of Water and Wastewater. Amer. Public Health Assoc., Amer. Water Works Assoc., Water Pollut. Control Fed., APHA, Washington, DC.

ASTM. 2009. Standard Test Method for Measuring the Toxicity of Sediment-Associated Contaminants with Fresh Water Invertebrates. Method E 1706-05 In 2009 Annual Book of ASTM Standards, Section 11, Water and Environmental Technology, Volume 11.06, Biological Effects and Environmental Fate; Biotechnology. American Society of Testing and Materials. West Conshohocken, PA.

Kemble, N.E., F.J. Dwyer, C.G. Ingersoll, T.D. Dawson, and T.J. Norberg-King. 1999. Tolerance of Freshwater Test Organisms to Formulated Sediments for Use as Control Materials in Whole-Sediment Toxicity Test. *Environ. Toxicol. Chem.* 18:222-230.

USEPA. 1986. Test Methods for Evaluating Solid Waste. Third Edition. SW-846.

USEPA. 2000. Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates. EPA/600/R-99/064.

USEPA. 2002. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms. Fifth Edition. EPA-821-R-02-012.

WEST, Inc. and D.D. Gulley. 1996. Toxstat Version 3.5. Western EcoSystems Technology, Inc., Cheyenne, WY.

Statement of Procedural Compliance

I certify that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge, accurate and complete.

Rami Naddy, Ph.D.

Study Director

Statement of Quality Assurance

The test data were reviewed by the Quality Assurance Unit to assure that the study was performed in accordance with standard operating procedures, and that the resulting data and report meet the requirements of the NELAC standards. This report is an accurate reflection of the raw data.

Quality Assurance Unit

Date

APPENDIX A

Chain of Custody

AECOM		084	-08	9 91		CHAI	N OF CL	JSTODY	/ REC	OR	D				(o · Co ·	201	2 Page <u>\</u> of <u>\</u>
Others/Project Name:	<u> </u>	U 7	Pro	oject l	_ocation:	-CE	ゴ し.				Α	nalysis R	equeste	d	····	Containe P - Plast A - Amb	tic er Glass r Glass	Preservation 1 - HCI, 4° 2 - H2SO4, 4° 3 - HNO3, 4°
Project Number: 202 2 - C Sampler (Print Name)/(Affiliation)	58		<u> </u>		gbook No.: Custody Tape	Nos.:			-							O - Othe E - Enco	er	4 NaOH, 4° 5 NaOH/ZnA 4° 6 Na2S2O3, ° 7 4°
Ben Brews Fe)FtG				700) (Inta	id-)	-							WW W GW Gr	inking Wate astewater oundwater	er S – Soil SL – Studge SD – Sediment
Born Brein	OC.			·	T			,									rface Waler rm Waler er	SO – Solid A – Air Liquid P – Product
Field Sample No./Identification	Date	Time	C O M	G R A B	Sample Container (Size/Mat'l)	Matrix	Preserv.	Field Filtered								Lab I.D.		Remarks
Sedement LIH	7/2/12	1200			1 gal	O SC	ICE		X					_		250	138	
11 LSH	713/2	1100	<u></u>		1 del	P/30	105		X							250	1391	
MSH	71310	1700		<u> </u>	1 gal	455	ICE		X	_						250	HO_	
(L JH	7/2/12	1200			400	451			X	\perp						25	<u>H1</u>	
11 L5H	7/3/12	1100			402	12 4 SE	ICE		X							25	<u>H</u> 2	
11 MSH	7/3/12	1300			402	94st	ICE	<u> </u>	X					ļ		25	143	
				ļ.—			<u> </u>	<u> </u>	<u> </u>				` <u> </u>		-		ļ	
		····	-				 							_			_	
			-	ļ		<u> </u>	 		-	-							<u> </u>	
			<u> </u>				-											
			-	-		ļ							-					
			_	-		-											106	9)
Relinquished by: (Print Name)/(Affiliation	ADF6	Da Tin		.l	Amb	er F	ame)/(Affiliation)	ECO	W	- 1		1/20/12	Analy	tical La	boratory A FCC	(Destination	n): 2 7 1 ology La	A
Signature: Relinquished by: (Print Name)/(Affiliation	O(1)				Signature Received		ame)/(Affiliation)	OXX	l		Time: (UIS	1)3 W. Lapor rt Collins, C		
		Da				•	,			- 1						(970) 416-	-0916	
Signature:		Tin	1 e :		Signature		ame)/(Affiliation)				Time:		-	۸.		170) 490-296 Xennez r		
Relinquished by: (Print Name)/(Affiliation	on)	Da	te:		Lieconada	Dy. (Print N	янте у (миналоп)				Date:		Samp	le Ship	ped Via:	"xi hv	~~~~ V	Temp blank
Signature:		Tin	ne:		Signature	·			·····		Time:		UPS	Fedl	x Cc	urier Oth	ner	Yes (N
1 W 6.5.2012 E	Y.		_	_		_											AIF	B F004

A=COM	· · · · · · · · · · · · · · · · · · ·	CHAIN OF CU	STODY DEC	ORD	_	6.6.2012
AECOM 084	-089	CHAIN OF CU	STODT REC			Page of
CHent/Project Name: Charka	Project Location:	For		Analysis F	Requested	Container Type De Flastic A – Amber Glass Clear Glass 3 – HNO3, 4°
Project Number: 00225262-058	Field Logbook No.:					V – VOA Vial 4 – NaOH, 4 O – Other 5 – NaOH/ZnAc, E – Encore 4* 6 – Na2S2O3, 4*
Sampler (Print Name)/(Affiliation):	Chain of Custody Tape	Nos.:				7 – 4° Malrix Codes:
Ben Brewster	4	2588 x	intactx			DW – Drinking Water S – Soil WW – Wastewater SL – Sludge
Signature:	Send Results/Report to	o: TAT:				GW Groundwater SW Surface Water ST Storm Water W Water W Water P Product
Field Sample No./Identification Date Time	C G Sample O R Container M A (Size/Mat'l)	Matrix Preserv.	Field Filtered			Lab I,D. Remarks
Sediment (160 7/2/2090	12.9	0450 ICE	X			25932
1 LSLA 713/12 0900		04501CE	X			25933
LI EFSC Floha 1400			X			25934
1 150 7/2/12 0900	X 402	DISTICE	χ			25035
1 1 LSLA 7/3/12 0900	X 402	OF STICE	X			25936
1 EFSC 7/10/12 1400	X 402	OFS ICE	X			25937
·						
						(069)
Relinquished by: (Print Name)/(Affiliation)	Pate: Received	by: (Print Name)/(Affiliation)	com	Date: 7/20/12	Analytical Laboratory	(Destination): (Desti
Pen Poerst ADF6	ime: Signature	A . 1	Pott	Time: 1015	AEC 430	COM Toxicology Lab 03 W. Laporte Avenue
Relinquished by: (Bast Namo)(Attitution)		by: (Print Name)/(Affiliation)		Date:		ort Collins, CO 80521 . (970) 416-0916
Signature:	ime: Signature	ə:		Time:	(9	70) 490-2963 (FAX)
Relinguished by: (Print Name)/(Affiliation)		by: (Print Name)/(Affiliallon)		Date:	Sample Shipped Via:	A COULEY Temp blank
Signature:	ime: Signature	·	•	Time:		ourier Other Yes No
D w Ce. S. Zo 12 Er.	Signature	J.				tial No. NO. 523/3

APPENDIX B

Data Sheets

Project Number: Test Substance: Test Species:	10-day Survival and Growth, Testing Cover Page 60225262-058-(090-095) Sediment C. dilutus* Lot #: 12-0940	② USEPA (2000) + ASTM(7 Protocol #: GTSAK.TIE058.008 でするみや、tvEo会でのを(ででもocov) Age: <u>2nd Instar</u> Supplier:	Page 1 of 35 cualializ ab: ARCO9 27/12
Test Type: Overlying Water: Sampling Date(s): FCETL Sample #(s): Test Initiation Date/Time: Test Termination Date/Tim	Chronic, Static-Renewal Reconstituted Fresh Water (Smith et al., 1997) (RW# 104 5 2 07/02/12, 07/03/12, 07/10/12 (see coc) 25938, 25939, 25940, 25932, 25933, 25934 8 71/12 @ 133 - +5727170 e: 910112 @ 684 6 - 14 5 0	Investigators: Am / M R AD AD	1/1 w 1900,1400
Renewal Frequency: Test Chamber Capacity: Test Duration: Water Characterization:	Cont. drip, 2+ vol/day Feeding Freq: 100 mL sed/175 m	Food Type/Amount: 1.5 ml of 4 g/L Tetrafin Test Temp # Repl's/Trtmnt: 8 Env. Chmb Bath 3 10; Ammonia on days 0, 3, 7, and 10; No TRC; pH, temperature & DO	
Test Sediment (s):	1) Sand (cont) 4) LSH 7) LSLA 10)	2) Form Sed. (Cont.) 5) MSH 8) EFSC 9)	
Study Director Initials	his not tox study did not meet the minimum: ta minimum of 2 volume additions/day; equivalent to >350 entans Ohb 8/31/12 A due to Insufficient # of organism were initiated with only 5 organism page for specific test-chambers	survival requirement in the control (90%); however ml/day or >0.24 ml/min not enough organisms to 5,50me becausers	Method: <u>S-K</u> er, there were re-run the Study.

SEDIMENT/SOIL PREPARATION

Project Number: 60225262-058-(090-095)

auglializ

Artificial soil	OPS: AC 09/27/12
Constituent/source	Amount added (g)
Coarse Silica Sand	1242
Silt/Clay (ASP 400)	219
Dolomite	7.5
α-cellulose	77.3
Humic Acid	0.15
Total	1545.95
Notes: Container was placed into tumbler for a minimum of an hour to homogenize prior to use	<u> </u>
See TIE Sheet Daily Log for notes on the preparation of the formulated sediment	
Form sed was homogenized with overlying water on 8/29/12 25°C Chamber until test setup (day -1) Form sed was n for at least 3 minutes on 8/30/12 prior to placing in bea	e-homogenized

Soil/sediment	FOETI #	Homogenization									
501/sediment	FCETL#	Date	From	То	Analyst						
Sand (Cont.)	NA	8/80112	1325	1328	Some						
Form Sed. (Cont.)	NA	8/29/12	16 et 107	16 8411	A3						
LJH	25938	9/30/12	1340	1313	An						
LSH	25939	8/30/12	1346	1349	mt						
MSH	25940	8/20/0	1332	1335	mt						
USC	25932	8/30/12	1340	1344	An						
LSLA	25933	8/30/12	1321	1324	mt						
EFSC	25934	8/35/12	1352	1388	Am						
Form Sed (Conti)	NA	83012	1327	1330	A63						
, ,		"									

(1) As spil 12 4 Added everlying water during homogenizedian process to wet the sand

Page:30F35 FCETL QA Form No. 15 Effective: 5/90

	<u>wquanz</u>
This page is an exact copy of the page. from studies 084-089 w/14.02teca, except for tast notation on page.	CA. ARCA127/1
ALL ENTRIES MUST BE INITIALLED WITH DATE AND TIME:	
60235262-058 H. atteca C. dilutus	
Preparation of formulated Sediment	
"Combined the following Ingredients together in a 4-1 glass	Jor 3
-3105 g Coarse Silica Sound (washed w DI + baked until	idry)
- 18.759 Dolomite - 193,259 9-cellulose (CO9-054 (end.), C12:087 (start))	
-0.375 g Humic Acid (Lot* C10-034) Total = 3864.875 g	
 Mixed Ingralients together on 8/6/12 @ 1110 - 1136 w Placed Jar In tumbelet tumbler from 1145 - 1450 o 	J
-Homogenized ~1/2 of the formulated sediment with a small amount of Mod Hard + 50 mg/L ci- to wet the sediment from 1459 to 1502. As 42 Placed the wet sediment @4°C in the dark, cu	
8/8/12 - Pulled wet formulated sediment out of 4°C chamb and placed It in the 25°C chamber @ 0815 au	er
Applies only to study 60205262-058-(084-089) Waiteca.	

C. dilutus*

Chronic, Static-Renewal Project No. 60225262-058-(090-095) @A: 109/27/12

Sediment	Test Termination	Α	В	С	D	E	F	G	Н	Remarks: V. Surviv
Sand (cont)	# Surviving	20	9	Ī 'T	٩	4 0	9	8	16	75
	# Observed Dead	1	G	6	0	0	0,	0	ı	
	# Not Found	13	1	7	3	1	V	<i>A</i>	3	
·	Initials	103	m	Ans	\45	w	11	174	w	
orm Sed. (Cont.)	# Surviving	"7	1-7	76*	IJ	Чp	5/ ก	77	ω	70% 68
<u>, , , , , , , , , , , , , , , , , , , </u>	# Observed Dead	0	Ö	000	0	9	O	0	0	
	# Not Found	3	"3,	04/3	To	\ \ \	0	75	4	
· · · · · · · · · · · · · · · · · · ·	Initials	163	Kn	1/1	Ka	KB	_رن	1/1/-	ಹ	
JH	# Surviving	(4)	6	T 87`	X	50	3.4	U D	T 8	74
	# Observed Dead	0	0	d	0	0	0	10	9/1	
	# Not Found		ч	2	a	0	(,	0	a//	
	Initials	Am	ሎን	w	V2	18	AS	183	Th	
.SH	# Surviving	17	5	がなり	8	5 0	7	77	5/	العا ١٠/٠ (١٥٥
····	# Observed Dead	Ó	Ó	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Ö	6	0	8	6	
	# Not Found	1.3	5	340	<u> </u>	G	3	3	5	
=	Initials	Am	An	Ke	Rm.	0	درن	Too	165	
/ISH	# Surviving	14	a	17	W X	7*	44		<u> </u>	7-0.
	# Observed Dead	10	6	Ö	0	0	O	0,	0	
	# Not Found	1	1	31	6_	3	3	<i>c/l</i>	Ö	
·	Initials	M	*485	The	B	رين	0.2	1/1	The	
JSC	# Surviving	16	6	/ / /*		8	9	7/	8	67.
	# Observed Dead	6	Ö	17	ઇ_	٥	01	6	Ø	<u> </u>
	# Not Found	4	l ű	7	7	3	1//	3	2	
 	Initials	-An	Phone	\cu	1G	K/S	1/1/1	An	w	
SLA	# Surviving	10	7	8	9	影響所	7	Ц	5	71.
	# Observed Dead	10	6	a/l	d	0	0	· OA	0	
	# Not Found	प	3	<u>3</u> //	1976	3	3	1//	5	,
	Initials	که	AG	7/	Die	20	KR	1/4	w	
FSC	# Surviving	5	S	6/	7	Q	ନ	3/0	4 0	66.
., 00	# Observed Dead	6	ठ	101	0/1	 % -	Ö	01	6	
.	# Not Found	5	5	Й	3//	3	a	42	1	.23
	Initials	1	B~	K3	7/12	V2		₩ww	-Ac	
	# Surviving	1	1	1	7	l			<u> </u>	
	# Observed Dead		 -	╁╌┈┈	 	-			115	
· · · · · · · · · · · · · · · · · · ·	# Not Found	2,1.32	1			 	 		T	8
	Initials	1		1	<u> </u>		<u> </u>	T	1	
		7	İ	T		j		1		Key:
_	Date/Time	a: 00\10\	126.0	व्यद	1450	1				Δ Emerged (Excluded from Surv. and gro
·	Dato, Hint	- 0-1110		2.10		<u> </u>		1	1	* = Pupa (Included in Survival count,
		+	<u> </u>	 	 	 -	(()	1	 	but excluded from growth analysis)

1 5 original organisms

CHEMICAL DATA (Composite of Overlying Water)

C. dilutus*

Chronic, Static Renewal Project No. 60225262-058-(090-095)

Parameter	Sediment	Day 0	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8	Day 9	Day 10	Day	Meter	Date	Time	Initials
Dissolved	Sand (cont)	6.2	6,4	55	10.5	6.4	(o.Z	6.3	6.3	6.3	6,0	6,2	0	6	8/31/12	135	jut
Oxygen	Form Sed. (Cont.)	6.2	60.4	4.6	5.8	6.1	5.4	5.8	5,2	5,0	6.0	6.5	1	V	9/1/10	1615	A8
(mg/l)	LJH	6.2	60	4.7	6.2	5.7	6.3	6.5	5.8	6,9	5.3	5,9	2	5	19/2/12	1 0930	7/82
	LSH	6.2	6.4	45		62	5.8	5.5	6.0	6.4	6.2	6.2	3	5	9/3/12	1540	AS
	MSH	6.2	10,0	4.5	10.3	6.2	6.2	6.4	5,9	1012	5,9	6.4	4	5	9/4/12	1430	492
	USC	6.1	6.3	6.5	6,2	5.8	5.7	6.3	5.5	6.9	5.9	6.1	5	ક	9/5/12	1440	AD
	LSLA	الى بى	6.0	4.5	10.1	5.7	5.4	5.7	5.4	5,7	60	6.0	6	5	9/6/12	6985	Ag
	EFSC	6.0	6.0	4.4	6.1	6.8	4.9	6.3	5.6	6.2	5,3	10.0	7	5	9/7/12	1505	hyt.
	_												8	.5	9/8/12	1125	md.
	·				<u> </u>	<u> </u>				·			9	5	9918	1310	mi
						<u> </u>					<u> </u>		10	5	9/16/12	. ०१५०	ω
							1									ļ	
 .						ļ.,	 		ļ	ļ.,					_	ļ	
	Replicate	<u> </u>	B	C	D	٤	F	6	H	<u> </u>	B	ς		<u> </u>			
Temp	Sand (cont)	24	<i>ን</i> ጉ	24	32	27	23	77	22	22	23	33	0		813112	1315	My
 	Form Sed. (Cont.)	23	<i>3</i> -2	24	22	23	230	27	22	22	22	33	1		9/1/12	1615	විජි
(deg C)	LJH	23	20	24		22	77	77	22	23	23	95	2	Dio	9/2/12	0125	
	LSH	23 73	23 23	24	33	23 23	7.7.	22	22	22	23	35	3	1340 1346	9/3/10	1540	45
	MSH			24	20	22	7.7	77	22	23	23	33	5	040	9/5/12	1470	49
	USC LSLA	24	23	24	20	72	13	72	22 22	23	23	33	6	D40	9/6/12	1440	16
		23		24	20	22	122	77	22	22	23	35	7	DHO	39/18/12	1505	nu
 	EFSC	23	23	24	98	120	120	26	122	De	44	59	8	DHO	9/8/12	1125	mot
						 	-		 	 	 		9	D40	9/9/12	1310	mit
			ļ —		-	 	 		 				10	D43		0830	1 like
			 		-		╬		1				- 10	1202	-1110119	0020	1162
	Replicate		B		0	E	-	G	H	A	B	C.		1		 	+
Hq	Sand (cont)	8.1	8.0	900	8.0	7.4	7.9	7.9	7.8	8.0	8,0	7.9	0	16	8/31/12	1315	nui
μπ (s.u.)	Form Sed. (Cont.)	8.1	7.9	7.9	7.9	7.9	7.8	78	7.8	7,9	8.0	8.1	1	16	9/1/12	1615	AS
(5.0.)	LJH	7.7	7.7	1.8	1.7	7.6	7.7	7.7	7.6	178	7,7	1.1	2	6	9212	09.25	
1	LSH	8,0	8.1	1.7	8.0	7.9	7.4	78	17.9	8.0	8.0	8.0	3	10	935		AR
	MSH	800	7.0	7.8	8.0	7.9	7.8	7.8	7.8	7.8	7.8	7.9	4	16	9/4/11	1450	38
	USC	8.0	7.0	48	9,0	7.8	7.7	74	17,7	78	7,9	8.0	5	16	9/5/12	1440	Ais
	LSLA	7.9	7.9	7.7	7,95	7.7	7.8	77	7,7	7,7	7.9	4.9	6	16	9/6/12	0905	160
	EFSC	7.8	8.0	7.6	8.1	8.0	8.0	8.1	7.9	8.0	80	8.0	7	16	9/7/12	1505	mit
		- 	16,,0	'-	I-6, , , -	1	T		T				8	16	9/8/12	1125	W
			1					1	L				9	160	9/12/2	1310	hust
1	Replicate	٨	В	1	D	E	F	G	H	A	B	C	10	FMZO	9/10/12	0935	w

⁰⁾ An 9/5/12 CF; 23 Ond 9/7/12 E

SI(10(1030) 180

		······································					1			
•	Conductivity	/ (ଏ s/cm)	Hardness (mg	g/L as CaCO3)	Alkalinity (m	g/l as CaCO3)	Ammonia	(mg/l)		
Sediment	Day 0	Day 10	Day 0	Day 10	Day 0	Day 10	Day 0	Day 3	Day 7	Day 10
Sand (cont)	448	527	94	104	ا فا	72	41.0	ፈ'0	102.0an	1 2.11
Form Sed. (Cont.)	479	577.	96	130	63	103	<u> ۲۱۰۵</u>	(1.0	<1.0	<1.0
LJH	461	5135210	g H	102	64	62	4.0	41.6	21.0	<1.0
LSH	456	521	114	114	ገշ	77	41.0	41.0	<1.0	4١،٥
MSH	460	520	94	106	60	65	41.0	410	41.0	<1.0
USC	475	548	112	120	つし	85	41.0	41.0	41.0	2.14
LSLA	463	524	114	116	65	71	<u> </u>	۷۱،۵	41.0	41.0
EFSC	486	615	120	172	92	128	1.60	9.13.90	1.18 Port	41.04
				<u> </u>			-			
Overlying water										
(RW10453) 8/29/12	464		ල ප		60		<1.0€			
TRC=0.02 PH-8.0										
C1 = 30.1										
Meter #	15	15	Titt	41H	714	TIT	1444	H4 1	HAMA	HC#1
Date:	8/31/12	9/10/12	8/31/12	9/10/12	8/31/12	9/10/12	8/31/12	9/3/12	9 7 12	9/10/12
Time:	1815	1340	1150	1340	1150	1340	1700	סנרו	1530	1420
Initials:	W	ov for ANP	MY FYRDO	ONFOR AND	not for DM	as for AMP	my DukB	<u>l</u> do	nut	cu for DM

Ond alstr cr, om

@ ou for (?) 9/19/12 Cf; value meagined on meter 44

Amcasured 9/13/12 on preserved samples (meter #4)

Omeasured in source water

DAILY TESTING LOG

Chronic, Static-Renewal

Project No.

Day -1		Sediment Homogenized @ 1 2 Overlying water added to chamb			Initials/Date: 8/30/13
Day 0		Bath CT = 22,8 °C	Range = 20,6 - 23,8°C		AS/X 1 🗫
	Due to	Test organisms added to chamb	numbers, some replicates have only 5	Feeding: 1776	Initials/Date: 8(311)2
Day 1		Bath CT = 22.8°C	Range = 22,4-23,4°C	Feeding: 1625 Av	Initials/Date:
Day 2		Bath CT = 22,4°C	Range = 22,4 - 22,6°C	Feeding: 1455 AS	Initials/Date:
Day 3		Bath CT = 22.4°C	Range = 22.4 - 22.6 °C	Feeding: 1730 485	Initials/Date:
Day 4		Bath CT = 27.4 °C	Range = 22.4- 22.6°C	Feeding: 1430 AD	Initials/Date:
Day 5		Bath CT = 72 . 4 °C	Range = 12.0 ~ 22.6 °C	Feeding: 1445 AD	Initials/Date: A> 9/5/17
Day 6		Bath CT = 22-2°C	Range = 72.0~ 22.6 °C	Feeding: 1550W	Initials/Date: A 9/6/17
Day 7		Bath CT = 22.4°C	Range = 22.0-22.6 ° C	Feeding: 1545 W	Initials/Date:
Day 8		Bath CT = 22.4° C	Range = 22,0 - 23,0 °C	Feeding: 1400 mt	Initials/Date: nut
Day 9		Bath CT = 22,2 °C	Range = 22.0-22 6 °C	Feeding: 1325 WH	Initials/Date: mt
Day 10		Bath CT = 32 4°C	Range = 22.0 - 22.6 C	Feeding: NA	Initials/Date: 01/8/1/1/

Length/Width of Objects Using a Micrometer

an: M209/27/12 ev 9/10/12

Project/Study Number: 60205062-058-090-095	Project Name: Coeur 2012
Study Initiation Date: 108/31/12	Species: Chironomus dilutus
Source of Organisms: ADS	Organism Batch/Lot#: 12-026
Collected by: #3	Date Collected: 08/31/12
Analyzed by: ω	Date Analyzed: 09/10/12

Specimen Number	Magnif.	# of Squares	Length of One Square (mm)	Total (mm)	Remarks
1	100X	6	0.07	0.42	
Э.	100×	9	0.07	0.63	
3	100X	9	40.0	0.63	
Ч	100X	6	0.07	0.42	
5	100x	9	0.07	0.63	·
6	100x	lo	0.07	0.70	
7	100X	7.5	0.07	0.52	
8	100X	<i>5</i> ,5	O, 07	0.38	
9	100X	5	0.07	0.35	
10	100X	8	0.07	0.56	
l)	100X	5,5	0.07	0.38	
12	40X	Ч	0.175	0.10	
13	100×	5	0.07	0.35	
14	100X	10	0.07	0.70	
15	100 X	9	0.07	0.63	
١७	100X	9	0.07	0.63	
17-	100X	6	0.07	0.42	
18	100X	5	0.07	0.35	
19	100X	.5.5	0.07	0.38	
20	100X	୫.5	0.07	0,60	
Total		142.5		lazg	
Mean		7.12		0.52	

3rd Instar= 0:33 to 0.45 mm

OA: ARO9/27/12 859/14/12

Proiect	No: Inda 2.50	162.	058-(090-09)	TARE:	Date/ti	me: qlızlızeı	130 - 1230) Ana	alvst: ພ			Dried in Oven	# 3 fror		159114112 me: 1415
Specie	s: Chironomoch No.: 12-	ne qi	whos	DRY GROS		ime: ali3liz@o							n Date: <u>ๆโนโเว</u> Ti to Date: <u>ๆโเวโเว</u> Ti n Date: <u>ๆโเวโเว</u> Ti	
	cal Balance I			ASHED GR	OSS: Date/	time:4 ₁₄ ₁₂ @0	915 -1015 An	alyst: വ	-				o Date: <u>¶ 3 2</u> .⊺	
Boat	Treatment	Rep							Indicate	mean weight is	Dry Weight	or AF	(Circle on	e)
No.			Tare Weight (g)	Dry Gross Weight (g) B	Dry Net Weight (g)	Adjusted Dry Net Weight (g) ¹	Ashed Gross Weight (g) (D)	AFDW (g) (B-D)	No. of Original Org.	Mean Wt. per Original Organism (mg)	Mean Wt. per Treatment (mg) (Original)	No. of Surv. Org.	Mean Wt. per Surviving Organism (mg)	Mean Wt. per Treatment (mg) (Surviving)
1	Sand	A	1.98756	1,99077	a.oo.32\		1.98791	0.00286	5			ચ		
2			2,20278					0.00733	10			9		
3		С	1.88501				1.88723	0.00457	10		<u></u>	7		
4		D	1.89544	1.90275	0.00131		1.89667	800∞.0	10		ı	9		
5		E	2.35705	2.36483	0.00778		2.35980	0.00503	5			4		
6		F	1.95055	1.95962	0.00907		1.95331	0.00631	10			9		
7		G	2.03168	2.03826	0.00658		2.03240	0 00586	10			8		
8		Н	2.22210	2.22930	0.00720		2.22315	0.00615	10			6		
q	Form Sed	A	1.94347	1.95557	0.01910		1.94803	0.00754	10			٦		
10		B	2.21541	2.22572	0.010.31		2.21922	0.00650	10			10		
11		С	2,26877	2.27663	0.00186		2.27169	0.00494	9			CHAR	3	
12		D	2.35656	2.36347	0.00691		2.35918	0.00489	10			ч		
13		E	2.17949	2.18759	0.8നു		2.18200	0.00559	5			ч		
A Blank			2.35239	2.35274	-0.00005		a.352 1 1	<u>-0.0003</u>						

¹ Add in weight loss of blank boat, if appropriate.

OB 9/12/2 (@W 9/14/12 wp @W 9/14/12 cf; 6 organisms in cracible

OA: ARO9/27/12 AG 9/14/12

Specie	No: 602252 s: Chirenom ch No.: 12-0	us di	5 <u>8 (090-095)</u> NUNUS	TARE: DRY GROS		me: <u>4 12 12@1</u> ime: 4 13 12@0					Dried in Oven Oven °C: <u>40-</u> Ashed in Furn	90 1	m Date: <u>קווטוי</u> דדו to Date: יקווטוים דו n Date: יקווטוים דו	me: <i>0</i> 825
	cal Balance I		art#1	ASHED GR	OSS: Date/	ime:914112@	3915-1015 An	ری alyst:			Furnace °C:50		o Date: <u>4ijaitz</u> T	ime:1550
Boat	Treatment	<u> </u>			· · · · · · · · · · · · · · · · · · ·				Indicate	mean weight is	Dry Weight	or A FI	(Circle on	e)
No.			Tare Weight (g)	Dry Gross Weight (g)	Dry Net Weight (g) (B-A)	Adjusted Dry Net Weight (g) ¹	Ashed Gross Weight (g) (D)	AFDW (g) (B-D)	No. of Original Org.	Mean Wt. per	Mean Wt. per Treatment (mg) (Original)	No. of Surv. Org.	Mean Wt. per Surviving Organism (mg)	Mean Wt. per Treatment (mg) (Surviving)
14	Form Sed	F	2.21723	2.32731	ø. ප\පෙති		2.22233	20.00498	5			5		
15_		G	2.29085					0.00182	10			1		
ماا			1.96478				1,96728	0.00492	10			6	,	w
17	7274		2.29303				2,29925	0.00912	10			٩		····
18		В	2,23689	2.24753	0.01064		2.24092	0.00661	10			Ġ		
19		c	2.11464	2.12834	0.01370		2.12061	0.00773	10		·	q		
20		D	2.37652	a.38894	0.01242		2.38155	<u>0.00739</u>	10			Y		
21		E	1.87370	1.88519	0.01149		1.87858	0.00661	5			5		
22		F	1.82782	1.83526	0.00744		1.83083	0 00444	9			3		
23		G	2.07917	2.09101	0.01184		2.08475	0.00626	5			5		
24		H	2.32530	2.33960	0.01430		2.33195	0.00765	10			8		
25	LSH	A	2.30604	2,21994	0.01390		2.21273	16F00.0	10			7		
<u>みし</u> Blank		В	2.27462	2.28379	0.00917		2.27 <i>808</i>	0.0057	10	·		5		

Ow quille wo

¹ Add in weight loss of blank boat, if appropriate.

OA: A209/27/12 889/14/12

Project	No: <u>608</u> 2518	62 -0	58-696.095)TARE:	Date/ti	me: <u>alızlız</u> e	1130 - 123 6 Ana	alyst: က			Dried in Oven	# <u>3</u> from	m Date: 9 12 12Ti	me: 1415
Species Lot/Bat	s: Chironomo ch No.: 12-0	3 div	uhus	DRY GROS	SS: Date/t	ime:ali3liz @c)915-1030Ana			ace fron	to Date: <u>পাঠ্যে</u> T n Date: <u>পাঠাে </u> T	ime: 1100		
Analytic	al Balance I	D: S o	x+#1	ASHED GR	OSS: Date/	ime: 4114112.00	915 - 1015 An		Furnace °C: 500-950 to Date: 91/3/12. Time					
Boat	Treatment	Rep							Indicate	mean weight is	Dry Weight	or (AFI	(Circle on	е)
No.			Tare Weight (g)	Dry Gross Weight (g) B	Dry Net Weight (g) (B-A)	Adjusted Dry Net Weight (g) ¹	Ashed Gross Weight (g) (D)	AFDW (g) (B-D)	No. of Original Org.	Mean Wt. per Original Organism (mg)	Mean Wt. per Treatment (mg)	No. of Surv. Org.	Mean Wt. per Surviving Organism (mg)	Mean Wt. per Treatment (mg)
				×	(57,)	(9)	(5)	(55)		(9/	(Original)	<u> </u>	(119)	(Surviving)
27	LSH	С	1.98080	1,99208	0.01128		1.98557	0.00651	9			6		· .
28		D	2.20957	2.22405	0.01448	*	2.21663	0.00742	10			8		
29		E	2.24499	2.25467	81010.0		2.24893	0.00544	5		,	5		
30		F	2.05890	2.03054	0.01164		3.06362	0.00692	10			7		
31		G	3.23133	2.23391	0.00258		2.23234	0.00157	5			2		
32		14	2.30198	2.31323	0.01125		2.30611	0.00712	10			5		
33	MSH	Α	2.24650	2.26156	0.01506		3.25383	0.00773	10		·	9		
34		В	1.82239	1.83549	0.01310		1.82778	0.00771	10			9		
35		С	2.08130	2.09439	0.01309		2.08716	0.00723	10		· · · · · · · · · · · · · · · · · · ·	7	`	
36		D	2.02149	2.02861	0.00712		2.02413	0.00448	٩.			3		····
37		E	1.67732	1.89018	0.01286		1.88244	0.00774	٩			6		
38		F	2.24643	2.25856	0.01213	•	2.25164	0.00692	9			6		
39		G	1.94711	1.95797	0.01086		1. 95132	0.00665	10	· · · · · · · · · · · · · · · · · · ·		Ч		· · · · · · · · · · · · · · · · · · ·
Blank												<u></u>		· · · · · · · · · · · · · · · · · · ·

¹ Add in weight loss of blank boat, if appropriate.

QA: ARO9/17/12 AS 9/14/12

Species	No: 40225 3: Chironom ch No.: 12-0	nog d	038 (070 075 110 WS	TARE: DRY GROS		me: alızlızeı me:qlı3lız <i>eo</i>					Oven °C: <u>66-</u>	10	m Date: <u>9 12 12</u> Ti to Date: <u>9 13 12</u> Ti	me: c825
	ch No.: 12-6 cal Balance I		art#1	ASHED GR	OSS: Date/	ime:qi4li2@6	alstrag An	alyst: دن			Ashed in Furr Furnace °C:ឡ	nace from 00:550	n Date: <u>ๆโเฮโเร</u> Ti to Date: <u>ๆโเรโเร</u> T	me: 1550
Boat	Treatment		<u> </u>	•			1015		Indicate	mean weight is	Dry Weight	or (AFI	(Circle on	9)
No.		•	Tare Weight (g) A	Dry Gross Weight (g) B	Dry Net Weight (g) (B-A)	Adjusted Dry Net Weight (g) ¹	Ashed Gross Weight (g) (D)	AFDW (g) (B-D)	No. of Original Org.	Mean Wt. per	Mean Wt. per Treatment (mg) (Original)	No. of Surv. Org.	Mean Wt. per Surviving Organism (mg)	Mean Wt. per Treatment (mg) (Surviving)
40	MSH	H	1.75885	1,47139	0.01254	. T	1.76447	0.00692	5	,		5		
41	USC	A	68188	1.89160	0.00972	·	1.88452	0.00708	10			6		
42		В	1.93583	1.94754	0.01171		1.93983	0.00771	10			6		
43		C	2.21730	2.22704	0.00974		2,21981	0.00723	9		,	6		
44		D	a.24505	2.25303	8 9 7 00.0		2,24706	0.00597	10			3		
45		E	2.24056	2.25283	0.01227		2.24468	0.00815	10			8		
46		F	1.87051	1.88372	0.01321		1.87399	0.00973	10			9		
47		G	1.87599	1.88581	0.00182		1.87827	0.00754	9			7-	·	
48		4	1.98057	1.99141	0 · 0 1084		1.98322	0.00819	10			8		
49	LSUA	A	2.12128	<u>ઢે.ાઝપાા</u>	0.01283		2.12684	0.007a7	10			6		
50		В	2.12989	2.14410	0.01421		2.13546	0.00864	10			7		
51		c	a. 22980	a.24498	0.01518		İ	0.00937				8		
52		0	2.03553	2.05163	0.01610		2.04247	0.009110	10			9		
Blank	_													

¹ Add in weight loss of blank boat, if appropriate.

QA: ARO9/27/12 AS 9/14/12

Specie: Lot/Bat Analytic	s: Chironon ch No.: (2-0) cal Balance I	nus 26 D: ട്ര		DRY GROS	SS: Date/ti	me: 9/12/12@11 me:9/13/12@0 ime:9/14/12@0	915-1630 Ana	alyst: مد	Indicate	mean weight is	Oven °C: <u>గ్రూ -</u> Ashed in Furn Furnace °C: <u>క</u>	10 nace from	m Date: <u>Alızlız</u> Ti to Date: <u>Alızlız</u> Ti n Date: <u>Alızlız</u> Ti n Date: <u>Alızlız</u> T	me: 0826 me: 1100 ime: 1550
Boat No.	Treatment	нер	Tare Weight (g) A	Dry Gross Weight (g) B	Dry Net Weight (g) (B-A)	Adjusted Dry Net Weight (g) ¹	Ashed Gross Weight (g) (D)	AFDW (g) (B-D)	No. of Original Org.	Mean Wt. per	Mean Wt. per Treatment (mg) (Original)	No. of Surv. Org.	Mean Wt. per Surviving Organism (mg)	Mean Wt. per Treatment (mg) (Surviving)
53	LSLA	E,	2.03753	2.05100	0.01347		2.04255	0.00845	10			7		
54		F	2.22819	2.24175	0.01356		<u> </u>	<u>0.∞</u> 90 7	10		·	7		
55	,	G	1.85494	1.86489	0.00695		1.85971	0.00518	5			4.		
56		H	2,56437	2.57765	0.01328		2.56990	0.00775	<i>b</i>			5		
54	EFSC	А	1.93448	1.94146	0.00698		01.93606 2003	0.00540	10		· · · · · · · · · · · · · · · · · · ·	5		
58		В	2.06912	2.07440	0.00528		2.07054	0.00386	10			5		
59		C	1.93999	1.94572	0.00573	-	1.94130	0.00442	10			6		
60		Þ	2.06067	2.06908	0.00841		2.06250	0.00698	10			7		
61		E	2.14745	2.15603	a.00858		2.14940	0.00663	_10	,, .		8		
62		F	1.85407	1.86264	0.00857		1.85608	0.00656	10			8		
63		G	2,33456	2 33125	0.00469		a.335 <u>53</u>	0.00372	5_			3		
(o4		H	2.15685	2.16546	0.00661		2.16038	0.00508	5		<u> </u>	4		
Blank														

an eithir no

¹ Add in weight loss of blank boat, if appropriate.

Spreadsheet for AFDW

Test Start Date:	8/31/2012		Test End Date:	9/10/2012
Test Number(s):	60225262-058-(090-0	95)	Test Material:	Sediment
Species:	C. dilutus		Entered by:	Andrea Sternenberger

QA: 1209/27/12 QA: 00 09/14/12 08-9/14/12

Boat #	Treatment	Rep	Tare wt (dry) (g)	Gross wt (dry) (g)	Dry net wt (g)	Dry adjusted net wt (g)	Ashed gross wt (g)	AFDW (g)	Adjusted AFDW (g)	Number original organisms	Mean wt per orig (mg)	Mean wt per treatment (orig) (mg)	Number surviving	Mean wt per surviving	Mean wt per treatment (surv) (mg)
1	Sand Control	Α	1.98756	1.99077	0.00321	0.00326	1.98791	0.00286	0.00283	5	0.5660	0.6473	2	1.4150	0.9054
2	Sand Control	В	2.20278	2.21517	0.01239	0.01244	2.20784	0.00733	0.00730	10	0.7300		9	0.8111	
3	Sand Control	Ç	1.88501	1.89180	0.00679	0.00684	1.88723	0.00457	0.00454	10	0.4540		7	0.6486	
4	Sand Control	D	1.89544	1.90275	0.00731	0.00736	1.89667	0.00608	0.00605	10	0.6050		9	0.6722	
5	Sand Control	E	2.35705	2.36483	0.00778	0.00783	2.35980	0.00503	0.00500	5	1.0000		4	1.2500	
6	Sand Control	F	1.95055	1.95962	0.00907	0.00912	1.95331	0.00631	0.00628	10	0.6280		9	0.6978	
7	Sand Control	G	2.03168	2.03826	0.00658	0.00663	2.03240	0.00586	0.00583	10	0.5830		8	0.7288	
8	Sand Control	Η	2.22210	2.22930	0.00720	0.00725	2.22315	0.00615	0.00612	10	0.6120		6	1.0200	
9	Form Sed Control	Α	1.94347	1.95557	0.01210	0.01215	1.94803	0.00754	0.00751	10	0.7510	0.7174	7	1.0729	1.0235
10	Form Sed Control	В	2.21541	2.22572	0.01031	0.01036	2.21922	0.00650	0.00647	10	0.6470		7	0.9243	
11	Form Sed Control	C	2.26877	2.27663	0.00786	0.00791	2.27169	0.00494	0.00491	9	0.5456		6	0.8183	
12	Form Sed Control	D	2.35656	2.36347	0.00691	0.00696	2.35918	0.00429	0.00426	10	0.4260		4	1.0650	
13	Form Sed Control	Е	2.17949	2.18759	0.00810	0.00815	2.18200	0.00559	0.00556	5	1.1120		4	1.3900	
14	Form Sed Control	F	2.21723	2.22731	0.01008	0.01013	2.22233	0.00498	0.00495	5	0.9900		5	0.9900	-/-
15	Form Sed Control	G	2.29085	2.30258	0.01173	0.01178	2.29476	0.00782	0.00779	10	0.7790		7	1.1129	
16	Form Sed Control	Н	1.96478	1.97220	0.00742	0.00747	1.96728	0.00492	0.00489	10	0.4890		6	0.8150	
17	LJH	Α	2.29303	2.30837	0.01534	0.01539	2.29925	0.00912	0.00909	10	0.9090	0.8609	9	1.0100	1.1217
18	LJH	В	2.23689	2,24753	0.01064	0.01069	2.24092	0.00661	0.00658	10	0.6580		6	1.0967	
19	LJH	С	2.11464	2.12834	0.01370	0.01375	2.12061	0.00773	0.00770	10	0.7700		8	0.9625	
20	LJH	D	2.37652	2.38894	0.01242	0.01247	2.38155	0.00739	0.00736	10	0.7360	,	8	0.9200	
21	LJH	E	1.87370	1.88519	0.01149	0.01154	1.87858	0.00661	0.00658	5	1.3160		5	1.3160	
22	LJH	F	1.82782	1.83526	0.00744	0.00749	1.83082	0.00444	0.00441	9	0.4900		3	1.4700	
23	LJH	G	2.07917	2.09101	0.01184	0.01189	2.08475	0.00626	0.00623	5	1.2460		5	1.2460	
24	LJH	Н	2.32530	2.33960	0.01430	0.01435	2.33195	0.00765	0.00762	10	0.7620		8	0.9525	
25	LSH	Α	2.20604	2.21994	0.01390	0.01395	2.21273	0.00721	0.00718	10	0.7180	0.6991	7	1.0257	1.0600
26 .	LSH	В	2.27462	2.28379	0.00917	0.00922	2.27808	0.00571	0.00568	10	0.5680		5	1.1360	,
27	LSH	С	1.98080		0.01128	0.01133	1.98557	0.00651	0.00648	9	0.7200		6	1.0800	
28	LSH '	D	2.20957	2.22405	0.01448	0.01453	2.21663	0.00742	0.00739	10	0.7390		8	0.9238	
29	LSH	E	2.24449		0.01018	0.01023	2.24893	0.00574	0.00571	5	1.1420		5	1.1420	
30	LSH	F	2.05890	2.07054	0.01164	0.01169	2.06362	0.00692	0.00689	10	0.6890		7	0.9843	
31	LSH	G	2.23133	2.23391	0.00258	0.00263	2.23234	0.00157	0.00154	5	0.3080		2	0.7700	,
32	LSH	Н	2.30198	2.31323	0.01125	0.01130	2.30611	0.00712	0.00709	10	0.7090		5	1.4180	

Spreadsheet for AFDW

Test Start Date:	8/31/2012		Test End Date:	9/10/2012
	60225262-058-	(090-095)	Test Material:	Sediment
Species:	C. dilutus		Entered by:	Andrea Sternenberger

QA:00 0914/12 AS 9/14/12

Boat #	Treatment	Rep	Tare wt (dry) (g)	Gross wt (dry) (g)	Dry net wt (g)	Dry adjusted net wt (g)	Ashed gross wt (g)	AFDW (g)	Adjusted AFDW (g)	Number original organisms	Mean wt per orig (mg)	Mean wt per treatment (orig) (mg)	Number surviving	Mean wt per surviving	Mean wt per treatment (surv) (mg)
33	MSH	Α	2.24650	2.26156	0.01506	0.01511	2.25383	0.00773	0.00770	10	0.7700	0.8018	9	0.8556	1.2109
34	MSH	В	1.82239	1.83549	0.01310		1.82778	0.00771	0.00768	10	0.7680		9	0.8533	
	MSH	С	2.08130	2.09439	0.01309	0.01314	2.08716		0.00720	10	0.7200	'	7	1.0286	
	MSH	D		2.02861	0.00712	0.00717	2.02413	0.00448	0.00445	9	0.4944		3	1.4833	
	MSH	E	1.87732	1.89018	0.01286		1.88244	0.00774	0.00771	9	0.8567		6	1.2850	
	MSH	F		2.25856	0.01213	0.01218	2.25164	0.00692	0.00689	9:	0.7656		6	1.1483	
	MSH	G	1.94711	1.95797	0.01086	0.01091	1.95132	0.00665	0.00662	10	0.6620		4	1.6550	
	MSH	H	1.75885		0.01254	0.01259	1.76447	0.00692	0.00689	5	1.3780		5	1.3780	
	USC	Α	1.88188	1.89160	0.00972	0.00977	1.88452	0.00708	0.00705	.10	0.7050			1.1750	1.2276
	USC	В	1.93583	1.94754	0.01171	0.01176	1.93983	0.00771	0.00768	10	0.7680		6	1.2800	
	USC	С	2.21730		0.00974	0.00979		0.00723	0.00720	9	0.8000		6	1.2000	
	USC	D	2.24505		0.00798	0.00803	2.24706	0.00597	0.00594	10	0.5940		3	1.9800	
	USC	E		2.25283	0.01227	0.01232	2.24468	0.00815	0.00812	10	0.8120		8	1.0150	:
	USC	F		1.88372	0.01321	0.01326	1.87399	0.00973	0.00970	10	0.9700		9	1.0778	
	USC	G	1.87599	1.88581	0.00982	0.00987	1.87827	0.00754	0.00751	10	0.7510		7	1.0729	
	USC	H	1.98057	1.99141	0.01084	0.01089	1.98322	0.00819	0.00816	10	0.8160		8	1.0200	
49	LSLA	A	2.12128	2.13411	0.01283	0.01288	2.12684	0.00727	0.00724	10	0.7240	0.8725	6	1.2067	1.2430
	LSLA	В	2.12989	2.14410	0.01421	0.01426	2.13546	0.00864	0.00861	10	0.8610	.,	7	1.2300	
51	LSLA	С		2.24498	0.01518	0.01523	2.23561	0.00937	0.00934	10	0.9340		8	1.1675	
52	LSLA	D		2.05163	0.01610			0.00916	0.00913	10	0.9130		9	1.0144	
53	LSLA	E		2.05100	0.01347	0.01352	2.04255	0.00845	0.00842	10	0.8420		7	1.2029	
54	LSLA	F		2.24175	0.01356	0.01361	2.23268	0.00907	0.00904	10	0.9040		7	1.2914	1
	LSLA	G	1.85794		0.00695	0.00700		0.00518	0.00515	5	1.0300		4	1.2875	
	LSLA	Н	2.56437		0.01328	0.01333		0.00775	0.00772	10	0.7720		5	1.5440	
57	EFSC	A	1.93448	1.94146	0.00698			0.00540	0.00537	10	0.5370	0.6344	5	1.0740	0.9551
	EFSC	В			0.00528	0.00533	2.07054	0.00386	0.00383	10	0.3830		5	0.7660	
	EFSC	Īċ		1.94572	0.00573	0.00578	1.94130	0.00442	0.00439	10	0.4390		6	0.7317	
	EFSC	D	2.06067		0.00841	0.00846	2.06250	0.00658	0.00655	10	0.6550		7	0.9357	
	EFSC	E		2.15603	0.00858	0.00863	2.14940	0.00663	0.00660	10	0.6600		8	0.8250	
	EFSC	F		1.86264	0.00857	0.00862	1.85608	0.00656	0.00653	10	0.6530		8	0.8163	
	EFSC	G		2.33925	0.00469	0.00474	2.33553	0.00372	0.00369	5	0.7380		3	1.2300	·
	EFSC	Н	2.15885	2.16546	0.00661	0.00666	2.16038	0.00508	0.00505	5	1.0100		4	1.2625	
Blank	A		2.35279	2.35274	-0.00005		2.35271	-0.00003							

Page 16 of 35

Toxstat Version 3.5, Study #60225262-058-(090-095)

Coeur Alaska, Inc.

C. dilutus Chronic Study

(AFDW)

List Data and Summary Statistics for Growth PER ORIGINAL (CONTROLS ONLY)

QA: AR09/27/12 aniou alialia A= 9/17/12

Title: 60225262-058-(090-095) C.dilutus-Growth PO-controls

058cgpo.dat

Transform:

NO TRANSFORMATION

Number of Groups: 2

GRP	IDENTIFICATION	REP	VALUE	TRANS VALUE	
1	Form Sed	1.	0.7510	0.7510	
1	Form Sed	2	0.6470	0.6470	
1	Form Sed	3	0.5456	0.5456	
1	Form Sed	4	0,4260	0.4260	
1.	Form Sed	5	1.1120	1.1120	
1	Form Sed	6	0.9900	0.9900	
1	Form Sed	7	0.7790	0.7790	
1	Form Sed	8	0.4890	0.4890	
2	Sand	1.	0.5660	0.5660	
2	Sand	2	0.7300	0.7300	
2	Sand	3	0.4540	0.4540	
2	Sand	4	0.6050	0.6050	
2	Sand	5	1.0000	1.0000	
2	Sand	6	0.6280	0.6280	
2	Sand	7	0.5830	0.5830	
2	Sand	8	0.6120	0.6120	

Title: 60225262-058-(090-095) C.dilutus-Growth PO-controls

058cgpo.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data	TABLE 1 of 2

GRP IDENTIFICA	ATION	N 	MIN	MAX	MEAN
1 Form	Sed	8	0.4260	1.1120	0.7175
2	Sand	8	0.4540	1.0000	0.6472

Title: 60225262-058-(090-095) C.dilutus-Growth PO-controls

File:

058cgpo.dat

Transform: NO TRANSFORMATION

Summary Sta	tistics on Data		TABLE 2 of	· -
GRP IDENTIFICATION	VARIANCE	SD	SEM	C.V. %

1	Form Sed	0.0581	0.2410	0.0852	33.5882	
2	Sand	0.0261	0.1616	0.0571	24.9639	
	• • • • • • • • • • • • • • • • • • • •					

Toxstat Version 3.5, Study #60225262-058-(090-095)
Coeur Alaska, Inc.
C. dilutus Chronic Study
Analysis of Growth PER ORIGINAL (CONTROLS ONLY) - AFDW

OA: ARO9/27/12 08-9/17/12

Title: 60225262-058-(090-095) C.dilutus-Growth PO-controls

File

058cgpo.dat

Transform:

NO TRANSFORMATION

an'wallaliz

Shapiro - Wilk's Test for Normality

D = 0.5892

W = 0.9262

Critical W = 0.8440 (alpha = 0.01 , N = 16)

W = 0.8870 (alpha = 0.05 , N = 16)

Data PASS normality test (alpha = 0.01). Continue analysis.

Title: 60225262-058-(090-095) C.dilutus-Growth PO-controls

File: 058cgpo.dat

Transform: NO TRANSFORMATION

F-Test for Equality of Two Variances

GROUP	IDENTIFICATION	VARIANCE	F
1	Form Sed	0.0581	
2	Sand	0.0261	2.2243

(p-value = 0.3135)

Critical F = 8.8854 (P=0.01, 7, 7) 4.9949 (P=0.05, 7, 7)

Since F <= Critical F, FAIL TO REJECT Ho: Equal Variances (alpha = 0.01).

Toxstat Version 3.5, Study #60225262-058-(090-095) Coeur Alaska, Inc.

C. dilutus Chronic Study

GROUP IDENTIFICATION

Form Sed

Sand

Analysis of Growth PER ORIGINAL (CONTROLS ONLY) -AFDW

an: ARU9/27/12 08-9/17/12 an: cu glight2

Title: 60225262-058-(090-095) C.dilutus-Growth PO-controls

File: 058cgpo.dat Transform:

Transform: NO TRANSFORMATION

(IN ORIG. UNITS) CONTROL FROM CONTROL

0.1828

			r avona					
SOUR	CE	DF		SS		MS	F	
Betw With		1 14		0.0197 0.5892		0.0197 0.0421	0.46	
Tota	1	15		0.6090				
	ical F = 8	.6001 (al	pha = 0.0 pha = 0.0)1, df = 1)5, df = 1	,14) ,14)	(p-val	ue = 0.50	 49)
Title: File:	60225262-0 058cgp)58-(090-09 oo.dat		tus-Growt ransform:			RANSFORMA	TION
	2 Sample t-	·Test -	TABLE 1	OF 2	H	lo: Contro	l <treatme< td=""><td>nt</td></treatme<>	nt
GROUP		CATION		1	ORIGINA	CULATED IN	t STAT	SIG 0.0
1 2		orm Sed	0.717 0.647	75	0.7	175 472	0.6844	
Equal	. Var: t cri	tical valu	ıe = 1.761	l3 (1 Ta	iled, al		5, df = 1	4)
	IDENTIFIC		TRANSFO	1	ORIGINA	CULATED IN	T STAT	
1 2		Form Sed Sand	0.717 0.647	75 72	0.7 0.6	175	0.6844	
Unequal	Var: t cri	tical valu	ie = 1.782	23 (1 Ta	iled, al		5, df = 1	
	2 Sample t-	·Test -				lo: Contro		nt
Equal	Variances:							
GROUP	IDENTIFIC	CATION	NUM OF	MIN SIG	DIFF	% OF	DIFFERE FROM CON	
1 2		Form Sed Sand	8 8	0.	1807	25.2		
	al Variance							
CDOUD	TDRAGG	TA MITON	NUM OF		DIFF	% OF		

REPS

8 8 Toxstat Version 3.5, Study #60225262-058-(090-095)

Coeur Alaska, Inc.
C. dilutus Chronic Study

List Data for Growth PER ORIGINAL (All sites and pooled controls) -AFOW

889/17/12 an:wanaha

Title: 60225262-058-(090-095) C.dilutus-Growth PO-pooled&sites

no transformation of Acoq(27)

File: 058PGPO.DAT

Transform: NO TRANSFORMATION

Number of Groups: 7

GRP	IDENTIFICATION	REP	VALUE	TRANS VALUE
1	Form Sed\Sand	1	0.7510	0.7510
1	Form Sed\Sand	2	0.6470	0.6470
1	Form Sed\Sand	3	0.5456	0.5456
1	Form Sed\Sand	4	0.4260	0.4260
1	Form Sed\Sand	5	1.1120	1,1120
1	Form Sed\Sand	6	0.9900	0.9900
1	Form Sed\Sand	7	0.7790	0.7790
1	Form Sed\Sand	8	0.4890	0.4890
1	Form Sed\Sand	9	0.5660	0,5660
1	Form Sed\Sand	10	0.7300	0.7300
1.	Form Sed\Sand	11	0.4540	0.4540
1	Form Sed\Sand	12	0.6050	0.6050
1	Form Sed\Sand	13	1.0000	1.0000
1.	Form Sed\Sand	14	0.6280	0.6280
1	Form Sed\Sand	15	0.5830	0.5830
1	Form Sed\Sand	16	0.6120	0.6120
2	LJH	1	0.9090	0.9090
2	LJH	2	0.6580	0,6580
2	LJH	3	0.7700	0.7700
2	LJH	4	0.7360	0.7360
2	LJH	5	1.3160	1.3160
2	LJH	6	0.4900	0.4900
2	LJH	7	1.2460	1.2460
2	LJH	8	0.7620	0.7620
3	LSH	1	0.7180	0,7180
3	LSH	2	0.5680	0.5680
3	LSH	3	0.7200	0,7200
3	LSH	4	0.7390	0,7390
3	LSH	5	1.1420	1.1420
3	LSH	6	0.6890	0.6890
3	LSH	7	0.3080	0.3080
3	LSH	8	0.7090	0.7090
4	MSH	1	0.7700	0,7700
4	MSH	2	0.7680	0.7680
4	MSH	3	0.7200	0,7200
4	MSH	4	0.4944	0.4944
4	MSH	5	0.8567	0.8567
4	MSH	6	0.7656	0.7656
4	MSH	7	0.6620	0.6620
4	MSH.	8	1.3780	1.3780
5	USC	1	0.7050	0.7050
5	USC	2	0.7680	0.7680
5	USC	3	0.8000	0.8000
5	USC	4	0.5940	0,5940
5	USC	5	0.8120	0.8120
5	USC	6	0.9700	0.9700
5	USC	7	0.7510	0.7510
5	USC	8	0.8160	0.8160
6	LSLA	1	0.7240	0.7240
6	LSLA	2	0.8610	0.8610
6	LSLA	3	0.9340	0.9340

Toxstat Version 3.5, Study #60225262-058-(090-095) Coeur Alaska, Inc.

C. dilutus Chronic Study

List Data and Summary Statistics for Growth PER ORIGINAL - AFOW (All sites and pooled controls)

089/17/12
an:00 9/19/12
OA: KN209/27/12

6	LSLA	4	0.9130	0.9130	
6	LSLA	5	0.8420	0.8420	
6	LSLA	6	0.9040	0.9040	
6	LSLA	7	1.0300	1.0300	
6	LSLA	8	0.7720	0.7720	
7	EFSC	1.	0.5370	0,5370	
7	EFSC	2	0.3830	0.3830	
7	EFSC	3	0.4390	0.4390	
7	EFSC	4	0.6550	0.6550	
7	EFSC	5	0.6600	0.6600	
7	EFSC	6	0.6530	0.6530	
7	EFSC	7	0.7380	0.7380	
7	EFSC	8	1.0100	1.0100	

Title: 60225262-058-(090-095) C.dilutus-Growth PO-pooled&sites

File: 058PGPO.DAT Transform: NO TRANSFORMATION

Summary Statistics on Data TABLE 1 of 2

GRP	IDENTIFICATION	N	MIN	MAX	MEAN
1	Form Sed\Sand	16	0.4260	1.1120	0.6824
2	LJH	8	0.4900	1.3160	0.8609
3	LSH	8	0.3080	1.1420	0.6991
4	MSH	8	0.4944	1.3780	0.8018
5	USC	8	0.5940	0.9700	0.7770
6	LSLA	8	0.7240	1.0300	0.8725
7	EFSC	8	0.3830	1.0100	0.6344

Title: 60225262-058-(090-095) C.dilutus-Growth PO-pooled&sites

File: 058PGPO.DAT Transform: NO TRANSFORMATION

Summary Statistics on	ı Data	TABLE 2 of 2

GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %
1	Form Sed\Sand	0.0406	0.2015	0.0504	29.5285
2	HLJ	0.0408	0.2015	0.0304	33.1505
3	LSH	0.0527	0.2296	0.0812	32.8357
4	MSH	0.0656	0.2561	0.0906	31.9428
5	USC	0.0114	0.1069	0.0378	13.7547
6	LSLA	0.0092	0.0959	0.0339	10.9964
7	EFSC	0.0377	0.1942	0.0687	30.6191

Toxstat Version 3.5, Study #60225262-058-(090-095) Coeur Alaska, Inc. C. dilutus Chronic Study Analysis of Growth PER ORIGINAL (All sites and pooled controls)-AFDW Note: snapiro-wilk's test cannot be run ble # of replicates is >50 Title: 60225262-058-(090-095) C.dilutus-Growth PO-pooled&sites NO TRANSFORMATION OF ARO9127/12 File: 058PGPO.DAT Transform: Chi-Square Test for Normality Actual and Expected Frequencies <-1.5 -1.5 to <-0.5 -0.5 to 0.5 >0.5 to 1.5 >1.5 ______ EXPECTED 4,2880 15.4880 24.4480 15.4880 4.2880 OBSERVED 15 ______ (p-value = 0.0007) Chi-Square = 19.3813 Critical Chi-Square = 13.277 (alpha = 0.01 , df = 4) = 9.488 (alpha = 0.05 , df = 4) Data FAIL normality test (alpha = 0.01). Try another transformation. The first three homogeneity tests are sensitive to non-normality and should not be performed with this data as is. Title: 60225262-058-(090-095) C.dilutus-Growth PO-pooled&sites 058PGPO.DAT Transform: NO TRANSFORMATION Bartlett's Test for Homogeneity of Variance Calculated B1 statistic = 11.5850 (p-value = 0.0719)Data (PASS) B1 homogeneity test at 0.01 level. Continue analysis. Critical B = 16.8119 (alpha = 0.01, df = 6)

> Using Average Degrees of Freedom (Based on average replicate size of 9.14)

Calculated B2 statistic = 13.2653

(p-value = 0.0390)

Data (PASS) B2 homogeneity test at 0.01 level. Continue analysis.

= 12.5916 (alpha = 0.05, df = 6)

Toxstat Version 3.5, Study #60225262-058-(090-095)

C. dilutus Chronic Study \sim Analysis of Growth PER ORIGINAL (All sites and pooled controls)

A8 9/17/12 an: a gligitz

ar: AR09/27/12

Title: 60225262-058-(090-095) C.dilutus-Growth PO-pooled&sites File:

058PGPO.DAT

Transform:

NO TRANSFORMATION

60

96.00

Wilcoxo	n's Rank Sum Test w/	Bonferroni Adju	Ho: Control <treatment< th=""></treatment<>			
GROUP	IDENTIFICATION	MEAN IN ORIGINAL UNITS	RANK SUM	CRIT. VALUE	REPS	SIG 0.05
1	Form Sed\Sand	0.6824				
2	LJH	0.8609	129.00	60	8	
3	LSH	0.6991	108.00	60	8	
4	MSH	0.8018	124.00	60	8	
5	USC	0.7770	127.50	60	8	
6	LSLA	0.8725	138.00	60	. 8	

0.6344

Critical values are 1 tailed (k = 6)

EFSC

NO TRANSFORMATION

Toxstat Version 3.5, Study #60225262-058-(090-095) Coeur Alaska, Inc.

C. dilutus Chronic Study

List Data and Summary Statistics for Growth PER SURVIVING (CONTROLS ONLY) -AFOW

A8 9/17/12 an'w allaliz

OPT: 1209/27/12

File:

Title: 60225262-058-(090-095) C.dilutus-Growth PS-controls

058cgps.dat Transform:

Number of Groups: 2

GRP	IDENTIFICATION	REP	VALUE	TRANS VALUE	
1	Sand	1	1.4150	1.4150	
1	Sand	2	0.8111	0.8111	
1	Sand	3	0.6486	0.6486	
1	Sand	4	0.6722	0.6722	
1	Sand	5	1.2500	1.2500	
1	Sand	6	0.6978	0.6978	
1	Sand	7	0.7288	0.7288	
1	Sand	8	1.0200	1.0200	
2	Form Sed	1 .	1.0729	1.0729	
2	Form Sed	2	0.9243	0.9243	
2	Form Sed	3	0.8183	0,8183	
2	Form Sed	4	1.0650	1.0650	
2	Form Sed	5	1.3900	1.3900	
2	Form Sed	6	0.9900	0.9900	•
2	Form Sed	7	1.1129	1.1129	
2	Form Sed	8	0.8150	0.8150	

Title: 60225262-058-(090-095) C.dilutus-Growth PS-controls

File:

058cgps.dat Transform:

NO TRANSFORMATION

Summary Statistics on Data

TABLE 1 of 2

	IDENTIFICATION			MAX	MEAN	
1	Sand	8	0.6486	1.4150	0.9054	
2	Form Sed	8	0.8150	1.3900	1.0235	

Title: 60225262-058-(090-095) C.dilutus-Growth PS-controls

058cgps.dat

Transform:

NO TRANSFORMATION

GRP IDENTIFICATION VARIANCE	SD SEM	C.V. %
	.2916 0.1031 .1863 0.0659	

Page <u>24</u> of <u>35</u>

Toxstat Version 3.5, Study #60225262-058-(090-095)

Coeur Alaska, Inc.

AFDW

C. dilutus Chronic Study

Analysis of Growth PER SURVIVING (CONTROLS ONLY)

Title: 60225262-058-(090-095) C.dilutus-Growth PS-controls File: 058cgps.dat

Transform: NO TRANSFORMATION

Shapiro - Wilk's Test for Normality

ar: AR09/27/12

D = 0.8381

W = 0.8857

Critical W = 0.8440 (alpha = 0.01 , N = 16)

W = 0.8870 (alpha = 0.05, N = 16)

Data PASS normality test (alpha = 0.01). Continue analysis.

Title: 60225262-058-(090-095) C.dilutus-Growth PS-controls

File:

058cgps.dat

Transform: NO TRANSFORMATION

F-Test for Equality of Two Variances

GROUP	IDENTIFICATION	VARIANCE	F	
1 .	Sand	0.0850		
2	Form Sed	0.0347	2.4487	

(p-value = 0.2603)

Critical F = 8.8854 (P=0.01, 7, 7) (P=0.05, 7, 7) 4.9949

Since F <= Critical F, (FAIL TO REJECT) Ho: Equal Variances (alpha = 0.01).

Toxstat Version 3.5, Study #60225262-058-(090-095) Coeur Alaska, Inc. C. dilutus Chronic Study Analysis of Growth PER SURVIVING (CONTROLS ONLY)

Page (25) of 35 QA: AR.09[27/12 QA:00 09127/12 As alonla

Title: 60225262-058-(090-095) C.dilutus-Growth PS-controls

Transform: File: 058cgps.dat

NO TRANSFORMATION ANOVA Table

									~	TA	V	v	•		т	a	v	•	C		
 	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	

SOURCE	DF	SS	MS	F
Between Within (Error)	1 14	0.0558 0.8381	0.0558 0.0599	0.9321
Total	15	0.8939		

(p-value = 0.3507)

Critical F = 8.8616 (alpha = 0.01, df = 1,14)

= 4.6001 (alpha = 0.05, df = 1,14)

Since F < Critical F FAIL TO REJECT Ho: All equal (alpha = 0.05)

Title: 60225262-058-(090-095) C.dilutus-Growth PS-controls

058cgps.dat NO TRANSFORMATION Transform:

hypothesis reversed 2 Sample t-Test - TABLE 1 OF 2 Ho: Control>Treatment

	2 Sample t-Test	TABLE 1 OF 2	Ho: Control	>Treatme	to detect different
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	t STAT	SIG 0.05
1 2	Sand Form Sed	0.9054 1.0235	0.9054 1.0235	0.9655	- no difference

Equal Var: t critical value = 1.7613 (1 Tailed, alpha = 0.05, df = 14)

(p-value = 0.1753)

		TRANSFORMED	MEAN CALCULATED IN		SIG
GROUP	IDENTIFICATION	MEAN	ORIGINAL UNITS	T STAT	0.05
1	Sand	0.9054	0.9054		
2	Form Sed	1.0235	1.0235	0.9655	

Unequal Var: t critical value = 1.7823 (1 Tailed, alpha = 0.05, df = 12)

(p-value = 0.1767)2 Sample t-Test - TABLE 2 OF 2

Ho: Control>Treatment

Equal Variances:

GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL
1	Sand	8			
2	Form Sed	8	0.2155	23.8	0.1181

Unequal Variances:

NUM OF MIN SIG DIFF % OF DIF	FERENCE
GROUP IDENTIFICATION REPS (IN ORIG. UNITS) CONTROL FROM	CONTROL
1 Sand 8	
2 Form Sed 8 0.2180 24.1	0.1181

no difference statistically so controll data can be poded together

Toxstat Version 3.5, Study #60225262-058-(090-095) Coeur Alaska, Inc.

C. dilutus Chronic Study

List Data for Growth PER SURVIVING (All sites and pooled controls)-AFDW

Title: 60225262-058-(090-095) C.dilutus-Growth PS-pooled&sites

File: 058pgps.dat Number of Groups: 7

NO TRANSFORMATION Transform:

an:waliali2

apr: 1209/27/12

GRP	IDENTIFICATION	REP	VALUE	TRANS VALUE
1	Form Sed/Sand	1	1.4150	1.4150
1	Form Sed/Sand	2	0.8111	0.8111
1	Form Sed/Sand	3	0.6486	0.6486
1	Form Sed/Sand	4	0.6722	0.6722
1	Form Sed/Sand	5	1.2500	1,2500
1	Form Sed/Sand	6	0.6978	0.6978
1	Form Sed/Sand	7	0.7288	0.7288
1	Form Sed/Sand	8	1.0200	1.0200
1	Form Sed/Sand	9	1.0729	1.0729
1	Form Sed/Sand	10	0.9243	0,9243
1	Form Sed/Sand	11	0.8183	0.8183
1	Form Sed/Sand	12	1.0650	1.0650
1	Form Sed/Sand	13	1.3900	1.3900
1,	Form Sed/Sand	14	0.9900	0.9900
1	Form Sed/Sand	15	1.1129	1.1129
1	Form Sed/Sand	16	0.8150	0.8150
2	LJH	1	1.0100	1.0100
2	LJH	2	1.0967	1.0967
2	LJH	3	0.9625	0.9625
2	LJH	4	0.9200	0.9200
2	LJH	5	1.3160	1.3160
2	LJH	6	1.4700	1.4700
2	LJH	7	1.2460	1.2460
2	LJH	8	0.9525	0.9525
3	LSH	1	1.0257	1.0257
3	LSH	2	1.1360	1.1360
3	LSH	3	1.0800	1.0800
3	LSH	4	0.9238	0,9238
3	LSH	5	1.1420	1.1420
3	LSH	6	0.9843	0.9843
3	LSH	7	0.7700	0.7700
3	LSH	8	1.4180	1.4180
4	MSH	1	0.8556	0.8556
4	MSH	2	0.8533	0.8533
4	MSH	3	1.0286	1.0286
4	MSH	4	1.4833	1.4833
4	MSH	5	1.2850	1.2850
4	MSH	6	1.1483	1.1483
4	MSH	. 7	1.6550	1.6550
4	MSH	8	1.3780	1.3780
5	USC	1	1.1750	1.1750
5	USC	2	1.2800	1.2800
5	USC	3	1.2000	1.2000
5	USC	4	1.9800	1.9800
5	USC	5	1.0150	1.0150
5	USC	6	1.0778	1.0778
5	USC	7	1.0729	1.0729
5	USC	8	1.0200	1.0200
6	LSLA	1	1.2067	1.2067
6	LSLA	2	1.2300	1.2300
6	LSLA	3	1.1675	1.1675

089/17/12

an: 009/27/12

Toxstat Version 3.5, Study #60225262-058-(090-095)
Coeur Alaska, Inc.

C. dilutus Chronic Study

List Data and Summary Statistics for Growth PER SURVIVING - AFDW (All sites and pooled controls)

6	LSLA	4	1.0144	1.0144
6	LSLA	5	1.2029	1.2029
6	LSLA	6	1.2914	1.2914
6	LSLA	7	1.2875	1.2875
6	LSLA	8	1.5440	1.5440
7	EFSC	1	1.0740	1.0740
7	EFSC	2	0.7660	0.7660
7	EFSC	3	0.7317	0.7317
7	EFSC	4	0.9357	0.9357
7	EFSC	5	0.8250	0.8250
7	EFSC	6	0.8163	0.8163
7	EFSC	7	1.2300	1.2300
7	EFSC	8	1.2625	1.2625

Title: 60225262-058-(090-095) C.dilutus-Growth PS-pooled&sites

File: 058pgps.dat Transform: NO TRANSFORMATION

Summary Statistics on Data TABLE 1 of 2

GRP	IDENTIFICATION	N	MIN	MAX	MEAN
1	Form Sed/Sand	16	0.6486	1.4150	0.9645
2	LJH	8	0.9200	1.4700	1.1217
3	LSH	8	0.7700	1.4180	1.0600
4	MSH	8	0.8533	1,6550	1.2109
5	USC	8	1.0150	1.9800	1.2276
6	LSLA	8	1.0144	1.5440	1.2431
7	EFSC	8.	0.7317	1,2625	0.9552

Title: 60225262-058-(090-095) C.dilutus-Growth PS-pooled&sites

File: 058pgps.dat Transform: NO TRANSFORMATION

Summary Statistics on Data TABLE 2 of 2

GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %
1	Form Sed/Sand	0.0596	0.2441	0.0610	25.3105
2	LJH	0.0403	0.2008	0.0710	17.9021
3	LSH	0.0358	0.1892	0.0669	17.8511
4	MSH	0.0852	0.2918	0.1032	24.0996
5	USC	0.1010	0.3178	0.1124	25,8895
6	LSLA	0.0223	0.1493	0.0528	12.0086
7	EFSC	0.0438	0.2092	0.0740	21.9053

ap: 1209/27/12

Toxstat Version 3.5, Study #60225262-058-(090-095) Coeur Alaska, Inc. C. dilutus Chronic Study Analysis of Growth PER SURVIVING (All sites and pooled controls)-AFDW Title: 60225262-058-(090-095) C.dilutus-Growth PS-pooled&sites File: 058pgps.dat NO TRANSFORMATION Transform: Chi-Square Test for Normality Actual and Expected Frequencies INTERVAL <-1.5 -1.5 to <-0.5 -0.5 to 0.5 >0.5 to 1.5 ----EXPECTED 4.2880 15.4880 24.4480 15.4880 OBSERVED 2 22 24 9 Chi-Square = 8.4001(p-value = 0.0780)Critical Chi-Square = 13.277 (alpha = 0.01 , df = 4) = 9.488 (alpha = 0.05, df = 4)Data (ASS) normality test (alpha = 0.01). Continue analysis. Note: shaping-wilk's test cannot be run lacause # of replicates 18 750 Title: 60225262-058-(090-095) C.dilutus-Growth PS-pooled&sites 058pgps.dat Transform: NO TRANSFORMATION Bartlett's Test for Homogeneity of Variance Calculated B1 statistic = 5.3461 (p-value = 0.5003)Data (ASS) B1 homogeneity test at 0.01 level. Continue analysis. Critical B = 16.8119 (alpha = 0.01, df = 6) = 12.5916 (alpha = 0.05, df = 6) Using Average Degrees of Freedom (Based on average replicate size of 9.14) Calculated B2 statistic = 6.1056 (p-value = 0.4115)

Data(PASS) B2 homogeneity test at 0.01 level. Continue analysis.

Toxstat Version 3.5, Study #60225262-058-(090-095)

Coeur Alaska, Inc.

C. dilutus Chronic Study

Analysis of Growth PER SURVIVING (All sites and pooled controls) - AFDW

AS 9/17/12 an: w 9/19/12 an: AR09/27/12

Title: 60225262-058-(090-095) C.dilutus-Growth PS-pooled&sites

File:

058pgps.dat

Transform:

NO TRANSFORMATION

AN	OVA	Tal	bте

SOURCE	DF	SS	MS	F
Between Within (Error)	6 57	0.8678 3.1924	0.1446 0.0560	2.5823
Total	63	4.0601		

(p-value = 0.0278)

Critical F = 3.1364 (alpha = 0.01, df = 6,57)

= 2.2625 (alpha = 0.05, df = 6,57)

Since F > Critical F REJECT Ho: All equal (alpha = 0.05)

Title: 60225262-058-(090-095) C.dilutus-Growth PS-pooled&sites

File:

058pgps.dat

Transform:

NO TRANSFORMATION

Во	nterroni t-Test -	TABLE 1 OF 2	Ho: Contro.	L <treatme< th=""><th>nt</th></treatme<>	nt
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	t STAT	SIG 0.05
1	Form Sed/Sand	0.9645	0.9645		
2	LJH	1.1217	1.1217	-1.5342	
3	LSH	1.0600	1.0600	-0.9317	
4	MSH	1.2109	1,2109	-2.4044	
5	usc	1.2276	1.2276	-2.5674	
6	LSLA	1.2431	1.2431	-2.7183	
7	EFSC	0.9552	0.9552	0.0912	÷

Bonferroni t critical value = 2.4667 (1 Tailed, alpha = 0.05, df = 6,57)

Title: 60225262-058-(090-095) C.dilutus-Growth PS-pooled&sites

File: 058pgps.dat Transform: NO TRANSFORMATION

EFSC

	Bonferroni t-Test -	TABLE 2	2 OF 2	Ho: Contro	l <treatment< th=""></treatment<>
GROUE	DENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG, UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL
1	Form Sed/Sand	16	4444		
2	LJH	8	0.2528	26.2	-0.1572
3	LSH	8	0.2528	26.2	-0.0955
4	MSH	8	0.2528	26.2	-0.2464
5	USC	8	0.2528	26.2	-0.2631
6	LSLA	8	0.2528	26.2	-0.2786 ·

0.2528

26,2

0.0093

Toxstat version 3.5, Study #60225262-058-(090-095) Coeur Alaska, Inc. Chironomus dilutus 10-day Chronic Study Summary and Analysis of Control Survival

AR 09/28/12 an: cu 09/28/12

File:

058chcon.dat

NO TRANSFORMATION

File:	058chcon.dat			Transform:		NO TRANSFORMATION	
an na na na di na		ry Statistic	s on Dat	ta	TABLE	1 of 2	
	GRP IDE	ENTIFICATION	N		MAX		
		Sand Form Sed	8	0.4000 0.4000	0.9000 1.0000	0.750	00
File:	058ch	ncon.dat		Transform:		NO TI	RANSFORMATION
		ry Statistic					
	IDENTIFI	CATION	VARIANC)	E SD	SEM		C.V. %
1.		Sand orm Sed	0.03	14 0.17 86 0.16	73 0.06	527 598	23.6375 24.1473
File:	058ch	ncon.dat Shapiro - N			rmality		JARE ROOT(Y))
W					16)		
Data PA	SS normal	Lity test (al	pha = 0	.01). Conti	nue analys	ls.	
File:	058cł	ncon.dat		Transform:	ARC S	SINE (SQ	JARE ROOT(Y))
	., ., ., ., .,	F-Test for	Equali	ty of Two V	ariances		
	GROUP	IDENTIFICA	TION	VARI	ANCE	F	nh Alah guy
-	1 2	Form	Sand Sed)410)419	1.02	20
Criti		3.8854 (P=0 1.9949 (P=0	.01, 7,		(p-value =	= 0.977	9)

Since F <= Critical F, FAIL TO REJECT Ho: Equal Variances (alpha = 0.01).

Toxstat version 3.5, Study #60225262-058-(090-095) Coeur Alaska, Inc. Chironomus dilutus 10-day Chronic Study Summary and Analysis of Control Survival

AR09/28/12 an: cu ogi 28/12

File: 058chsur.dat Transform: ARC SINE(SQUARE ROOT(Y))

t-Test of Solvent and Blank Controls Ho: GRP1 Mean = GRP2 Mean GRP1 (Solvent cnt1) Mean = 1.0654 Calculated t value = 0.5754 GRP2 (Blank cntl) Mean = 1.0068 Degrees of freedom = 14 Difference in means = 0.0586 2-sided t value (0.05,14) = 2.1448 No significant difference at alpha=0.05 2-sided t value (0.01,14) = 2.9768 No significant difference at alpha=0.01

WARNING: This procedure assumes normality and equal variances!

Since no difference between controls, control data were pooled for further analysis

Toxstat version 3.5, Study #60225262-058-(090-095) Coeur Alaska, Inc. Chironomus dilutus 10-day Chronic Study List Data for Survival (all treatments)

AR 09/28/12 QA: CU 09/28/12

File:

058chsur.dat

Transform:

NO TRANSFORMATION

Number of Groups: 8

GRP	IDENTIFICATION	REP	VALUE	TRANS VALUE
1	Sand	1	0.4000	0.4000
1	Sand	2	0.9000	0.9000
1	Sand	3	0.7000	0.7000
1	Sand	4	0.9000	0.9000
1	Sand	5	0.8000	0.8000
1	Sand	6	0.9000	0.9000
1	Sand	7	0.8000	0.8000
1	Sand	8	0.6000	0.6000
2	Form Sed	· 1	0.7000	0.7000
2	Form Sed	2	0.7000	0.7000
2	Form Sed	3	0.7000	0.7000
2	Form Sed	4	0.4000	0.4000
2	Form Sed	5	0.8000	0.8000
2	Form Sed	6	1.0000	1.0000
2	Form Sed	7	0.7000	0.7000
2	Form Sed	8	0.6000	0.6000
3	LJH	1	0.9000	0.9000
3	LJH	2	0.6000	0.6000
3	LJH	3	0.8000	0.8000
3	LJH	4	0.8000	0.8000
3	LJH	5	1.0000	1.0000
3	LJĦ	6	0.3330	0.3330
3	· LJH	7	1.0000	1.0000
. 3	LJH	8	0.8000	0.8000
4	LSH	1.	0.7000	0.7000
4	LSH	2	0.5000	0.5000
4	LSH	3	0.7000	0.7000
4	LSH	4	0.8000	0.8000
4	LSH	5	1.0000	1.0000
4	LSH	6	0.7000	0.7000
4	LSH	7	0.4000	0.4000
4	LSH	8	0.5000	0.5000
5	MSH	1	0.9000	0.9000
5	MSH	2	0.9000	0.9000
5	MSH	3	0.7000	0.7000
5	MSH	4	0.4000	0.4000
5	MSH	- 5	0.7000	0.7000
5	MSH	6	0.6660	0.6660
5	MSH	7	0.4000	0.4000
5	MSH	8	1.0000	1.0000
6	USC	1	0.6000	0.6000
6	USC	2	0.6000	0.6000
6	USC	3	0.7000	0.7000
6	USC	4	0.3000	0.3000
- 6	USC	5	0.8000	0.8000
6	USC	6	0.9000	0.9000
6	USC	7	0.7000	0.7000
6	USC	8	0.8000	0.8000
7	LSLA	1	0.6000	0.6000
7	LSLA	2	0.7000	0.7000
7	LSLA	3	0.8000	0.8000
7	LSLA	4	0.9000	0.9000
7	LSLA	5	0.7000	0.7000
7	LSLA	6	0.7000	0.7000
7	LSLA	7	0.8000	0.8000
7	LSLA	8	0.5000	0.5000

Toxstat version 3.5, Study #60225262-058-(090-095)

Coeur Alaska, Inc.

Chironomus dilutus 10-day Chronic Study

List Data and Summary Statistics for Survival (all treatments)

8	EFSC	1	0.5000	0.5000	
8	EFSC	2	0.5000	0.5000	
8	EFSC	3	0.6000	0.6000	
8	EFSC	4	0.7000	0.7000	
8	EFSC	5	0.8000	0.8000	
8	EFSC	6	0.8000	0.8000	
8	EFSC	7	0.6000	0.6000	
8	EFSC	8	0.8000	0.8000	

File: 058chsur.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

TABLE 1 of 2

GRP	IDENTIFICATION	N	MIN	MAX	MEAN
1	Sand	8	0.4000	0.9000	0.7500 .
2	Form Sed	8	0.4000	1.0000	0.7000
3	LJH	8	0.3330	1.0000	0.7791
4	LSH	8	0.4000	1.0000	0.6625
5	MSH	8	0.4000	1.0000	0.7083
6	USC	8	0.3000	0.9000	0.6750
7	LSLA	8	0.5000	0.9000	0.7125
8	EFSC	8	0.5000	0.8000	0.6625

Title: 60225262-058 Chironomus survival

File:

058chsur.dat

Transform:

NO TRANSFORMATION

TABLE	2	οf	2
-------	---	----	---

GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %
1	Sand	0.0314	0.1773	0.0627	23.6375
2	Form Sed	0.0286	0.1690	0.0598	24.1473
3	LJH	0.0492	0.2219	0.0784	28.4776
4	LSH	0.0370	0.1923	0.0680	29.0205
5	MSH	0.0501	0.2238	0.0791	31.5993
6	USC	0.0336	0.1832	0.0648	27.1445
7	LSLA	0.0155	0.1246	0.0441	17.4937
8	EFSC	0.0170	0.1302	0.0460	19.6599

Toxstat version 3.5, Study #60225262-058-(090-095)
Coeur Alaska, Inc.
Chironomus dilutus 10-day Chronic Study
Analysis of Survival (all treatments, pooled controls)

GA:W 09128112

File: 058cpool.dat Transform: ARC SINE(SQUARE ROOT(Y)) Shapiro - Wilk's Test for Normality ****** Shapiro - Wilk's Test is aborted ****** This test can not be performed because total number of replicates is greater than 50. Total number of replicates = 64 File: 058cpool.dat Transform: ARC SINE(SQUARE ROOT(Y)) Chi-Square Test for Normality Actual and Expected Frequencies INTERVAL <-1.5 -1.5 to <-0.5 -0.5 to 0.5>0.5 to 1.5 >1.5 24.4480 15.4880 4.2880 25 18 3 ------15.4880 EXPECTED 4.2880 OBSERVED 13 25 18 5 3 Chi-Square = 1.3247 (p-value = 0.8572)Critical Chi-Square = 13.277 (alpha = 0.01 , df = 4) = 9.488 (alpha = 0.05 , df = 4) Data PASS normality test (alpha = 0.01). Continue analysis. File: 058cpool.dat Transform: ARC SINE(SQUARE ROOT(Y)) Bartlett's Test for Homogeneity of Variance Calculated B1 statistic = 4.8448 (p-value = 0.5639)Data PASS B1 homogeneity test at 0.01 level. Continue analysis. Critical B = 16.8119 (alpha = 0.01, df = 6) = 12.5916 (alpha = 0.05, df = 6)

Using Average Degrees of Freedom (Based on average replicate size of 9.14)

Calculated B2 statistic = 5.5015

(p-value = 0.4813)

Data PASS B2 homogeneity test at 0.01 level. Continue analysis.

Toxstat version 3.5, Study #60225262-058-(090-095) Coeur Alaska, Inc. Chironomus dilutus 10-day Chronic Study Analysis of Survival (all treatments, pooled controls)

AR09/28/12 QA:00 09128/12

File:

058cpool.dat

Transform:

ARC SINE (SQUARE ROOT (Y))

A RECORD	ന പരിപ്	_
ANOVA	Tabl	. С

			- -	
SOURCE	DF	SS	MS	F
Between	6	0.1408	0.0235	0.5331
Within (Error)	57	2.5086	0.0440	
Total	63	2.6494		
			/]	0 7000)

(p-value = 0.7808)

Critical F = 3.1364 (alpha = 0.01, df = 6,57)

= 2.2625 (alpha = 0.05, df = 6,57)

Since F < Critical F FAIL TO REJECT Ho: All equal (alpha = 0.05)

File:

058cpool.dat

Transform: ARC SINE(SQUARE ROOT(Y))

Bonferroni t-Test - TABLE 1 OF 2 Ho: Control<Treatment TRANSFORMED MEAN CALCULATED IN TRANS SIG _____CREC 1 GROUP IDENTIFICATION ORIGINAL UNITS t STAT 0.05 GRPS 1&2 POOLED 1.0361 LJH 1.1120 -----0.7250 0.7791 -0.8349 3 0.9685 LSH 0.6625 0.7442 1.0271 MSH 0.7083 0.0998 USC 0.9747 0.6750 0.6764 1.0135 0.2487 LSLA 0.7125 EFSC 0.9569 0.6625

Bonferroni t critical value = 2.4667 (1 Tailed, alpha = 0.05, df = 6,57)

File:

058cpool.dat

Transform:

ARC SINE(SQUARE ROOT(Y))

	Bonferroni t-Test -	TABLE 2	OF 2	Ho: Contro	1 <treatment< th=""></treatment<>
GROUE	P IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL
1	GRPS 1&2 POOLED	16		and the new for this was done	
2	LJH	8	0.2137	28.9	-0.0541
3	LSH	8	0.2137	28.9	0.0625
4	MSH	8	0.2137	28.9	0.0167
5	USC	8	0.2137	28.9	0.0500
6	LSLA	8	0.2137	28.9	0.0125
7	EFSC	8	0.2137	28.9	0.0625

APPENDIX C

Analytical Data

Page ___ of ___ FCETL QA Form No.131 Revision 0 Effective 10/06 Workstz appages/125/12

PERCENT TOTAL SOLIDS AND PERCENT TOTAL VOLATILE SOLIDS (TVS)

Project	No: (4022.5)	4 (UX 3P3-	058 -)-095)	TARE:	Date/time: 8/3c/12(2)	Dried in Oven # 1 from Date: 8 30 12 Time: 1526 Oven °C: 104 to Date: 8 31 12 Time: 0135					
Analytic	cal Balance I	D: AN	D*2	ASHED GF	ROSS: Date/time:എപ്പൂക്			Ashed in Furnace from Date: 8/3/1/2 Time: 0855 to Date: 8/3/1/2 Time: 1550			
Dish	Treatment	Rep						=			
No.			Ta Weight of A	f Dish (g)	Dish + Wet Sample (g) B	Dry Gross Weight (g) (dish + dry sample) C	% Total Solids (g) [(C-A)(100)]/(B-A)	Ashed Gross Weight (dish + sample)(g) D	% Total Volatile Solids (g) [(C-D)(100)]/(C-A)		
10	Sand	Α	18.01	46	28.2266	27.808 <i>2</i>	······································	27,7974			
8_		В	12.08	115	23.2549	22.7950		22.4835			
21			29,1327	27.9679		27,4246					
9A		В	12.3	192	22.3766	21,0345		20.4131			
3A	LTH.	A	10, 4	•	M. 1086	18.7410		18.5258			
6A		B	12.15		21,2732	19,2273		19.0506			
14A	LSH	A	12, 3		32. 094O	20.0165		19.7879			
loa.		В	12.06		22, 08 77	19.9266		19.6866			
20A	VSC	A	11.25		21,4682	19.1632	,	18.8393			
ŦΑ		В	12.02		22.2977	19.9080		19, 5836			
19A	MEH	A	10.70	•	20,5502	18,595		\8.3622			
18A		В	10.68		21.1700	18,9697		18.7328			
Blank			20.211	.0	NA	20:2112		20:2115			

¹ Add in weight loss of blank boat, if appropriate.

Oas caloulisact

Page ___ of ___ FCETL QA Form No.131 Revision 0 Effective 10/06 cogglishi2 dr: neogleshi2

PERCENT TOTAL SOLIDS AND PERCENT TOTAL VOLATILE SOLIDS (TVS)

	No: 60225 (084-089) cal Balance I	4 (090	0-095)	TARE: DRY GROS ASHED GF		ু 1440 ⁻¹⁵¹⁵ Analyst: ৫০ ০জা০ ^{-জেড} Analyst: ৫১ ৪৯-০৪40 Analyst: ৫১	Dried in Oven # 1 from Date: ৪/3০/12 Time: 1520 Oven °C: 1০৭ to Date: ৪/3৫/12 Time: 0335 Ashed in Furnace from Date: ৪/3৫/12 Time: 0855 Furnace °C: 550 to Date: ৪/3৫/12 Time: 1550		
Dish No.	Treatment	Rep	Ta Weight o	f Dish (g)	Dish + Wet Sample (g) B	Dry Gross Weight (g) (dish + dry sample) C	% Total Solids (g) [(C-A)(100)]/(B-A)	Ashed Gross Weight (dish + sample)(g) D	% Total Volatile Solids (g) [(C-D)(100)]/(C-A)
17	LSLA	Α	11,931	6	21.4140	19.4808	,,	19.2242	
5A		В	12.001	08	22.6386	20. 38 70		20,1074	
414	ef6c_	A	10.77	30	20.3986	13.0271		19.3821	
IZA		В	10.749	<u>a</u>	21.2367	13.3044		12.5907	·
			· 						
									·
Blank									

¹ Add in weight loss of blank boat, if appropriate.

Percent Total Solids and Percent Total Volatile Solids

Project Number: 60225262-058-(084-089), (090-095)

OA: OR 09/13/12 OA: AR09/25/12

Treatment	Rep		Tare Weight (g) A	Dish + Wet Sample (g) B	Dry Gross Weight (g) (dish + dry sample) C	% Total Solids [(C-A)(100)]/(B-A)	Treatment Mean % Total Solids	Ashed Gross Weight (g) (dish + sample) D	% Total Volatile Solids [(C-D)(100)]/(C-A)	Treatment Mean % Total Volatile Solids
	A		18.0146	28.2266	27.8082	95.9029	95.9033	27.7974	0.1103	0.1085
Sand	В		12.0275	23.2549	22.7950	95.9038		22.7835	0.1068	
- O. I	A		19.9277	29.1327	27.9679	87.3460	86.9608	27.4246	6.7573	6.9684
Form Sed	В		12.3792	22.3766	21.0345	86.5755		20.4131	7.1794	
	A		10.4477	21.1086	18.7410	77.7917	77.6738	18.5258	2,5949	2.5471
LJH	В		12.1577	21.2732	19.2273	77.5558		19.0506	2.4994	
	A		12.3597	22.0940	20.0165	78.6579	78.5506	19.7829	3.0509	3.0514
LSH	В		12.0625	22.0877	19.9266	78.4433		19.6866	3.0518	
	Α		11.2564	21,4682	19.1632	77.4281	77.0879	18.8393	4.0965	4.1046
USC	В		12.0204	22,2977	19.9080	76.7478		19.5836	4.1128	
	Α		10.7019	20.5502	18.5951	80,1478	79.5803	18.3622	2.9506	2.9052
MSH	В		10.6860	21.1700	18.9697	79.0128		18.7328	2.8598	
	Α		11.9310	21.4140	19.4808	79.6140	79.2180	19.2242	3.3988	3.3676
LSLA	В		12.0068	22.6386	20.3870	78.8220		20.1074	3.3364	
	Α	·	10.7730	20.3986	13.0271	23.4178	23.7164	12.3821	28.6145	28.5431
EFSC	В		10.7977	21.2357	13.3044	24.0151		12.5907	28.4717	
Blank	 	<u> </u>	20.2110		20.2112			20.2115	-	

Rami Naddy AECOM 4303 W Laporte Ave Fort Collins, CO 80521

RE: FCETL/AECOM

Work Order: 1111062

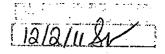
Dear Rami Naddy:

MSE Lab Services received 7 sample(s) on 11/15/2011 for the analyses presented in the following report.

Please find enclosed analytical results for the sample(s) received at the MSE Laboratory.

If you have any questions regarding these test results, please feel free to call.

Sincerely,


Sara Ward

Laboratory Manager

406-494-7334

Enclosure

Date: 02-Dec-11

CLIENT:

AECOM

Client Sample ID: FORM SED

Lab Order:

1111062

Tag Number:

Project: Lab ID:

FCETL/AECOM 1111062-001A

Collection Date: 11/10/2011 11:00:00 AM

Matrix: SEDIMENT

Analyses	Result	MDL	Rpt. Limit	Qual	Units	DF	Date Analy	zed
ICP-MS METALS, SOLID SAM	PLES		SW6020	SW305	0B		Analyst:	kgv
Aluminum	1050	4.45	14.2		mg/Kg-dry	4	11/23/2011 3:1	0:21 PM
Arsenic	ND	0.103	0.354		mg/Kg-dry	2	11/21/2011 5:3	9:56 PN
Cadmlum	0.061	0.006	0.024		mg/Kg-dry	2	11/21/2011 5:3	9:56 PN
Chromium	7.31	0.130	0.472		mg/Kg-dry	2	11/30/2011 2:0	0:59 PM
Copper	0.940	0.097	0.295		mg/Kg-dry	2	11/30/2011 2:0	0:59 PN
Lead	0.390	0.011	0.047		mg/Kg-dry	2	11/21/2011 5:3	9:56 PN
Nickel	0.986	0.068	0.236		mg/Kg-dry	2	11/30/2011 2:0	0:59 PN
Selenium	ND	0.160	0.472		mg/Kg-dry	2	11/21/2011 5:3	9:56 PN
Silver	ND	0.087	0.236		mg/Kg-dry	2	11/21/2011 5:3	9:56 PN
Zinc	3.92	0.216	0.708		mg/Kg-dry	2	11/30/2011 2:0	0:59 PN
MERCURY IN SOIL/SEDIMEN	Г - SW846 7471B		E245.5	SW747	1A		Analyst:	tr
Mercury	ND	0.0366	0.126		mg/Kg-dry	1	11/18/2011 9:3	2:00 AN
ORGANIC MATTER-WALKLEY	/ BLACK	OM_WA	ALKLEYBLAC	K			Analyst:	dk
Organic Matter - Walkley Black	25.3	0.09	0.20		%	1	11/18/2011 2:1	9:00 PM
PERCENT COARSE MATERIA	L	Α	STMD422				Analyst:	dk
1" Gradation	ND	0.05	0.10		%	1	11/17/2011 4:5	5:00 PN
2mm Gradation	ND	0.05	0.10		%	1	11/17/2011 4:5	5:00 PN
RAPID HYDROMETER (2 HOU	IR) MOD ASA 15-5	ľ	MSA15-5				Analyst:	dk
% Clay	8.0	0.1	0.1		%	1	11/17/2011 5:5	0:00 PM
% Sand	86.0	0.1	0.1		%	1	11/17/2011 5:5	0:00 PN
% Silt	6.0	0.1	0.1		%	1	11/17/2011 5:5	0:00 PM
Soil Class	LOAMYSAND					1	11/17/2011 5:5	0:00 PN
PERCENT MOISTURE			D2216				Analyst:	во
Percent Moisture	15.2	0.01	0.05		wt%	1	11/16/2011 3:0	0:00 Pእ

E

Value above quantitation range

Н Holding times for preparation or analysis exceeded

J Analyte detected below the Reporting Limit

Limit Reporting Limit

MDL Method Detection Limit

CLIENT:

AECOM

Lab Order:

Project:

1111062

FCETL/AECOM

Lab ID:

1111062-002A

Date: 02-Dec-11

Client Sample ID: LOWER SLATE

Tag Number:

Collection Date: 11/10/2011 11:00:00 AM

Matrix: SEDIMENT

Analyses	Result	MDL	Rpt. Limit	Qual	Units	DF	Date Analyzed
ICP-MS METALS, SOLID SAMPL	.ES		SW6020	SW305	0B		Analyst: kgw
Aluminum	13600	5.04	16.0		mg/Kg-dry	4	11/23/2011 3:10:21 PM
Arsenic	16.2	0.116	0.401		mg/Kg-dry	2	11/21/2011 5:39;56 PN
Cadmlum	1.46	0.007	0.027		mg/Kg-dry	2	11/21/2011 5:39:56 PN
Chromium	29.4	0.147	0.535		mg/Kg-dry	2	11/30/2011 2:00:59 PN
Copper	56.7	0.110	0.334		mg/Kg-dry	2	· 11/30/2011 2:00:59 PN
Lead	7.79	0.012	0.054		mg/Kg-dry	2	11/21/2011 5:39:56 PN
Nickel	47.4	0.077	0.267		mg/Kg-dry	2	11/30/2011 2:00:59 PN
Selenium	0.720	0.182	0.535		mg/Kg-dry	2	11/21/2011 5:39:56 PN
Silver	0.134	0.098	0.267	J	mg/Kg-dry	2	11/21/2011 5:39:56 PN
Zinc	220	0.244	0.802		mg/Kg-dry	2	11/30/2011 2:00:59 PN
MERCURY IN SOIL/SEDIMENT -	SW846 7471B		E245.5	SW747	۱A		Analyst: tr
Mercury	0.0502	0.0393	0.136	J	mg/Kg-dry	1	11/18/2011 9:32:00 AN
ORGANIC MATTER-WALKLEY E	BLACK	OM_WA	LKLEYBLACI	<			Analyst: dk
Organic Matter - Walkley Black	2.04	0.09	0.20		%	1	11/18/2011 2:19:00 PN
PERCENT COARSE MATERIAL		A	STMD422				Analyst: dk
1" Gradation	ND	0.05	0.10		%	1	11/17/2011 4:55:00 PN
2mm Gradation	0.44	0.05	0.10		%	1	11/17/2011 4:55:00 PM
RAPID HYDROMETER (2 HOUR)	MOD ASA 15-5		/ISA15-5				Analyst: dk
% Clay	2.0	0.1	0.1		%	1	11/17/2011 5:50:00 PN
% Sand	94.0	0.1	0.1		%	1	11/17/2011 5:50:00 PM
% Slit	4.0	0.1	0.1		%	1	11/17/2011 5:50:00 PM
Soil Class	SAND					1	11/17/2011 5:50:00 PM
PERCENT MOISTURE			D2216				Analyst: BO
Percent Moisture	25.2	0.01	0.05		wt%	1	11/16/2011 3:00:00 PM

E

Value above quantitation range

Analyte detected below the Reporting Limit

MDL Method Detection Limit

н Holding times for preparation or analysis exceeded

Limit Reporting Limit

Not Detected at the Method Detection Limit (MDL) Page 2 of 22 $\,$

CLIENT:

AECOM

Lab Order:

1111062

FCETL/AECOM

Project: Lab ID:

1111062-002B

Date: 02-Dec-11

Client Sample ID: LOWER SLATE

Tag Number:

Collection Date: 10/3/2011

Matrix: SEDIMENT

Analyses	Result	MDL	Rpt. Limit	Qual	Units	DF	Date Analy	zed
ACID VOLATILE SULFIDE-SIM. EXT	. METALS	A	VS-SEM	AVS-SE	M		Analyst:	kgv
Sulfide	ND	0.55	1.50		µmoles/g	1	11/18/2011 9:3	32:00 AN

Date: 02-Dec-11

CLIENT:

AECOM

Client Sample ID: INLET UPPER SLATE

Lab Order:

1111062

Tag Number:

Project:

FCETL/AECOM

Collection Date: 11/10/2011 11:00:00 AM

Lab ID:

1111062-003A

Matrix: SEDIMENT

Analyses	Result	MDL	Rpt. Limit	Qual	Units	DF	Date Analyz	zed
ICP-MS METALS, SOLID SAMPLES	3		SW6020	SW3056	В		Analyst:	kgv
Aluminum	22500	5.25	16.7		mg/Kg-dry	4	11/23/2011 3:10	D:21 PM
Arsenic	17.9	0.121	0.418		mg/Kg-dry	2	11/21/2011 5:39	9:58 PN
Cadmium	0.722	0.007	0.028		mg/Kg-dry	2	11/21/2011 5:39	9:56 PN
Chromium	127	0.153	0.557		mg/Kg-dry	2	11/30/2011 2:00	0:59 PN
Соррег	53.4	0.114	0.348		mg/Kg-dry	2	11/30/2011 2:00	0:59 PN
Lead	3.37	0.012	0.056		mg/Kg-dry	2	11/21/2011 5:39	9:58 PN
Nickel	87.5	0.080	0.278		mg/Kg-dry	2	11/30/2011 2:00	0:59 PN
Selenium	0.809	0.189	0.557		mg/Kg-dry	2	11/21/2011 5:39	9:56 Pil
Silver	0.120	0.103	0.278	J	mg/Kg-dry	2	11/21/2011 5:39	9:56 PA
Zinc	130	0.254	0.835		mg/Kg-dry	2	11/30/2011 2:00	0:59 PN
MERCURY IN SOIL/SEDIMENT - SV	W846 7471B		E245.5	SW747	1A		Analyst:	tr
Mercury	ND	0.0489	0.169		mg/Kg-dry	1	11/18/2011 9:3	2:00 AN
ORGANIC MATTER-WALKLEY BLA	ACK	OM_WA	ALKLEYBLACI	<			Analyst:	dk
Organic Matter - Walkley Black	5.46	0.09	0.20		%	1	11/18/2011 2:19	9:00 Pi
PERCENT COARSE MATERIAL		A	STMD422				Analyst:	dk
1" Gradation	ND	0.05	0.10		%	1	11/17/2011 4:5	5:00 Pእ
2mm Gradation	ND	0.05	0.10		%	1	11/17/2011 4:5	5:00 PN
RAPID HYDROMETER (2 HOUR) N	10D ASA 15-5	7	MSA15-5				Analyst:	dk
% Clay	4.0	0.1	0.1		%	1	11/17/2011 5:5	0:00 PN
% Sand	94.0	0.1	0.1		%	1	11/17/2011 5:5	0:00 PN
% Silt	2.0	0.1	0.1		%	1	11/17/2011 5:5	0:00 PN
Soll Class	SAND					1	11/17/2011 5:5	0:00 PN
PERCENT MOISTURE			D2216				Analyst:	BC
Percent Moisture	28.2	0.01	0.05		wt%	1	11/16/2011 3:0	0:00 PN

E

J

Value above quantitation range

Analyte detected below the Reporting Limit

MDL Method Detection Limit

H Holding times for preparation or analysis exceeded

Limit Reporting Limit

Not Detected at the Method Detection Limit (MDL)
Page 4 of 22 ND

CLIENT:

AECOM

Lab Order:

1111062

Project:

Lab ID:

FCETL/AECOM 1111062-003B

Client Sample ID: INLET UPPER SLATE

Date: 02-Dec-11

Tag Number:

Collection Date: 10/4/2011

Matrix: SEDIMENT

Analyses	Result	MDL	Rpt. Limit	Qual	Units	DF	Date Analyze	
ACID VOLATILE SULFIDE-SIM. EX	r. METALS	۵	VS-SEM	AVS-SE	≣M		Analyst:	kgv
Sulfide	1.39	0.55	1.50	J	µmoles/g	1	11/18/2011 9:32:	00 AN

Date: 02-Dec-11

CLIENT:

AECOM

Client Sample ID: MIDDLE SLATE

Lab Order:

1111062

Tag Number:

Project:

FCETL/AECOM

Collection Date: 11/10/2011 11:00:00 AM

Lab ID:

1111062-004A

Matrix: SEDIMENT

Analyses	Result	MDL	Rpt. Limit	Qual	Units	DF	Date Analyzed
ICP-MS METALS, SOLID SAMPL	.ES		SW6020	SW3056)B		Analyst: kgw
Aluminum	20100	6.31	20.1		mg/Kg-dry	4	11/23/2011 3:10:21 PM
Arsenic	30.0	0.146	0,502		mg/Kg-dry	2	11/21/2011 5:39:56 PM
Cadmium	20.9	0.009	0.034		mg/Kg-dry	2	11/21/2011 5:39:56 PM
Chromium	29.5	0.184	0.669		mg/Kg-dry	2	11/30/2011 2:00:69 PM
Copper	88.4	0.137	0.418		mg/Kg-dry	2	11/30/2011 2:00:59 PM
Lead	8.50	0.015	0.067		mg/Kg-dry	2	11/21/2011 5:39:56 PM
Nickel	143	0.096	0.335		mg/Kg-dry	2	11/30/2011 2:00:59 PM
Selenium	1.41	0.227	0.669		mg/Kg-dry	2	11/21/2011 5:39:56 PM
Silver	0.233	0.123	0.335	J	mg/Kg-dry	2	11/21/2011 5:39:56 PM
Zinc	1360	0.306	1.00		mg/Kg-dry	2	11/30/2011 2:00:59 PM
MERCURY IN SOIL/SEDIMENT -	SW846 7471B		E245.5	SW747	1 A		Analyst: t r
Mercury	0.0692	0.0545	0.188	j	mg/Kg-dry	1	11/18/2011 9:32:00 AN
ORGANIC MATTER-WALKLEY	BLACK	OM_W	ALKLEYBLACI	K			Analyst dk
Organic Matter - Walkley Black	11.0	0.09	0.20		%	1	11/18/2011 2:19:00 PM
PERCENT COARSE MATERIAL		Α	STMD422				Analyst: dk
1" Gradation	ND	0.05	0.10		%	1	11/17/2011 4:55:00 PM
2mm Gradation	1.65	0.05	0.10		%	1	11/17/2011 4:55:00 PM
RAPID HYDROMETER (2 HOUR) MOD ASA 15-5	ı	VISA15-5				Analyst: dk
% Clav	10.0	0.1	0.1		%	1	11/17/2011 5:50:00 PM
% Sand	86.0	0.1	0.1		%	1	11/17/2011 5:50:00 PM
% Slit	4.0	0.1	0.1		%	1	11/17/2011 5:50:00 PN
Soil Class	LOAMYSAND					1	11/17/2011 5:50:00 PN
PERCENT MOISTURE			D2216				Analyst: BO
Percent Moisture	40.2	0.01	0.05		wt%	1	11/16/2011 3:00:00 PN

E

Н

Value above quantitation range

Holding times for preparation or analysis exceeded

J Analyte detected below the Reporting Limit MDL Method Detection Limit

Limit Reporting Limit

Not Detected at the Method Detection Limit (MDL) $Page\ 6\ of\ 22$ ND

CLIENT:

AECOM

Lab Order:

1111062

FCETL/AECOM

Project: Lab ID:

1111062-004B

Date: 02-Dec-11

Client Sample ID: MIDDLE SLATE

Tag Number:

Collection Date: 10/4/2011

Matrix: SEDIMENT

Analyses	Result	MDL	Rpt. Limit	Qual	Units	DF	Date Analy	zed
ACID VOLATILE SULFIDE-SIM. E	XT. METALS	ΑV	VS-SEM	AVS-SE	M		Analyst:	kgvi
Sulfide	ND	0.55	1.50		µmoles/g	1	11/18/2011 9:0	32:00 AN

E

Limit Reporting Limit

Date: 02-Dec-11

CLIENT: Lab Order:

Project:

Lab ID:

AECOM

1111062

FCETL/AECOM

1111062-005A

Client Sample ID: MIDDLE SHERMAN

Tag Number:

Collection Date: 11/10/2011 11:00:00 AM

Matrix: SEDIMENT

Analyses	Result	MDL	Rpt. Limit	Qual	Units	DF	Date Analy	zed
ICP-MS METALS, SOLID SAMPL	ES	· · · · · · · · · · · · · · · · · · ·	SW6020	SW305	DB		Analyst:	kgv
Aluminum	19000	5.06	16.1		mg/Kg-dry	4	11/23/2011 3:1	
Arsenic	55.7	0.117	0.402		mg/Kg-dry	2	11/21/2011 5:3	9:56 PN
Cadmium	0.175	0.007	0.027		mg/Kg-dry	2	11/21/2011 5:3	9:56 PN
Chromium	43.4	0.147	0.536		mg/Kg-dry	2	11/30/2011 2:0	0:59 PN
Copper	97.1	0.110	0.335		mg/Kg-dry	2	11/30/2011 2:0	0:59 PN
Lead	17.3	0.012	0.054		mg/Kg-dry	2	11/21/2011 5:3	9:56 PN
Nickel	44.0	0.077	0.268		mg/Kg-dry	2	11/30/2011 2:0	0:59 PA
Selenium	ND	0.182	0.536		mg/Kg-dry	2	11/21/2011 5:3	9:56 PN
Silver	0.633	0.099	0.268		mg/Kg-dry	2	11/21/2011 5:3	19:56 PN
Zinc	120	0.245	0.804		mg/Kg-dry	2	11/30/2011 2:0	10:59 PN
MERCURY IN SOIL/SEDIMENT -	SW846 7471B		E245.5	SW747	1A		Analyst:	tr
Mercury	ND	0.0412	0.142		mg/Kg-dry	1	11/18/2011 9:3	2:00 AN
ORGANIC MATTER-WALKLEY	BLACK	OM_WA	ALKLEYBLAC	K			Analyst:	dk
Organic Matter - Walkley Black	1.17	0.09	0.20		%	1	11/18/2011 2:1	9:00 Pእ
PERCENT COARSE MATERIAL	•	A	STMD422				Analyst:	dk
1" Gradation	· ND	0.05	0.10		%	1	11/17/2011 4:5	55:00 PN
2mm Gradation	0.22	0.05	0.10		%	1	11/17/2011 4:5	5:00 PN
RAPID HYDROMETER (2 HOUR)	MOD ASA 15-5	ŗ	VISA15-5				Analyst:	dk
% Clay	2.0	0.1	0.1		%	1	11/17/2011 5:5	50:00 PN
% Sand	96.0	0,1	0.1		%	1	11/17/2011 5:5	50:00 PA
% Silt	2.0	0.1	0.1		%	1	11/17/2011 5:5	50:00 PA
Soli Class	SAND					1	11/17/2011 5:5	50:00 PN
PERCENT MOISTURE			D2216				Analyst:	ВО
Percent Molsture	25.4	0.01	0.05		wt%	1	11/16/2011 3:0	10:00 Pእ

Value above quantitation range

Holding times for preparation or analysis exceeded н

Analyte detected below the Reporting Limit

Limit Reporting Limit

MDL Method Detection Limit

Date: 02-Dec-11

CLIENT:

AECOM

Lab Order:

1111062

Project: Lab ID:

FCETL/AECOM

1111062-005B

Client Sample ID: MIDDLE SHERMAN

Tag Number:

Collection Date: 10/4/2011

Matrix: SEDIMENT

Analyses	Result	MDL	Rpt. Limit	Qual	Units	DF	Date Analyzed		
ACID VOLATILE SULFIDE-SIM. EXT	А	VS-SEM	AVS-S	EM		Analyst:	kgvı		
Sulfide	1.01	0.55	1.50	L	µmoles/g	1	11/18/2011 9:	32:00 A∿	

Ε

J

Date: 02-Dec-11

CLIENT:

AECOM

Client Sample ID: LOWER SHERMAN

Lab Order:

1111062

Tag Number:

Project:

FCETL/AECOM

Collection Date: 11/10/2011 11:00:00 AM

Lab ID:

1111062-006A

Matrix: SEDIMENT

Analyses	Result	MDL	Rpt. Limit	Qual	Units	DF	Date Analyzed
ICP-MS METALS, SOLID SAMPL	ES	;	SW6020	SW3050	0B		Analyst: kgw
Aluminum	18200	4.88	15.5		mg/Kg-dry	4	11/23/2011 3:10:21 PM
Arsenic	28.9	0.112	0.388		mg/Kg-dry	2	11/21/2011 5:39:56 PN
Cadmium	0.389	0.007	0.026		mg/Kg-dry	2	11/21/2011 5:39:66 PN
Chromium	46.2	0.142	0.517		mg/Kg-dry	2	11/30/2011 2:00:59 PN
Copper	94.0	0.106	0.323		mg/Kg-dry	2	11/30/2011 2:00:59 PN
Lead	6.70	0.012	0.052		mg/Kg-dry	2	11/21/2011 5:39:56 PN
Nickel	45.9	0.074	0.259		mg/Kg-dry	2	11/30/2011 2:00:59 PN
Selenium	ND	0.176	0.517		mg/Kg-dry	2	11/21/2011 5:39:56 PN
Silver	0.137	0.095	0.259	J	mg/Kg-dry	2	11/21/2011 5:39:56 PN
Zinc	110	0.236	0.776		mg/Kg-dry	2	11/30/2011 2:00:59 PN
MERCURY IN SOIL/SEDIMENT -	SW846 7471B		E245.5	SW747	1A		, Analyst: tr
Mercury	ND	0.0455	0.157		mg/Kg-dry	1	11/18/2011 9:32:00 AN
ORGANIC MATTER-WALKLEY B	LACK	OM_WA	LKLEYBLACI	K			Analyst: dk
Organic Matter - Walkley Black	0.54	0.09	0.20		%	1	11/18/2011 2:19:00 PN
PERCENT COARSE MATERIAL		. A	STMD422				Analyst: dk
1" Gradation	ND	0.05	0.10		%	1	11/17/2011 4:55:00 PM
2mm Gradation	0.11	0.05	0.10		%	1	11/17/2011 4:55:00 PN
RAPID HYDROMETER (2 HOUR)	MOD ASA 15-5		//SA15-5				Analyst: dk
% Clay	2.0	0.1	0.1		%	1	11/17/2011 5:50:00 PN
% Sand	96.0	0.1	0.1		%	1	11/17/2011 5:50:00 PN
% Silt	2.0	0.1	0.1		%	1	11/17/2011 5:50:00 PN
Soil Class	SAND					1	11/17/2011 5:50:00 PM
PERCENT MOISTURE			D2216				Analyst: BO
Percent Moisture	22.7	0.01	0.05		wt%	1	11/16/2011 3:00:00 PM

E

Value above quantitation range

Analyte detected below the Reporting Limit

MDL Method Detection Limit

Н Holding times for preparation or analysis exceeded

Limit Reporting Limit

Not Detected at the Method Detection Limit (MDL) $Page \ 10 \ of \ 22$

Date: 02-Dec-11

CLIENT:

AECOM

Lab Order:

1111062

Project: Lab ID:

FCETL/AECOM

1111062-006B

Client Sample ID: LOWER SHERMAN

Tag Number:

Collection Date: 10/3/2011

Matrix: SEDIMENT

Analyses	Result	MDL	Rpt. Limit	Qual	Units	DF	Date Analy	zed
ACID VOLATILE SULFIDE-SIM. EXT. METALS		A	VS-SEM	AVS-SE	И		Analyst:	kgv
Sulfide	1.50	0.55	1.50		µmoles/g	1	11/18/2011 9:3	32:00 AM

Date: 02-Dec-11

CLIENT:

AECOM

Client Sample ID: LOWER JOHNSON

Lab Order:

1111062

Tag Number:

Project:

FCETL/AECOM

Collection Date: 11/10/2011 11:00:00 AM

Lab ID:

1111062-007A

Matrix: SEDIMENT

Analyses	Result	MDL	Rpt. Limit	Qual	Units	DF	Date Analyz	zed
ICP-MS METALS, SOLID SAMPLES		;	SW6020	SW305	0B		Analyst:	kgvı
Aluminum	13100	5.02	16.0		mg/Kg-dry	4	11/23/2011 3:10	0:21 PN
Arsenic	16.2	0.116	0.399		mg/Kg-dry	2	11/21/2011 5:39	9:56 PN
Cadmlum	0.238	0.007	0.027		mg/Kg-dry	2	11/21/2011 5:39	9:56 PN
Chromium	31.5	0.146	0.533		mg/Kg-dry	2	11/30/2011 2:00	0:59 PN
Copper	73.1	0.109	0.333		mg/Kg-dry	2	11/30/2011 2:00	0:59 PN
Lead	9.76	0.012	0.053		mg/Kg-dry	2	11/21/2011 5:39	9:56 PN
Nickel	27.3	0.076	0.266		mg/Kg-dry	2	1 1/ 30/201 1 2 :00	0:59 PN
Selenium	ND	0.181	0.533		mg/Kg-dry	2	11/21/2011 5:39	9:56 PM
Silver	0.164	0.098	0.266	J	mg/Kg-dry	2	11/21/2011 5:39	9:56 PM
Zinc	93.3	0.243	0.799		mg/Kg-dry	2	11/30/2011 2:00	0:59 PN
MERCURY IN SOIL/SEDIMENT - SV	V846 7471B		E245.5	SW747	1 A		Analyst:	tr
Mercury	ND	0.0386	0.133		mg/Kg-dry	1	11/18/2011 9:3	2:00 AM
ORGANIC MATTER-WALKLEY BLA	ACK	OM_W	ALKLEYBLAC	K			Analyst:	dk
Organic Matter - Walkley Black	0.89	0.09	0.20		%	1	11/18/2011 2:1	9:00 PM
PERCENT COARSE MATERIAL		А	STMD422				Analyst:	dk
1" Gradation	ND	0.05	0.10		%	1	11/17/2011 4:5	5:00 PN
2mm Gradation	ND	0.05	0.10		%	1	11/17/2011 4:6	5:00 PN
RAPID HYDROMETER (2 HOUR) N	OD ASA 15-5	1	MSA15-5				Analyst:	dk
% Clay	2.0	0.1	0.1		%	1	11/17/2011 5:5	0:00 PN
% Sand	96.0	0.1	0.1		%	1	11/17/2011 5:5	0:00 PN
% Silt	2.0	0.1	0.1		%	1	11/17/2011 5:5	0:00 PN
Soil Class	SAND					1	11/17/2011 5:5	i0:00 PN
PERCENT MOISTURE			D2216				Analyst	ВС
Percent Molsture	24.9	0.01	0.05		wt%	1	11/16/2011 3:0	0:00 PM

E

J

Value above quantitation range

Analyte detected below the Reporting Limit

MDL Method Detection Limit

Holding times for preparation or analysis exceeded H

Limit Reporting Limit

Not Detected at the Method Detection Limit (MDL) Page 12 of 22 ND

CLIENT:

AECOM

Lab Order:

1111062

Project:

FCETL/AECOM

Lab ID:

1111062-007B

Date: 02-Dec-11

Client Sample ID: LOWER JOHNSON

Tag Number:

Collection Date: 10/3/2011

Matrix: SEDIMENT

Analyses	Result	MDL	Rpt. Limit	Qual	Units	DF	Date Analy	zed
ACID VOLATILE SULFIDE-SIM. EXT	A	VS-SEM	AVS-SE	VI		Analyst:	kgv	
Sulfide	ND	0.55	1.50		µmoles/g	1	11/18/2011 9:3	32:00 AN

J

Lab: 408-494-7334 Fax: 406-494-7230 labinfo@mse-ta.com

Date: 02-Dec-11 Report Date: 02-Dec-11

QA/QC SUMMARY REPORT

Client:

AECOM

Work Order:

1111062

Project:	FCETL/AECOM						Batcl	nID:	5060	
Analyte	Result	RL	Units	Spike Lvi	% Rec	Low Limit	High Llmit	RPD	RPD Limit	Qualifie
Sample ID: 50	50-PB FILTERED		Method: .	SW6020	Batch ID:	5060	Analys	sis Date:	11/21/2011 6:	39:66 PM
Arsenic	0.070	0.150	mg/Kg							J
Cadmium	0.012	0.010	mg/Kg			•				
Lead	0.020	0.020	mg/Kg							
Selenium	ND	0.200	mg/Kg							
Silver	0.078	0.100	mg/Kg							J
Sample ID: 50	60-PB UNFILTERED		Method:	SW6020	Batch ID:	5060	Analys	sis Date:	11/21/2011 5:	39:56 PN
Arsenic -	0.150	0.150	mg/Kg							
Cadmium	0.004	0.010	mg/Kg						•	J
Lead	0.022	0.020	mg/Kg							
Selenium	ND	0.200	mg/Kg							
Silver	ND	0.100	mg/Kg							
Sample ID: 50	60-LCS	-	Method:	SW6020	Betch ID:	5080	Analys	sis Date:	11/21/2011 5:	39:56 PA
Arsenic	85.9	0.300	mg/Kg	85.3	101	80	120			
Cadmlum	153	0.020	mg/Kg	159.	96.4	80	120			
Lead	44.4	0.040	mg/Kg	46.3	96.0	80	120			
Selenium	39.3	0.400	mg/Kg	45.2	0 87.0	80	120			
Silver	24.7	0.200	mg/Kg	24.3	0 102	80	120			
Sample ID: 11	11062-007A MS		Method:	SW6020	Batch ID:	5060	Analys	sis Date:	11/21/2011 5:	39:56 PN
Arsenic	146	0.399	mg/Kg-d	y 113.	6 114	75	125			
Cadmium	202	0.027	mg/Kg-di	ry 211.	7 95.2	75	125			
Lead	67.2	0.053	mg/Kg-di	y 61.6	5 93.1	75	125			
Selenium	56.8	0.533	mg/Kg-di	-		. 75	12 5			
Silver	33.1	0,266	mg/Kg-di	y 32.3	6 102	75	125			·····
Sample ID: 11	11062-007A MSD		Method:	SW6020	Batch ID:	5060	Analy:		11/21/2011 5:	39:56 PN
Arsenic	141	0.399	mg/Kg-d	ry 113.	6 110	75	125	3.2		
Cadmium	201	0.027	mg/Kg-d	ry 211.	7 94.7	75	125	0.52		
Lead	, 68.1	0.053	mg/Kg-di	ry 61.6	5 94.5	75	125	1.3		
Selenium	58,3	0.533	mg/Kg-d	ry 60.1		75	125	2.7		
Silver	32.8	0.266	mg/Kg-d	ry 32.3	6 101	75	125	0.87	8 20	
Sample ID: 11	11062-007A MST		Method:		Batch ID.	5060	Analy	sis Date:	11/21/2011 5	39:56 PI
Arsenic	129	0.399	mg/Kg-d	ry 113.	6 99.2	75	125	12.	4 20	
Cadmium	198	0.027	mg/Kg-d			75	125	1.8		
Lead	66.1	0.053	mg/Kg-d	ry 61.6	5 91.4	75	125	1.5		
Selenium	55.3	0.533	mg/Kg-d	•		75	125	2.5		
Silver	33.3	0.266	mg/Kg-d	ry 32.3	6 102	75	125	0.57	6 20	
Sample ID: 50	60-PB FILTERED		Method:	SW6020	Batch ID	5060	Analy	sis Date:	11/23/2011 3	:10:21 Pl
Aluminum	ND	3.00	mg/Kg							

Lab: 406-494-7334 Fax: 406-494-7230 labinfo@mse-ta.com

Date: 02-Dec-11 Report Date: 02-Dec-11

QA/QC SUMMARY REPORT

Client:

AECOM

Work Order:

1111062

Drolect:

ECETI /AECOM

Sample D: 5060-PB UNFILTERED Aluminum ND 3.00 mg/Kg Betch D: 5060 Anelysis Dete: 11/23/2011 3:10:21 PM	Project:	FCETL/AECOM						Batch	nID:	5060	
Aluminum ND 3.00 mg/Kg 11250 8atch /D; 5060 Analysis Date: 11/23/2011 3:10:21 PM	Analyte	Result	RL	Units	Spike Lvi	% Rec	Low Limit	High Limit	RPD	RPD Limit	Qualifie
Sample ID: 5080-LCS Method: SW8020 Batch ID: 5060 Anelysis Date: 11/23/2011 3:10:21 PM	•				SW6020	Batch ID:	5060	Analys	is Date:	11/23/2011 3:	10:21 PM
Aluminum 9920 8.00 mg/Kg 11280 88.2 80 120	Aluminum	ND	3.00	mg/Kg	***************************************						
Method: SW6020 Betch ID: 5060 Analysis Dete: 11/23/2011 3:10:21 PM	Sample ID: 5	5060-LCS		Method:	SW6020	Batch ID:	5060	Analys	ds Date:	11/23/2011 3:	10:21 PM
Aluminum	Aluminum	9920	6.00	mg/Kg	1125	0 88.2	80	120			
Sample D: 1111062-007A MSD Method: SW6020 Betch D: 5060 Analysis Date: 11/23/2011 3:10:21 PM	Sample ID: 1	1111062-007A MS		Method:	SW6020	Batch ID:	5060	Analys	ls Date:	11/23/2011 3:	10:21 PM
Aluminum	Aluminum	28100	16.0	mg/Kg-di	ry 1498	100	75	125			
Aluminum	Sample ID: 1	1111062-007A MSD		Method:	SW6020	Batch ID:	5060	Analys	is Date:	11/23/2011 3:	10:21 PM
Aluminum 30100 16.0 mg/kg-dry 14980 113 75 125 6.57 20			16.0					=			
Aluminum 30100 16.0 mg/Kg-dry 14980 113 75 125 6.57 20	Sample ID: 1	1111062-007A MST		Method:	SW6020	Batch ID:	5060	Analys	is Date:	11/23/2011 3::	10:21 PM
Chromium 3.03 0.200 mg/Kg mg/Kg	Aluminum	30100	16.0	mg/Kg-di	ry 1498			125	6.57	20	
Copper	Sample ID: 5	6060-PB FILTERED		Method:	SW6020	Batch ID:	5060	Analys	ls Date:	11/30/2011 2:0	00:59 PM
Nickel 0.103 0.100 mg/Kg mg/Kg	Chromium	3.03	0.200	mg/Kg							
Nickel 0.103 0.100 mg/Kg mg/Kg	Copper	0.141	0.125	mg/Kg							
Zinc 0.352 0.300 mg/Kg	Nickel	0.103	0.100								
Chromium 2.79	Zinc	0.352	0.300								
Copper 0.175 0.125 mg/Kg Nickel 0.068 0.100 mg/Kg Zinc 0.332 0.300 mg/Kg Sample ID: 5060-LCS Method: \$\infty{\text{Me020}}\$ Balch ID: 5060 Analysis Date: \$\frac{11/30/2011}{2:00:59} \text{ PM}\$ Chromium 337 0.400 mg/Kg 294.0 115 80 120 Copper 71.9 0.250 mg/Kg 63.20 114 80 120 Nickel 186 0.200 mg/Kg 163.0 114 80 120 Zinc 270 0.600 mg/Kg 262.0 103 80 120 Sample ID: \$\frac{111062-007A}{2}\$ MS Chromium 489 0.533 mg/Kg-dry 391.5 117 75 125 Copper 171 0.333 mg/Kg-dry 391.5 117 75 125 Zinc 441 0.799 mg/Kg-dry 348.9 99.7 75 125 Sample ID: \$\frac{1111062-007A}{2}\$ MSD Chromium 515 0.533 mg/Kg-dry 391.5 124 75 125 5.16 20 Copper 168 0.333 mg/Kg-dry 391.5 124 75 125 5.16 20 Copper 168 0.333 mg/Kg-dry 391.5 124 75 125 5.16 20 Copper 168 0.333 mg/Kg-dry 391.5 124 75 125 5.16 20 Copper 168 0.333 mg/Kg-dry 391.5 124 75 125 5.16 20 Copper 168 0.333 mg/Kg-dry 391.5 124 75 125 5.16 20 Copper 168 0.333 mg/Kg-dry 391.5 124 75 125 5.16 20 Copper 168 0.333 mg/Kg-dry 391.5 124 75 125 5.16 20 Copper 168 0.333 mg/Kg-dry 391.5 124 75 125 5.16 20 Copper 168 0.333 mg/Kg-dry 391.5 124 75 125 5.16 20 Copper 168 0.333 mg/Kg-dry 391.5 124 75 125 5.16 20 Copper 168 0.333 mg/Kg-dry 391.5 124 75 125 5.16 20 Copper 168 0.333 mg/Kg-dry 391.5 124 75 125 5.16 20 Copper 168 0.333 mg/Kg-dry 391.5 124 75 125 5.16 20 Copper 168 0.333 mg/Kg-dry 391.5 124 75 125 5.16 20 Copper 168 0.333 mg/Kg-dry 391.5 124 75 125 5.16 20 Copper 168 0.333 mg/Kg-dry 391.5 124 75 125 1.72 20 Nickel 276 0.266 mg/Kg-dry 217.1 115 75 125 2.03 20 Zinc 449 0.799 mg/Kg-dry 348.9 102 75 125 1.69 20 Sample ID: \$\frac{111062-007A}{2}\$ MST Method: \$\frac{8000}{2}\$ Batch ID: \$\frac{5060}{2}\$ Analysis Date: \$\frac{11/30/2011}{2:00:59}\$ PM Chromium 515 0.560 Analysis Date: \$\frac{11/30/2011}{2:00:59}\$ PM Chromium 515 0.560 Analysis Date: \$\frac{11/30/2011}{2:00:59}\$ PM	Sample ID: 5	060-PB UNFILTERED		Method:	SW6020	Batch ID:	5060	Analys	is Date:	11/30/2011 2:0	00:59 PM
Nicket 0.068	Chromlum	2.79	0.200	mg/Kg							
Nickel 0.068	Copper	0.175	0.125	mg/Kg							
Sample ID: 5080-LCS Method: SW6020 Batch ID: 5080 Analysis Date: 11/30/2011 2:00:59 PM Chromium 337 0.400 mg/Kg 294.0 115 80 120 Copper 71.9 0.250 mg/Kg 63.20 114 80 120 Nickel 186 0.200 mg/Kg 163.0 114 80 120 Zinc 270 0.600 mg/Kg 262.0 103 80 120 Sample ID: 1111062-007A MS Method: SW6020 Batch ID: 5060 Analysis Date: 11/30/2011 2:00:59 PM Chromium 489 0.533 mg/Kg-dry 391.5 117 75 125 Copper 171 0.333 mg/Kg-dry 217.1 112 75 125 Zinc 441 0.799 mg/Kg-dry 348.9 99.7 75 125 Sample ID: 1111062-007A MSD Method: SW6020 Batch ID: 5060 Analysis Date: 11/30/2011 2:00:59 PM Chromium 515	Nickel	0.068	0.100	mg/Kg							J
Chromium 337 0.400 mg/kg 294.0 115 80 120 Copper 71.9 0.250 mg/kg 63.20 114 80 120 Nickel 186 0.200 mg/kg 163.0 114 80 120 Zinc 270 0.600 mg/kg 262.0 103 80 120 Sample ID: 1111062-007A MS Method: SW6020 Batch ID: 5060 Analysis Date: 11/30/2011 2:00:59 PM Chromium 489 0.533 mg/Kg-dry 391.5 117 75 125 Copper 171 0.333 mg/Kg-dry 217.1 112 75 125 Zinc 441 0.799 mg/Kg-dry 348.9 99.7 75 125 Sample ID: 1111062-007A MSD Method: SW6020 Batch ID: 5060 Analysis Date: 11/30/2011 2:00:59 PM Chromium 515 0.533 mg/Kg-dry 391.5 124 75 125 5.16 20 <td>Zinç</td> <td>0.332</td> <td>0.300</td> <td>mg/Kg</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>٠</td>	Zinç	0.332	0.300	mg/Kg							٠
Copper 71.9 0.250 mg/Kg 63.20 114 80 120 Nickel 186 0.200 mg/Kg 163.0 114 80 120 Zinc 270 0.600 mg/Kg 262.0 103 80 120 Sample ID: 1111062-007A MS Method: SW6020 Batch ID: 5060 Analysis Date: 11/30/2011 2:00:59 PM Chromium 489 0.533 mg/Kg-dry 391.5 117 75 125 Copper 171 0.333 mg/Kg-dry 84.16 117 75 125 Zinc 441 0.799 mg/Kg-dry 348.9 99.7 75 125 Sample ID: 1111062-007A MSD Method: SW6020 Batch ID: 5060 Analysis Date: 11/30/2011 2:00:89 PM Chromium 515 0.533 mg/Kg-dry 391.5 124 75 125 5.16 20 Copper 168 0.333 mg/Kg-dry 341.6 113 75 125<	Sample ID: 5	i060-LCS		Method:	SW6020	Batch ID:	5060	Analys	is Date:	11/30/2011 2:0	00:59 PM
Copper 71.9 0.250 mg/Kg 63.20 114 80 120 Nickel 186 0.200 mg/Kg 163.0 114 80 120 Zinc 270 0.600 mg/Kg 262.0 103 80 120 Sample ID: 1111062-007A MS Method: SW6020 Batch ID: 5060 Analysis Date: 11/30/2011 2:00:59 PM Chromium 489 0.533 mg/Kg-dry 391.5 117 75 125 Copper 171 0.333 mg/Kg-dry 217.1 112 75 125 Zinc 441 0.799 mg/Kg-dry 348.9 99.7 75 125 Sample ID: 1111062-007A MSD Method: SW6020 Batch ID: 5060 Analysis Date: 11/30/2011 2:00:59 PM Chromium 515 0.533 mg/Kg-dry 391.5 124 75 125 5.16 20 Copper 188 0.333 mg/Kg-dry 341.6 113 75 125 1.72 <td>Chromium</td> <td>337</td> <td>0.400</td> <td>mg/Kg</td> <td>294.</td> <td>115</td> <td>. 80</td> <td>120</td> <td></td> <td></td> <td></td>	Chromium	337	0.400	mg/Kg	294.	115	. 80	120			
Zinc 270 0.600 mg/Kg 262.0 103 80 120 Sample ID: 1111062-007A MS Method: SW6020 Batch ID: 5060 Analysis Date: 11/30/2011 2:00:59 PM Chromium 489 0.533 mg/Kg-dry 391.5 117 75 125 Copper 171 0.333 mg/Kg-dry 84.16 117 75 125 Nickel 271 0.266 mg/Kg-dry 217.1 112 75 125 Zinc 441 0.799 mg/Kg-dry 348.9 99.7 75 125 Sample ID: 1111062-007A MSD Method: SW6020 Batch ID: 5060 Analysis Date: 11/30/2011 2:00:59 PM Chromium 515 0.533 mg/Kg-dry 391.5 124 75 125 5.16 20 Copper 188 0.333 mg/Kg-dry 84.16 113 75 125 1.72 20 Nickel 276 0.266 mg/Kg-dry 217.1 115 75 125 2.03 </td <td>Copper</td> <td>71.9</td> <td>0.250</td> <td>mg/Kg</td> <td>63.2</td> <td>114</td> <td>80</td> <td>120</td> <td></td> <td></td> <td></td>	Copper	71.9	0.250	mg/Kg	63.2	114	80	120			
Sample ID: 1111062-007A MS Method: SW6020 Batch ID: 5060 Analysis Date: 11/30/2011 2:00:59 PM Chromium 489 0.533 mg/Kg-dry 391.5 117 75 125 Copper 171 0.333 mg/Kg-dry 84.16 117 76 125 Nickel 271 0.268 mg/Kg-dry 217.1 112 75 125 Zinc 441 0.799 mg/Kg-dry 348.9 99.7 75 125 Sample ID: 1111062-007A MSD Method: SW6020 Batch ID: 5060 Analysis Date: 11/30/2011 2:00:59 PM Chromium 515 0.533 mg/Kg-dry 391.5 124 75 125 5.16 20 Chromium 515 0.533 mg/Kg-dry 391.5 124 75 125 5.16 20 Copper 108 0.333 mg/Kg-dry 84.16 113 75 125 1.72 20 Nickel 276 0.266 mg/Kg-dry 217.1 115 <	Nickel	186	0.200	mg/Kg	163.	114	80	120			
Chromium 489 0.533 mg/Kg-dry 391.5 117 75 125 Copper 171 0.333 mg/Kg-dry 84.16 117 75 125 Nickel 271 0.266 mg/Kg-dry 217.1 112 75 125 Zinc 441 0.799 mg/Kg-dry 348.9 99.7 75 125 Sample ID: 1111062-007A MSD Method: SW6020 Batch ID: 5060 Analysis Date: 11/30/2011 2:00:59 PM Chromium 515 0.533 mg/Kg-dry 391.5 124 75 125 5.16 20 Copper 198 0.333 mg/Kg-dry 84.16 113 75 125 1.72 20 Nickel 276 0.266 mg/Kg-dry 217.1 115 75 125 2.03 20 Zinc 449 0.799 mg/Kg-dry 348.9 102 75 125 1.69 20 Sample ID: 1111062-007A MST Method: SW6020 Bat	Zinç	270	0.600	mg/Kg	262.	103	80	120			
Copper 171 0.333 mg/Kg-dry 84.16 117 75 125 Nickel 271 0.266 mg/Kg-dry 217.1 112 75 125 Zinc 441 0.799 mg/Kg-dry 348.9 99.7 75 125 Sample ID: 1111062-007A MSD Method: SW6020 Batch ID: 5060 Analysis Date: 11/30/2011 2:00:59 PM Chromium 515 0.533 mg/Kg-dry 391.5 124 75 125 5.16 20 Copper 198 0.333 mg/Kg-dry 84.16 113 75 125 1.72 20 Nickel 276 0.266 mg/Kg-dry 217.1 115 75 125 2.03 20 Zinc 449 0.799 mg/Kg-dry 348.9 102 75 125 1.69 20 Sample ID: 1111062-007A MST Method: SW6020 Batch ID: 5060 Analysis Date: 11/30/2011 2:00:59 PM	Sample ID: 1	1111062-007A MS		Method:	SW6020	Batch ID:	5060	Analys	is Date:	11/30/2011 2:0	00:59 PM
Nickel 271 0.268 mg/Kg-dry 217.1 112 75 125 Zinc 441 0.799 mg/Kg-dry 348.9 99.7 75 125 Sample ID: 1111062-007A MSD Method: SW6020 Batch ID: 5060 Analysis Date: 11/30/2011 2:00:59 PM Chromium 515 0.533 mg/Kg-dry 391.5 124 75 125 5.16 20 Copper 168 0.333 mg/Kg-dry 84.16 113 75 125 1.72 20 Nickel 276 0.266 mg/Kg-dry 217.1 115 75 125 2.03 20 Zinc 449 0.799 mg/Kg-dry 348.9 102 75 125 1.69 20 Sample ID: 1111062-007A MST Method: SW6020 Batch ID: 5060 Analysis Date: 11/30/2011 2:00:59 PM	Chromium	489	0.533	mg/Kg-dr	y 391.	5 1 1 7	75	125			
Zinc 441 0.799 mg/Kg-dry 348.9 99.7 75 125 Sample ID: 1111062-007A MSD	Copper	171	0.333	mg/Kg-dt	y 84.1	3 117	75	125			
Sample ID: 1111062-007A MSD Method: SW6020 Batch ID: 5060 Analysis Date: 11/30/2011 2:00:59 PM Chromium 515 0.533 mg/Kg-dry 391.5 124 75 125 5.16 20 Copper 168 0.333 mg/Kg-dry 84.16 113 75 125 1.72 20 Nickel 276 0.266 mg/Kg-dry 217.1 115 75 125 2.03 20 Zinc 449 0.799 mg/Kg-dry 348.9 102 75 125 1.69 20 Sample ID: 1111062-007A MST Method: SW6020 Batch ID: 5060 Analysis Date: 11/30/2011 2:00:59 PM	Nickel	271	0.266	mg/Kg-dı	ry 217.	1 112	75	125			
Chromium 515 0.533 mg/Kg-dry 391.5 124 75 125 5.16 20 Copper 188 0.333 mg/Kg-dry 84.16 113 75 125 1.72 20 Nickel 276 0.266 mg/Kg-dry 217.1 115 75 125 2.03 20 Zinc 449 0.799 mg/Kg-dry 348.9 102 75 125 1.69 20 Sample ID: 1111062-007A MST Method: SW6020 Batch ID: 5060 Analysis Date: 11/30/2011 2:00:59 PM	Zinc	441	0.799	mg/Kg-dı	y 348.	99.7	75	125			
Copper 168 0.333 mg/Kg-dry 84.16 113 75 125 1.72 20 Nlckel 276 0.266 mg/Kg-dry 217.1 115 75 125 2.03 20 Zinc 449 0.799 mg/Kg-dry 348.9 102 75 125 1.69 20 Sample ID: 1111062-007A MST Method: SW6020 Batch ID: 5060 Analysis Date: 11/30/2011 2:00:59 PM	Sample ID: 1	111062-007A MSD		Method:	SW6020	Batch ID:	5060	Analys	is Date:	11/30/2011 2:0	00:59 PM
Nickel 276 0.266 mg/Kg-dry 217.1 115 75 125 2.03 20 Zinc 449 0.799 mg/Kg-dry 348.9 102 75 125 1.69 20 Sample ID: 1111062-007A MST Method: SW6020 Batch ID: 5060 Analysis Date: 11/30/2011 2:00:59 PM	Chromium	515	0.533	mg/Kg-di	ry 391.	5 124	75	125	5.16	20	
Zinc 449 0.799 mg/Kg-dry 348.9 102 75 125 1.69 20 Sample ID: 1111062-007A MST Method: SW6020 Batch ID: 5060 Analysis Date: 11/30/2011 2:00:59 PM	Copper	168	0.333	mg/Kg-dı	y 84.1	3 113	75	125	1.72	20	
Sample ID: 1111062-007A MST Method: SW6020 Batch ID: 5060 Analysis Date: 11/30/2011 2:00:59 PM	Nickel	276	0.266	mg/Kg-di	ry 217.	1 115	75	125	2.03	20	
•	Zinc	449	0.799	mg/Kg-di	y 348.	102	75	125	1.69	20	
	Sample ID: 1	111062-007A MST		Method:	SW6020	Batch ID:	5060	Analys	ls Date:	11/30/2011 2:0	00: 59 PM
	Chromium	486	0.533	mg/Kg-di	y 391.			125	0.795	20	

Qualifiers:

Sample conc. is > 4*spike level

Spike Recovery outside accepted recovery limits

Lab: 406-494-7334 Fax: 406-494-7230 labinfo@mse-fa.com

Date: 02-Dec-11
Report Date: 02-Dec-11

QA/QC SUMMARY REPORT

Client: Project: **AECOM**

FCETL/AECOM

Work Order:

1111062

BatchID:

Analyte	Result	RL	Units	Spike Lvl	% Rec	Low Limit	High Limit	RPD	RPD Limit	Qualifier
Sample ID: 11116	062-007A MST		Method: \$	W6020	Batch ID:	5060	Analy	rsis Dete: 1	11/30/2011 2:0	00:69 PM
Copper	159	0.333	mg/Kg-dry	84.16	103	75	125	7.18	20	
Nickel	265	0.266	mg/Kg-dry	217.1	110	75	125	2.05	20	
Zinc	436	0.799	mg/Kg-dry	348.9	98.2	75	125	1.24	20	

Lab: 406-494-7334 Fax: 406-494-7230 labinfo@mse-ta.com

Date: 02-Dec-11

Report Date: 02-Dec-11

QA/QC SUMMARY REPORT

Client: Project: **AECOM**

FCETL/AECOM

Work Order:

1111062

BatchID:

Analyte	Result	RL	Units Spłkę	Lvi	% Rec	Low Limit	High Limit R	PD RPD Limit Qualifie
Sample ID: 5064-PB Mercury	ND	0.100	Method: E245.5 mg/Kg		Batch ID:	5064	Analysis i	Date: 11/18/2011 9:32:00 AM
Sample ID: LCS-5064 Mercury	14.0	0.553	Method: E245.5 mg/Kg	16.00	Batch ID: 87.8	<i>5064</i> 80	Analysis i 120	Date: 11/18/2011 9:32:00 AM
Sample ID: 1111062-00 Mercury	12A-MS 18.2	1.66	Method: E245.5 mg/Kg-dry	21.40	Batch ID: 84.9	5064 75	Analysis i 125	Date: 11/18/2011 9:32:00 AM
Sample ID: 1111062-00 Mercury	22A-MSD 21.3	1.66	Method: E245.5 mg/Kg-dry	21.40	Batch ID: 99.2	5064 75	Analysis i 125	Date: 11/18/2011 9:32:00 AM 15.5 20

Lab: 406-494-7334 Fax: 406-494-7230 labinfo@msa-ta.com

Date: 02-Dec-11
Report Date: 02-Dec-11

QA/QC SUMMARY REPORT

Client: Project: **AECOM**

FCETL/AECOM

Work Order:

1111062

BatchID:

Analyte	Result	RL	Units	Spike Lvi	% Rec	Low Limit	High Limit RPD	RPD Limit Qualifier
analy to					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Sample ID: 11110	62-002B-D		Method:	AVS-SEM	Batch ID:	5079	Analysis Date.	: 11/18/2011 9:32:00 AM
Sulfide	ND	1.50	µmoles/	/g				0 35
Sample ID: 11110	52-002B-S		Method:	AVS-SEM	Batch ID:	5079	Anelysis Date	: 11/18/2011 9:32:00 AM
Sulfide	11.1	1.50	pmoles/	/g 10.59	105	80	120	·
Sample ID: LCS-5	079	•	Method:	AVS-SEM	Batch ID.	5079	Analysis Date	: 11/18/2011 9:32:00 AM
Sulfide	13.7	1.50	µmoles/	/g 12.58	109	85	115	
Sample ID: 5079-F	PB		Method:	AVS-SEM	Batch ID.	5079	Analysis Date	: 11/18/2011 9:32:00 AM
Sulfide	0.89	1.50	µmoles/	/g			•	j

Lab: 406-494-7334 Fax: 406-494-7230 labinfo@mse-ta.com

Date: 02-Dec-11
Report Date: 02-Dec-11

QA/QC SUMMARY REPORT

Client:

AECOM

Work Order:

1111062

Project:

FCETL/AECOM

BatchID:

R18192

Analyte	Result	RL	Units	Splke Lvi	% Rec	Low Limit	High Limit	RPD	RPD Limit	Qualifier
Sample ID: 1111062	2-006A-D		Method:	ASTMD422	Batch ID:	R18192	Analysis	s Date: 1	1/17/2011 4:	55:00 PM
1" Gradation	ND	0.10	%				-	0	35	
2mm Gradation	0.13	0.10	%					12.9	35	

Lab: 406-494-7334 Fax: 406-494-7230 labinfo@mse-ta.com

Date: 02-Dec-11
Report Date: 02-Dec-11

QA/QC SUMMARY REPORT

Client:

AECOM

Work Order:

1111062

Project:

FCETL/AECOM

BatchID:

R18203

Analyte	Result	RL	Units	Spike Lvl	% Rec	Low Limit	High Limit	RPD	RPD Limit	Qualifier
Sample ID: 1111	1062-004A-D		Method:	MSA15-5	Batch II	D: R18203	Analysi	is Date:	11/17/2011 &	50:00 PM
% Clay	10.0	0.1	%				•	0	35	
% Sand	86.0	0.1	%					0	35	
% Silt	4.0	0.1	%					0	35	
Soil Class	LOAMYSAND									

Lab: 406-494-7334 Fax: 406-494-7230 labinfo@mse-ta.com

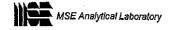
Date: 02-Dec-11

Report Date: 02-Dec-11

QA/QC SUMMARY REPORT

Client: Project: **AECOM**

FCETL/AECOM


Work Order:

1111062

BatchID:

R18208

Analyte	Result	RL	Units	Spike Lvi	% Rec	Low Limit	High Limit	RPD	RPD Limit	Qualifier
Sample ID: 1111062-00		0,20	Method:	OM_WALKL	≣ Batch ID.	: R18208	Analys	is Date:	11/18/2011 2: 35	19:00 PM
Organic Matter - Walkl	2.29	0.20			T D-1-1-10		Annhu		11/18/2011 2:	10:00 014
Sample ID: LCSQ5771 Organic Matter - Walki	0.55	0.20	метпоа; %	OM_WALKLI 0.5965		70.7	109	NA DOID.	11/10/2011 2	79.00 (IM
Sample ID: PB			Method:	OM_WALKLI	E Batch ID	: R18208	Analys	sis Date:	11/18/2011 2:	19:00 PM
Organic Matter - Walkl	ND	0.20	%							

Lab: 406-494-7334
Fax: 406-494-7230
labinfo@mse-ta.com

Date: 02-Dec-11

Report Date: 02-Dec-11

QA/QC SUMMARY REPORT

Client:

AECOM

Work Order:

1111062

Project:

FCETL/AECOM

BatchID:

R18241

Analyte	Result	RL	Units	Spike Lvi	% Rec	Low Limit	High Limit	RPD	RPD Limit	Qualifier
Sample ID: 1111062- Percent Moisture	-001A-D 14.9	0.05	Method: I	D2216	Batch IC): R18241	Analysi	is Date: : 2.14	11/16/2011 3a 35	00:00 PM
Sample ID: 1111062- Percent Moisture	-007A-D 25.8	0.05	Method: I	D2216	Batch ID): R18241	Analysi	is Date: 3.45	11/16/2011 3: 35	00:00 PM

AECOM			116	, ,	- >	CI	HAI	N OF CL	ISTODY	Y RE	co	RD		1	190.	Reco	lin co	olc	7 W) (e
Client/Project Name:					Z									11		oustode	Seal	an (ONC	Page 1 of 1
O58			Pro	oject -	Location:					}					Reque		٠ <u>ا</u>	P - Plastic) 7 1108	1 - HCl, 4°
Project Number:			Fie	ld Lo	FCETL IP	ECC	71			 		प्रे		1	T			A ~ Amber G ~ Clear V ~ VOA V	Glass	2 H2SO4, 4° 3 HNO3, 4°
60225262-058	·										3	å		1				O ~ Other		3 - HNO3, 4° 4 - NeOH, 4° 5 - NeOH/ZnAc,
Sampler (Print Name)/(Affillation	n) :		Cha	ain o	f Custody Tape I	los.:				١ _) X	र्रे		١ <u>۾</u> '	}					4° 6 → Na2S2O3, 4° 7 – 4°
Christina Needham Ip	VECOM		4	29	186					3	(A) Crining an	Í	1 6		7			Matrix Cod		· · · · · · · · · · · · · · · · · · ·
Signature:			Ser	nd Re	esults/Report to:			TAT;	 	120	28							DW Drin WW Wes GW Grou	king Water stewater	S – Soll SL – Skudge SD – Sediment
Christina Neid	lan	· · · · · · · · · · · · · · · · · · ·			laddy@aecon	1.00	M	Stel		Sirio	777	4	Σ * 8	3	1			SW - Surfi ST - Storn W - Water	ace Water 1 Waler	SD – Sediment SO – Solid A – Alr L – Liquid P – Product
Field Sample No./Identification	Date	Time	С О М Р	G R A B	Sample Container (Size/Mat'i)	Ма	trix	Preserv.	Field Filtered	TOC (Liking	TAKENSOME	No.	\$ 000 %	Row William ("Cow Sard"	AVS			Lab I.D.		Remarks
Form Sed	ulola	11CO	ļ	X	goe pour	Sc	d	cco)		X	X	X	X	X	-			BOIA		
Lower slate	whole	LICO	<u> </u>	1	8027 JOC					X	X	X	X	X				20217		
Lowerslate	11/8/21	unk			40891465										X			10 Z/B	· ·	
latet upper state	wholi	1100			807 P					X	X	X	X,	X				73A		-
Inter-upper-state	10/4/11	UNK			40091005	\perp									X			0033		
Mladie Slak	mon	1100		_]_	80% P		_			X	X	X	X	X				2047		
Middle state	10/4/11	اعلاالح			407-91055										χ			004B	 -	
Middle Sherman	11/10/11	1100		_	807 P					X	X	X	X	X	,			225A	······	
Middle Shermon	10/4/11	UNK-			40000	_ \			·						Χ			25 B		
Lower Shextrian	11/10/11	1100			802P					X	X	X	X	X				206A		
Lower sharman	10/3/11	ishic			40891035				,						X			20613		
Lawer Johnson	11/10/11	1100			805 P					\times	X	X	X	X				07A		
Laur Johnson	10/3/11	WILL		Ψ	40291055			₩							X		1 -	076		
Relinquished by: (Print Name)/(AMillat Comistina Necethan	llon) AFCOM	Dat	ю: ‡{}			y: (Pili	nt Nam VV: V	18)/(Affiliation) という				Dat	// :e	15/11	An	alytical Labor	atory (Des	stination):		
Signature: Churthitas A	1 alseen	Tìm	ю: 13 (00	Signature	-11-	i ka	Cinon II	i. 0 V .	IA A		Tim	ю: <u>Н</u>	تاهات			AECOM	Toxicol	pgy Lab	
Signature: /////////////// Relinquished by: (Print Name)/(Affiliat	ion)	Dat		<u> </u>	Signature: Received b	/: (Prli	nt Nam	1e)/(Affiliation)		V ()		Dat		.00			4303 W	. Laporte Illińs, CO	Avenue	MSE
Signature:		Tim	ie:		Signature:							Tim					97)، ر	0) 416-09 490-2963	16	
Refinquished by: (Print Name)/(Affiliat	ion)	Dat	e:		Received by	/: (Prin	nt Nam	ne)/(Affiliation)				Dat	e;							
Signature;		Tim	Θ:		Clanatura							Tim			1	mple Shipped			1	Temp blank
					Signature:							ı	-		I UP	S FadEv	Courter	- ∩thai	. I	Man. 31

Sample Receipt Checklist

Client Name AECOM_INC		•	Date and Tim	e Received:	11/15/2011 11:32:02 AM
Work Order Number 1111062	RoptNo: 1		Received by		
COC_ID: Checklist completed by Signature CoolerID		5/1/_	Reviewed by	/ Militals	11 10 11 Date
Matrix:	Carrier name Fee	dEx			
Shipping container/cooler in good condition?	Ye	s 🗹	No 🗌	Not Present	
Custody seals intact on shippping container/con	oler? Yes	s 🗹	No 🗀	Not Present	
Custody seals intact on sample bottles?	Yes	s 🗆	No 🗆	Not Present	$ \mathbf{V} $
Chain of custody present?	Yes	s 🗹	No 🗌		
Chain of custody signed when relinquished and	received? Yes	s 	No 🗌		
Chain of custody agrees with sample labels?	Yes	s 🗹	No 🗌		
Samples in proper container/bottle?	Yes	.	No 🗀	•	
Sample containers intact?	Yes	; 	No 🗆		
Sufficient sample volume for Indicated test?	Yes	; 	No 🗌		
All samples received within holding time?	Yes	; 	No 🗀		
Container/Temp Blank temperature in complian	ce? Yes		No 🗹		
Water - VOA vials have zero headspace?	No VOA vials submitted	V	Yes 🗌	No 🗀	
Water - pH acceptable upon receipt?	Yes		No 🗆	Blank 🔲	
	Adjusted?	Chec	ked by	BQ 1	115/11
Any No and/or NA (not applicable) response mu	Adjusted? NC Se DIMON st be detailed in the comm		16 <u> </u>	· ·	·
Client contacted	Date contacted:		Pers	on contacted	
Contacted by:	Regarding:				
Comments: TEMP = 7.4 - SEDIMENT S	AMPLES				
Corrective Action					
				-	

Tuesday, September 25, 2012

Rami Naddy AECOM 4303 W Laporte Ave Fort Collins, CO 80521

RE: 60225262-058

Work Order: 1207139

Dear Rami Naddy:

MSE Lab Services received 6 sample(s) on 7/25/2012 for the analyses presented in the following report.

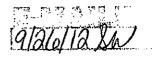
Please find enclosed analytical results for the sample(s) received at the MSE Laboratory.

If you have any questions regarding these test results, please feel free to call.

Sincerely,

Sara Ward

Laboratory Manager


406-494-7334

Enclosure

P.O. Box 4078 200 Technology Way Butte, MT 59701

Lab: 406-494-7334
Fax: 406-494-7230
labinfo@mse-ta.com

CLIENT:

AECOM

Lab Order:

1207139

Project:

60225262-058

Lab ID:

1207139-001

Date: 25-Sep-12

Client Sample ID: LSH (#25942)

Collection Date: 7/3/2012

Matrix: SEDIMENT

Analyses	Result	MDL	Rpt Llmit	Qualifler Units	DF	Date Analyz	 zed
AVS-SEM METALS		-	AVS-SEM	SW3005A		Analyst:	tj
Cadmium	0.00137	0.00002	0.00010	umoles/g	1	9/13/2012 12:12:08	
Copper	0,2112	0.00020	0.00100	umoles/a	•	9/13/2012 12:12:08	
Lead	0.01701	0.00001	0.00010	µmoles/g	1	9/13/2012 12:12:08	
Nickel	0.04684	0.00001	0.00010	p/seiomu	1	9/13/2012 12:12:08	
Simultaneously Extracted Metal:	0.6375	0.00051	0.00191	µmoles/g	1	9/13/2012 12:12:08	
Zinc	0.3611	0.00050	0.00100	µmoles/g	1	9/13/2012 12:12:08	
PERCENT SOLIDS			A2540G	_	•		ik/ir
Percent Solids	79.6	0.01	0.1	%	1	8/21/2012 3:40:00	•
ACID VOLATILE SULFIDE-SIM. I	EXT. METALS	,	AVS-SEM	² w	-		jo
Sulfide	ND	0.55	1.50	g/aelomų	1	8/29/2012 8:00:00	-

Qualifiers:

Value above quantitation range

Analyte detected below the Reporting Limit

MDL Method Detection Limit

H Holding times for preparation or analysis exceeded

Limit Reporting Limit

Not Detected at the Method Detection Limit (MDL)

P.O. Box 4078 200 Technology Way Butte, MT 59701

Lab: 406-494-7334 Fax: 406-494-7230 labinfo@mse-ta.com

CLIENT:

AECOM

Lab Order:

1207139

Project:

60225262-058

Lab ID:

1207139-002

Date: 25-Sep-12

Client Sample ID: MSH (#25943)

Collection Date: 7/3/2012

Matrix: SEDIMENT

Analyses	Result	MDL	Rpt Limit	Qualifier	Units	DF	Date An	alyzec
AVS-SEM METALS			AVS-SEM	SW300	5A		Analyst:	tj
Cadmium	0.00070	0.00002	0.00010		µmoles/g	1	9/13/2012 12:	_
Copper	0.2810	0.00020	0.00100		µmoles/g	1	9/13/2012 12:	12:08 PM
Lead	0.03112	0.00001	0.00010		umoles/g	1	9/13/2012 12:	12:08 PM
Nickel	0.05961	0.00001	0.00010		µmoles/g	1	9/13/2012 12:	12:08 PM
Simultaneously Extracted Metal:	0.6320	0.00051	0.00191		µmoles/g	1	9/13/2012 12:	12:08 PM
Zinc	0.2595	0.00050	0.00100		µmoles/g	1	9/13/2012 12:	12:08 PM
PERCENT SOLIDS			A2540G				Analyst	dk/i:
Percent Solids	84.8	0.01	0.1		%	1	8/21/2012 3:	•
ACID VOLATILE SULFIDE-SIM. I	EXT. METALS	,	AVS-SEM				Analyst:	jo
Sulfide	0.93	0.55	1.50	J	pmoles/g	1	8/29/2012 8:	-

Qualifiers:

Value above quantitation range

J Analyte detected below the Reporting Limit

Method Detection Limit

H Holding times for preparation or analysis exceeded

Limit Reporting Limit

ND Not Detected at the Method Detection Limit (MDL)

MDL

CLIENT:

AECOM

Lab Order:

1207139

Project:

60225262-058

Lab ID:

1207139-003

Date: 25-Sep-12

Client Sample ID: USC (#25935)

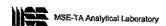
Collection Date: 7/2/2012

Matrix: SEDIMENT

Analyses	Result	MDL	Rpt Limit	Qualifier	Units	DF	Date Analyzed
AVS-SEM METALS			AVS-SEM	SW300	5A		Analyst: tj
Cadmium	0.00192	0.00002	0.00010		µmoles/g	1	9/13/2012 12:12:08 PM
Copper	0.08115	0.00020	0.00100		µmoles/g	1	9/13/2012 12:12:08 PM
Lead	0.00379	0.00001	0.00010		µmoles/g	1	9/13/2012 12:12:08 PM
Nickel	0.05206	0.00001	0.00010		µmoles/g	1	9/13/2012 12:12:08 PM
Simultaneously Extracted Metal:	0.4368	0.00051	0.00191		µmoles/g	1	9/13/2012 12:12:08 PM
Zinc	0.2979	0.00050	0.00100		µmoles/g	1	9/13/2012 12:12:08 PM
PERCENT SOLIDS			A2540G				
Percent Solids	78.8	0.01	0.1		%	1	Analyst: dk/jr 8/21/2012 3:40:00 PM
ACID VOLATILE SULFIDE-SIM. E	XT. METALS		AVS-SEM			•	
Sulfide	1.35	0.55	1.50	J	µmoles/g	1	Analyst: jo 8/29/2012 8:00:00 AM

Qua	lifl	ei	rs:

Value above quantitation range


Analyte detected below the Reporting Limit

DL Method Detection Limit

H Holding times for preparation or analysis exceeded

Limit Reporting Limit

ND Not Detected at the Method Detection Limit (MDL)

CLIENT:

AECOM

Lab Order:

1207139

Project:

60225262-058

Lab ID:

1207139-004

Date: 25-Sep-12

Client Sample ID: EFSC (#25937)

Collection Date:

Matrix: SEDIMENT

Analyses	Result	MDL	Rpt Limit	Qualifier	Units	DF	Date Analyzed
AVS-SEM METALS			AVS-SEM	SW300	5A		Analyst: tj
Cadmium	0.06460	0.00002	0.00010		µmoles/g	1	9/13/2012 12:12:08 PM
Copper	0.3021	0.00020	0.00100		µmoles/g	1	9/13/2012 12:12:08 PM
Lead	0.00944	0.00001	0.00010		umoles/g	1	9/13/2012 12:12:08 PM
Nickel	0.5195	0.00001	0.00010		umoles/g	1	9/13/2012 12:12:08 PM
Simultaneously Extracted Metal:	7.827	0.00051	0.00191		umoles/a	1	9/13/2012 12:12:08 PM
Zinc	6.931	0.00050	0.00100		µmoles/g	.1	9/13/2012 12:12:08 PM
PERCENT SOLIDS			A2540G		•		Analyst: dk/ir
Percent Solids	72.3	0.01	0.1		%	1	8/21/2012 3:40:00 PM
ACID VOLATILE SULFIDE-SIM. E	EXT. METALS		AVS-SEM				Analyst: jo
Sulfide	1.10	0.55	1.50	J	µmoles/g	1	8/29/2012 8:00:00 AM

Qualifiers:

Value above quantitation range

Analyte detected below the Reporting Limit

MDL Method Detection Limit

H Holding times for preparation or analysis exceeded

Limit Reporting Limit

Not Detected at the Method Detection Limit (MDL)

CLIENT:

AECOM

Lab Order:

1207139

Project:

60225262-058

Lab ID:

1207139-005

Date: 25-Sep-12

Client Sample ID: LJH (#25941)

Collection Date: 7/2/2012

Matrix: SEDIMENT

Analyses	Result	MDL	Rpt Limit	Qualifier	Units	DF	Date Analyze
AVS-SEM METALS			AVS-SEM	SW300	5A		Analyst: tj
Cadmium	0.00101	0.00002	0.00010		µmoles/g	1	9/13/2012 12:12:08 PJ
Copper	0.3437	0.00020	0.00100		photos/g	1	9/13/2012 12:12:08 P/ 9/13/2012 12:12:08 P/
Lead	0.02664	0.00001	0.00010		µmoles/g	1	9/13/2012 12:12:08 PM
Nickel	0.03198	0.00001	0.00010		µmoles/g	1	9/13/2012 12:12:08 PM
Simultaneously Extracted Metal:	0.6427	0.00051	0.00191		µmoles/g	1	9/13/2012 12:12:08 PM
Zinc	0.2393	0.00050	0.00100		µmoles/g	1	9/13/2012 12:12:08 PM
PERCENT SOLIDS			A2540G		, .	• •	
Percent Solids	80.8	0.01	0.1		%	1	Analyst: dk/j 8/21/2012 3:40:00 PM
ACID VOLATILE SULFIDE-SIM. I	EXT. METALS		AVS-SEM			•	Analyst jo
Sulfide	1.05	0.55	1.50	Ĺ	µmoles/g	1	8/29/2012 8:00:00 AN

_			
O:	uali	ifie	rs:

Value above quantitation range

Analyte detected below the Reporting Limit

MDL Method Detection Limit

H Holding times for preparation or analysis exceeded

Limit Reporting Limit

Not Detected at the Method Detection Limit (MDL)

CLIENT:

AECOM

Client Sample ID: LSLA (#25936)

Collection Date: 7/3/2012

Lab Order:

1207139

60225262-058

Project: Lab ID:

1207139-006

Matrix: SEDIMENT

Date: 25-Sep-12

Analyses	Result	MDL	Rpt Limit	Qualifier	Units	DF	Date An	alyzed
AVS-SEM METALS		·	AVS-SEM	SW300	5A	·	Analyst:	tj
Cadmium	0.00573	0.00002	0.00010		umoles/g	1	9/13/2012 12:	_
Copper	0.1204	0.00020	0.00100		µmoles/g	1	9/13/2012 12:	
Lead	0.01162	0.00001	0.00010		µmoles/g	1	9/13/2012 12:	
Nickel	0.07371	0.00001	0.00010		µmoles/g	1	9/13/2012 12:	12:08 PM
Simultaneously Extracted Metal:	1.049	0.00051	0.00191		µmoles/g	1	9/13/2012 12:	
Zinc	0.8376	0.00050	0.00100		µmoles/g	1	9/13/2012 12:1	12:08 PM
PERCENT SOLIDS			A2540G				Analyst:	dk/ir
Percent Solids	77.4	0.01	0.1		%	1	8/21/2012 3:4	-
ACID VOLATILE SULFIDE-SIM. I	EXT. METALS		AVS-SEM				Analyst:	οį
Sulfide	0.99	0.55	1.50	J	µmoles/g	1	8/29/2012 8:0	•

Qualiflers:	E	Value above quantitation range	
	J	Analyte detected below the Reporting Limit	

H Holding times for preparation or analysis exceeded
Limit Reporting Limit

J Analyte detected below the Reporting Limit

MDL Method Detection Limit

ND Not Detected at the Method Detection Limit (MDL)

P.O. Box 4078 200 Technology Way Butte, MT 59701

Lab: 406-494-7334
Fax: 406-494-7230
labinfo@mse-ta.com

Lab: 406-494-7334 Fax: 406-494-7230 labinfo@mse-ta.com

Date: 25-Sep-12 Report Date: 25-Sep-12

QA/QC SUMMARY REPORT

Client: Project: **AECOM**

60225262-058

Work Order:

1207139

BatchID:

5937

Analyte	Result	RL	Units	Spike Lvi	% Rec	Low Limit	High Limit	RPD	RPD Limit	Qualiffi
Sample ID: X-PB-5937	· · · · · · · · · · · · · · · · · · ·		Method: A	AVS-SEM	Batch ID:	5937	Analys	sis Date:	9/13/2012 12:	12·AR DI
Cadmium	ND	0,00010	µmoles/g			•••		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	OFFICE PER	12.00 TA
Copper	0.00079	0.00100	µmoles/g							
Lead	0.00009	0.00010	µmoles/g	1						J i
Nickel	0.00074	0.00010	µmoles/g				•			J
Simultaneously Extract	0.05240	0.00191	µmoles/g						-	
Zinc	0.05076	0.00100	µmoles/g							
Sample ID: PB-5937			Method: A	VS-SEM	Batch ID:	5037	Analys	le Deto-	9/13/2012 12:1	2.00 01
Cadmium	ND	0.00010	µmoles/g			0007		io Daio.	9/13/2012 12.1	2.00 PW
Copper	0.00050	0.00100	µmoles/g					·		
Lead	0.00001	0.00010	µmoles/g							J
Nickel	0.00055	0.00010	µmoles/g							J
Simultaneously Extract	0.00500	0.00191	µmoles/g							
Zinc	0.00393	0.00100	µmoles/g				•			
Sample ID: LCS-5937		<u>.</u>	Method: A	VS-SEM	Batch ID:	5027	Analisa	la Cata d	0/40/040 40 4	0.00.5
Cadmium	0.08513	0.00010	µmoles/g	0.08900				is Date: 1	9/13/2012 12:1	2:08 PM
Copper	0.1891	0.00100	µmoles/g	0.1570		80 80	120			
Lead	0.05578	0.00010	µmoles/g	0.04800		80	120			
Nickel	0.2018	0.00010	μmoles/g	0.1700			120			
Simultaneously Extract	0.7109	0.00191	µmoles/g	0.6170		80	120			
Zinc	0.1790	0.00100	µmoles/g	0.0170		80 80	120 120			
Sample ID: 1207139-00	2A-D		Method: A		Batch ID:					
Cadmium	0.00081	0.00010	µmoles/g	VO-SLIM	Datch ID;	9837	Arialysi		9/13/2012 12:1:	2:08 PM
Copper	0.2736	0.00100	µmoles/g					15.7	20	
Lead	0.02635	0.00010	µmoles/g					2.68	20	
Nickel	0.04883	0.00010	µmoles/g					16.6	20	
Simultaneously Extract	0.5976	0.00191	µmoles/g					19.9	20	
Zinc	0.2480	0.00191	umoles/g					5.60 4.56	20 20	
Sample ID: 1207139-002	PA-MS		Method: A	VO 0544	D-4-1-15		· · · · · · · · · · · · · · · · · · ·			
Cadmium	0.06259	0.00010			Batch ID:	•		s Date: 9	/13/2012 12:12	2:08 PM
Copper	0.4461	0.00100	µmoles/g µmoles/g	0.08278	74.8	75 	125			
Lead	0.07930	0.00100		0.1460	113	75	125 .			•
Nickel	0.2381	0.00010	µmoles/g	0.04464	108	75	125			
Simultaneously Extract	1.244		µmoles/g	0.1581	113	75	125			
Zinc	0.4176	0.00191 0.00100	µmoles/g µmoles/g	0.5739 0.1423	107	7 5	125			
Sample ID: 1207139-002			· · · · · · · · · · · · · · · · · · ·		111		125		· · · · · ·	
Sample 1D. 1 20/139-002 Sadmium	and the second second	0.00040	Method: A		Batch ID:				/13/2012 12:12	2.08 PM
Copper	0.06279	0.00010	μmoles/g	0.08278	75.0	75	125	0.327	20	
_ead	0.4282	0.00100	µmoles/g	0.1460	101	75	125	4.09	20	
-044	0.07550	0.00010	µmoles/g	0.04464	99.4	75	125	4.90	20	

Lab: 406-494-7334 Fax: 406-494-7230 labinfo@mse-ta.com

Date: 25-Sep-12

Report Date: 25-Sep-12

QA/QC SUMMARY REPORT

Client:

AECOM

Project:

60225262-058

Work Order:

1207139

BatchID:

5937

Analyte	Result	RL	Units	Spike Lvl	% Rec	Low Limit	High Limit	RPD	RPD Limit Qualifler
Sample ID: 1207139- Nickel Simultaneously Extra Zinc	0.2249	0.00010 0.00191 0.00100	Method: A µmoles/g µmoles/g µmoles/g	0.1581 0.5739	97.1	5937 75 76 75	Analys 125 125 125	5.73 4.46 4.81	

Lab: 406-494-7334 Fax: 406-494-7230 labinfo@mse-ta.com

Date: 25-Sep-12 Report Date: 25-Sep-12

QA/QC SUMMARY REPORT

Client:

AECOM

Work Order:

1207139

Project:

60225262-058

BatchID:

R20694

Analyte

Result

79.4

RL Units

Splke Lvl % Rec

Low Limit High Limit RPD

RPD Limit Qualifler

Sample ID: 1207139-001A

Percent Solids

Method: A2540G 0.1 %

Batch ID: R20694

Analysis Date: 8/21/2012 3;40:00 PM

0.251

35

Lab: 406-494-7334 Fax: 406-494-7230 labinfo@mse-ta.com

Date: 25-Sep-12

Report Date: 25-Sep-12

QA/QC SUMMARY REPORT

Client: Project: **AECOM**

60225262-058

Work Order:

1207139

BatchID:

R20853

Analyte	Result	RL,	Units	Spike Lvi	% Rec	Low Limit	High Limit	RPD	RPD Limit	Qualifier
Sample ID: 120713 Sulfide	8 9-002A-D 0.93	1.50	Method: ,	AVS-SEM g	Batch ID:	R20853	Analys	ils Date:	8/29/2012 8:00 35	0:00 <i>AM</i> J
Sample ID: 120713 Sulfide	89-003A-S 9.85	1.50	Method; , µmoles/g	AVS-SEM g 10.64	Batch ID: 79.9	R20853 80	Analys 120	ls Date:	8/29/2012 8:00	0:00 AM
Sample ID: LCS-W Sulfide	/C 2634 3.63	1.50	Method: /	AVS-SEM g 4.194	Batch ID: 86.6	R20853 85	Analys 105	is Date:	8/29/2012 8:00	0:00 AM
Sample ID: PB Sulfide	ND	1.50	Method: μ μmoles/ε	AVS-SEM	Batch ID:	R20853	Analys	is Date: I	8/29/2012 8:00):00 AM

AECOM						СНА	IN OF C	USTOD	Y REC	ORE)				,,	ኅ አጉ '	7126	7	
Client/Project Name:	·		P	roject	Location:				1				·		10	X U	7130		Page of
<i>05</i> 8		······································			FCETU	AECOM	1				A	nalysis	Requ	esteci			P-Pig	i <u>er Type</u> slic ber Glass	Preservation 1 – HCl, 4*
Project Number:			FI	eld L	ogbook No.:				T		Τ.	<u> </u>	T	T				ar Glass	2 – H2804. 4° 3 – HNO3, 4°
Sempler (Print Name)/(Affiliation	2012		+									-					O – Oth	9 F	4 NaOH, 41 5 NaOH/ZriA
	11),		G	nain c	of Custody Tape	Nos.:]								}		6 Na282O3 7 4*
client			1	433	266												<u>Matrix C</u>	odes:	7 - 4
Signature:			Se	Send Results/Report to: TAT:												DW ~ D	rinking Wete Vastewater	r S – Spil SL – Sludge	
			1								1		[GW - G	roundwater Idece Weler	SD - Serliment
	···	··········	Pa	WI'I	laddy @acor	nicom	249		1 1	'	}			1		-	ST - Ste W - Wa	ım Waler	A – Air L – Llauld
Field Sample No./Identification	Date	Time	COMP	G R A B	Sample Container (Size/Mat'l)	Matrix	Preserv.	Field Filtered	AVS.								Lab		P - Product
LSH (# 25942)	7/2/12	Unk			407 Glass	Sed	Ice	ļ <u> </u>	X									ļ	
MSH (# 25943)	7312						1		X	_		-	ļ				001	<u> </u>	<u> </u>
USC (# 25935)	7/2/12		_	-		 	 		X						-	- -	902		
EFSC (# 25987)	UNK								X				 				003		-
LJH (#25941)	7/2/12							<u> </u>	X		-	-			- -		1004	 	
LSLA (# 25936)	7/3/12	*	ļ			1	1	·	X						-		005	<u> </u>	
	112112					<u> </u>						-					ļ		
						·													
	 									-	-				_ _	 	ļ	·	
											-							·	
	 									_									· · · · · · · · · · · · · · · · · · ·
			_									1							
										-l	ļ			_					
Relinquished by: (Print Name)/(Attillati	Dn)		l		Received by	K' (Dis Norm	LICA EDIT CO				<u> </u>								
Christina Neednam (a	Branca \	Date); " † 1;	2411	Z Received by	5007	ell			Dat	le: 7/	25/1	Ana	lytical L	abora	tory (De	estination)	;	
Signature: Massista T Relinquished by: (Print Nome)(Affiliato	Cela.	Time	e: 3	00	Signature: Received by	0k)	المدردة	00				330					M Toxicol		,,,,,
rcelinguisned by: (Print Name)(Affillatio	m)	Date			Received by	/: (Print Nam	a)(Alliliation)	××		Dat		770				4303 V	V. Laporte olling-20	Avenue	
Signature:		Time	a'					ľ			1			(9)	70) 416-0	916	MSE		
Signature: Relinquished by: (Print Name)(Affiliation) Date: Received by: (Print Name)(Affiliation)			e)/(Affillallon)		Time: (970) 490-2963 (FAX)														
										Date	e:		Sam	ple Ship	ped \	∕ia:			Temp blank
Signeture:		Time		· · · · · · · · · · · · · · · · · · ·	Signature:					Time	Θ:		UPS		1		r Other		Yes No

O GRAPHICS FORMS Chain of Ouslood (COCECTIVE) Custody FL Collins, 10,01.600

Serial No. Nº 52449

•	Sam	bie Keceibt C	hecklist			
Client Name AECOM_INC			Date and	Time Received:	7/25/2012 1	30:00 PM
Work Order Number 1207139	RcptNo: 1		Receive	d by BO		
COC_ID:	oleriD:					
Checklist completed by Signature	surel 7	125/1-	Reviewe	d by Iditials	7/26/13	Date
Matrix:	Carrier nam	e Priority US	Meh		ı	Date
		- <u>1 Hong oo</u>	<u>viali</u>	,		
Shipping container/cooler in good condition	17	Yes 🗹	No 🗀	Not Present		•
Custody seals intact on shippping containe	r/cooler?	Yes 🗹	No 🗆	Not Present		
Custody seals intact on sample bottles?		Yes 🔲	No 🗆	Not Present	□	
Chain of custody present?		Yeş 🗹	No 🗆	HOCT (GSRIII	س <u>ج</u> ا	
Chain of custody signed when relinquished	and received?	Yes 🗹	No 🔲	•		
Chain of custody agrees with sample labels	?	Yes 🗹	No 🗀			
Samples in proper container/bottle?		Yes 🗹	No 🗆			
Sample containers intact?		Yes 🗹	No 🗆			
Sufficient sample volume for indicated test?		Yes 🗹	No 🗀			
All samples received within holding time?		Yes 🗹	No 🔲			•
Container/Temp Blank temperature in comp	liance?	Yes 🗹	No 🗆			
Water - VOA vials have zero headspace?	No VOA vials sub		Yes [□ No □		
Water - pH acceptable upon receipt?	,	Yes 🗌	No 🗔	Blank		
,	Adjusted? Na	. C	hecked by	B 12 7/1	25/1	
Any No and/or NA (not applicable) response	Sed in must be detailed in the	Jont-	_			
Nient contacted					====	
	Date contacted:		Per	rson contacted		
Contacted by:	Regarding:					
TEMP = 1.2 DEGREE C	- COOLER ON ICE.	· · · · · · · · · · · · · · · · · · ·				
						
				·		

AECOM
Environmental Toxicology
4303 West LaPorte Avenue, Fort Collins, Colorado 80521-2154
T 970.416.0916 F 970.490.2963 www.aecom.com

September 27, 2012

Kevin Eppers Coeur Alaska Inc. Kensington Gold Mine 3031 Clinton Drive Suite 202 Juneau AK 99801

Subject: Results of *Hyalella azteca* sediment toxicity test

Dear Mr. Eppers:

Attached is a copy of the report for the sediment toxicity test conducted with *Hyalella azteca* using sediment collected from six different sites. There were no statistically significant survival or growth effects in any of the six sampling sites. The analytical data including total metals, total organic carbon, and grain size determination and total solids and total suspended solids are included in this report.

We greatly appreciate the opportunity to complete this study for Coeur Alaska Inc.. Please do not hesitate to call us if you have any questions.

Sincerely,

Andrea Sternenberger, M.S.

Data Analyst

andrea.sternenberger@aecom.com

Rami B. Naddy, Ph.D.

Study Director / Environmental Toxicologist

rami.naddy@aecom.com

Attachment:

60225262-058-(084-089)

Coeur Alaska, Inc. Juneau, Alaska

Report of Short-Term Chronic Toxicity of Whole Sediment to *Hyalella azteca*

Prepared by

AECOM Environment Environmental Toxicology Fort Collins, CO

60225262-058-(084-089) September 2012

Report of Short-Term Chronic Toxicity of Whole Sediment to Hyalella azteca

Project IDs: 60225262-058-(084-089) September 2012

Sponsor and Laboratory Information

Sponsor	Coeur Alaska Inc. Kensington Mine 3031 Clinton Drive Suite 202 Juneau, Alaska 99801
Project Officer	Kevin Eppers (907) 523-3328
Testing Facility	AECOM Environment Fort Collins Environmental Toxicology Laboratory 4303 West LaPorte Ave. Fort Collins, CO 80521 Fax: (970) 490-2963 State of Florida NELAP Laboratory ID: E87972
Study Director	Rami B. Naddy, Ph.D (970) 416-0916 email: rami.naddy@aecom.com
Report Author Andrea Sternenberger, M.S. (970) 416-0916 email: andrea.sternenberger@aecom.com	

Test Information

Test	Short-term chronic screening toxicity test of sediment						
Basis	USEPA (2000) and ASTM (2009)					
Test Protocol	HA3AK.TIE058.007						
Test Period	August 10, 2012 @ 1510-1530 to August 20, 2012 @ 0830-1215						
Test Length	10 days						
Species	Hyalella azteca						
Test Material	Whole sediment						
	Sample ID	AECOM Laboratory ID					
	LJH	25938, 25941					
	LSH	25939, 25942					
Sediment ID	MSH	25940, 25943					
	USC	25932, 25935					
	LSLA	25933, 25936					
	EFSC	25934, 25937					
Control Sediments	Silica Sand, Formulated Sedimer	nt					
Overlying water	Moderately hard reconstituted water prepared according to USEPA						
Overlying water	(2002), augmented with approximately 50 mg/L Cl ⁻ (as NaCl)						
Test Concentrations	0 (control) and 100% of each tes	t sediment					

- Results described in this report apply only to the samples submitted to the laboratory and analyzed, as listed in the report
- Test results comply with NELAC standards. Reports are intended to be considered in their entirety; AECOM is not responsible for consequences arising from use of a partial report
- This report contains 8 pages plus 3 appendices

Sediment Collection and Receipt

Sample ID	Collection Date and Time	AECOM No.a	Date of Receipt	Temp. at Arrival (°C) ^b
LJH	07/02/12 @ 1200	25938	07/20/12	17.1
LSH	07/03/12 @ 1100	25939	07/20/12	17.1
MSH	07/03/12 @ 1200	25940	07/20/12	17.1
USC	07/02/12 @ 0900	25932	07/20/12	19.6
LSLA	07/03/12 @ 0900	25933	07/20/12	19.6
EFSC	07/10/12 @ 1400	25934	07/20/12	19.6

^a Upon sample receipt, each 1-gallon sample container of sediment was assigned a different sample number than the 4-oz glass jar of the same sediment sample designated for AVS analysis. The number assigned to the 1-gallon sample container used for sediment testing will be used for reporting purposes.

Air temperature of cooler

Note: See Appendix A for copies of chain of custody records

Control Sediment

The primary control sediment was coarse silica sand, obtained from a local commercial supplier (manufactured by Unimin® Corporation). A second control, sediment with a smaller grain size and higher organic matter content, was prepared in the laboratory. The composition of the formulated sediment is given in the following table (Kemble et al. 1999).

Composition of Laboratory Formulated Sediment (Control)

Material	Source	Pre-Treatment	Weight (g)	
Coarse	Unimin Corporation,	Rinsed with gentle mixing in deionized	1242	
Quartz Sand	Emmett, ID	water until water ran clear. Dried in oven.	1242	
Silt/Clay	Mozel, St. Louis, MO.	None	219	
(ASP400)	Distributor = Englehardt	None	219	
Dolomite	Grey Rock Clay Center, Ft. Collins, CO.	None	7.5	
α-cellulose	Sigma	None	77.3	
Humic Acid	Fluka	None	0.15	
Total			1545.95	

Initial Overlying Water Characterization

Batch No.	рН	Hard. (mg/L) ^a	Alk. (mg/L) ^a	Spec. Cond. (μS/cm)	TRC (mg/L) ^b	NH ₃ -N (mg/L)	CI ⁻ (mg/L)
10425	8.1	92	60	457	0.03	<1.0	50.2

^a As CaCO₃

^b Total residual chlorine

Test Sediment Preparation

Sample ID	Date Homogenized	Time Homogenized			
Sand Control		1015-1018			
Formulated Sediment		1010-1013			
LJH		1029-1032			
LSH	August 0, 2012	1107-1110			
MSH	August 9, 2012	1017-1024			
USC		1102-1107			
LSLA		1106-1109			
EFSC		1040-1043			

Note: The formulated sediment was homogenized with overlying water on August 6, 2012 from 1459 to 1502 and held at 4°C. On August 8, 2012 the wetted control sediment was placed at 25°C overnight prior to test setup. Sediment was re-homogenized prior to addition to test chambers.

Overlying water was added to the sand control and formulated sediment during the homogenization process to wet both controls prior to placement in test chambers. Before, during, and after homogenization, any noticeable debris (including sticks and other plant material) and large stones were removed from the test sediment and discarded.

Test Conditions

Test Type	Static sediment with continuous replacement of overlying water
Test Duration	10 days
Overlying Water Delivery System	Continuous renewal (flow-through) ^a
Test Endpoints	Survival, dry weight per original and surviving organism
Test Chambers	500-ml glass beakers
Test Sediment Volume	100 ml
Overlying Water Volume	175 ml
Replicates per Treatment	8
Organisms per Replicate	10
Test Temperature	$23\pm1^{\circ}\mathrm{C^{b}}$
Lighting	Fluorescent, 16 hours light:8 hours dark
Chamber Placement	Randomized
Test Sediment Renewal	None
Test Overlying Water Renewal	Approximately two volume additions per test chamber per day

^a Continuous replacement via a drip system

^b The instantaneous temperatures in overlying water fell below the lower limit of 22°C but did not exceed the 3°C differential on Day 6 in the sand control and test sediments (USC and EFSC only), and on Days 5 and 8 in one test sediment (EFSC) (temperature measured in one replicate per treatment each day).

Test Organism

Species and Lot Number	Hyalella azteca, FCETL Lot 12-022
Age	9 – 11 days
Size (pre-test wt.)	0.018 mg/organism (mean)
Source	Aquatic BioSystems (ABS), Fort Collins, CO
Overlying Water	Moderately Hard Reconstituted Water with added chloride
Overlying Water	(50.2 and 50.1 mg/L) as NaCl, RW # 10425 and 10438, respectively
Reference Toxicant Testing	Initiated August 10, 2012 using sodium chloride (NaCl)

TEST RESULTS

Biological Data – Survival and Dry Weight

		Dry Weight (mg)				
Sample ID	Percent Survival	Per original organism	Per surviving organism			
Sand Control	97.5	0.084	0.086			
Formulated Sediment	91.2	0.057	0.063			
LJH	95.0	0.070	0.074			
LSH	98.8	0.088	0.089			
MSH	92.5	0.075	0.082			
USC	98.8	0.082	0.083			
LSLA	98.8	0.095	0.096			
EFSC	96.2	0.060	0.062			

Note: None of the test sediments had any statistically significant reductions in survival or growth relative to the formulated sediment. See Appendix B for test data sheets

AECOM Environment 60225262-058-(084-089)

Analytical Data

Doromotor		Sample Identification								
Parameter	Sand	Form. Sed.	LJH	LSH	MSH	USC	LSLA	EFSC ^a		
Metals (mg/kg-dry) ^b										
Aluminum	181	609	13,100	17,900	18,800	20,300	13,600	15,300		
Chromium	4.25	8.25	35.5	51.4	48.1	125	32.0	38.9		
Zinc	ND	ND	97.3	128	124	134	200	1,490		
Arsenic	ND	ND	12.8	24.3	56.1	14.4	9.31	24.0		
Cadmium	0.073	0.072	0.250	0.578	0.269	0.776	1.22	23.2		
Copper	0.324	0.783	76.8	79.1	87.5	55.4	50.7	159		
Lead	0.165	0.380	9.45	8.43	11.3	4.05	8.45	14.2		
Nickel	0.511	0.820	23.4	40.2	39.3	78.4	43.2	153		
Selenium	ND	ND	ND	ND	ND	0.606	ND	0.934 J		
Silver	ND	ND	0.342	0.289	0.225 J	0.132 J	0.145 J	0.513 J		
Mercury	ND	ND	0.119 J	0.0681 J	0.0581 J	0.0625 J	0.0994 J	0.327 J		
Particle Size (%) ^c		•				•				
Clay	ND	10.0	8.0	4.0	4.0	2.0	2.0	40.0		
Sand	96.0	86.0	92.0	96.0	96.0	98.0	98.0	26.0		
Silt	4.0	4.0	ND	ND	ND	ND	ND	34.0		
Texture	Sand	Loamy Sand	Sand	Sand	Sand	Sand	Sand	Clay		
Coarse Material (2 mm)	ND	ND	ND	0.09 J	0.44	0.32	0.13	ND		
TOC (%-dry) ^d	ND	28.7	1.19	0.82	1.05	3.74	1.67	16.7		
Acid Volatile Sulfide (µmoles/g)	NM	NM	1.05 J	ND	0.93 J	1.35 J	0.99 J	1.10 J		

^aOn one analytical report included in Appendix C, the sample ID for this site is labeled as "EFSA"; however, the correct sample ID is "EFSC".

Note: See Appendix C for a copy of the reports from the analytical laboratory (MSE Analytical Laboratory, Butte, MT)

^b As, Cd, Cr, Cu, Pb, Ni, Se, and Ag by SW-846 Method 6020; Al and Zn by SW-846 Method 6010B; Hg by SW-846 7471B (USEPA 1986)

^c Particle size was determined using ASTM Method D422 and Modified ASA 15-5 ^d TOC was determined using the Walkley Black Method

J = The concentration was below the reporting limit but above the method detection limit

ND = Not detected at the method detection limit

NM = Parameter not measured for this sample

Total and Total Volatile Solids

Sample ID	Percent Total Solids ^a	Percent Total Volatile Solids ^b
Sand	95.90	0.108
Formulated Sediment	86.96	6.97
LJH	77.67	2.55
LSH	78.55	3.05
MSH	77.09	4.10
USC	79.58	2.90
LSLA	79.22	3.37
EFSC	23.72	28.54

Note: All values are means of duplicate analyses and determined at AECOM/FCETL. See Appendix C for data sheets.

Physical and Chemical Data

Sample ID	pH (s.u.)	DO (mg/L)	Cond. (μS/cm)	Temp. (°C) ^a	Ammonia as N (mg/L)	Hardness (mg/L as CaCO ₃)	Alkalinity (mg/L as CaCO ₃)
Sand Control	8.0-8.3	6.3-6.9	475-496	21-23	<1.0	94-100	61-65
Formulated Sediment	8.0-8.3	5.4-6.6	512-524	22-23	<1.0	114-116	65-81
LJH	7.7-8.1	5.8-6.5	452-517	22-23	<1.0	92-106	56-61
LSH	7.8-8.2	5.9-6.6	481-580	22-23	<1.0	106-124	72-85
MSH	7.8-8.2	5.9-6.8	462-504	22-23	<1.0	98-102	62-68
USC	7.9-8.1	5.8-6.5	469-516	21-22	<1.0	98-112	68-74
LSLA	7.8-8.1	5.8-6.5	475-549	22-23	<1.0	100-112	72-74
EFSC	7.7-8.1	5.2-6.4	497-561	21-22	<1.0-1.5	128-136	93-97

^a Temperature in test chambers

Reference Toxicant Test Results for H. azteca

Organism Lot	Test Dates	96-Hour LC ₅₀	AECOM/FCETL Historical 95% Control Limits				
Number			Low	High			
12-022	08/10/12 to 08/14/12	2,552	1,184	3,274			

Note: Values are expressed as mg/L chloride

^a Total solids were determined using Standard Methods 2540B (APHA 1998)
^b Total volatile solids were determined using Standard Methods 2540E (APHA 1998)

References

APHA. 1998. Standard Methods for the Examination of Water and Wastewater. Amer. Public Health Assoc., Amer. Water Works Assoc., Water Pollut. Control Fed., APHA, Washington, DC.

ASTM. 2009. Standard Test Method for Measuring the Toxicity of Sediment-Associated Contaminants with Fresh Water Invertebrates. Method E 1706-05 In 2009 Annual Book of ASTM Standards, Section 11, Water and Environmental Technology, Volume 11.06, Biological Effects and Environmental Fate; Biotechnology. American Society of Testing and Materials. West Conshohocken, PA.

Kemble, N.E., F.J. Dwyer, C.G. Ingersoll, T.D. Dawson, and T.J. Norberg-King. 1999. Tolerance of Freshwater Test Organisms to Formulated Sediments for Use as Control Materials in Whole-Sediment Toxicity Test. *Environ. Toxicol. Chem.* 18:222-230.

USEPA. 1986. Test Methods for Evaluating Solid Waste. Third Edition. SW-846.

USEPA. 2000. Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates. EPA/600/R-99/064.

USEPA. 2002. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms. Fifth Edition. EPA-821-R-02-012.

Statement of Procedural Compliance

I certify that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge, accurate and complete.

Rami Naddy, Ph.D. Study Director

Statement of Quality Assurance

The test data were reviewed by the Quality Assurance Unit to assure that the study was performed in accordance with standard operating procedures, and that the resulting data and report meet the requirements of the NELAC standards. This report is an accurate reflection of the raw data.

Quality Assurance Unit

Date

APPENDIX A

Chain of Custody

AECOM		084	~Q	59		CHAI	N OF CU	JSTODY	REC	ORD				6.6	· 20	712 Page <u>\</u> of <u>\</u>
Otient/Project Name:	21		T		Location:	_ -CT	и(Analysis F	equested		A - Ai	iner Type astic nber Glass lear Glass	<u>Preservation</u> 1 – HCl, 4° 2 – H2SO4, 4° 3 – HNO3, 4°
Project Number: 0025202-0	058		<u> </u>		gbook No.:				-			٠		0~0 E~Ei		4 – NaOH, 4° 5 – NaOH/ZnAc, 4° 6 – Na2S2O3, 4°
Sampler (Print Name)/(Affiliation Box Brews Fe		1F1C	Ch	ain o	f Custody Tape I		(Inta	(+)							Codes; Drinking Wa	7 – 4°
Signature:	A	-	Sei	nd Re	esults/Report to:		TAT:		-					WW GW SW	Wastewate Groundwate Surface Wa Storm Water	r SL – Sludge er 90 – Sediment ller SO – Solid
Bogn Ben			C	G	Sample									-		P - Product
Field Sample No./Identification	Date	Time	O M P	R A B	Container (Size/Mat'l)	Matrix	Preserv.	Field Filtered						Lab f.D.		Remarks
Sedement LJH		1200	<u> </u>		1 - 1	@ SD			X					25	938	<u> </u>
LSH	713/12	1100		-	1 dal	0 3D	1		X-					25		
" MSH	7/3/12	1200			1 gal	450	ICE		X				 	25	-4.14	
(L JH	7/2/12	1200	ļ		400	9 4 50			X					25	- Y . ' '	
11 MSH	7/3/12				402	0450			Ŷ					25		<u> </u>
, (31)	117130	100-														
											-					
			ļ										ļ	<u> </u>		
									-					-		
			-												100	09)
Relinquished by: (Print Name)/(Affiliat		Da		<u></u>		er Pa	me)/(Affiliation)		<i>/</i>		:7 20 12 :1015	Analytic PEC.	cal Laborate	ory (Destinat	ion): C 17 icology l	₁ ∤ Å Lab
Relinquished by: (Print Name)/(Affiliat		Da	te:				me)/(Affiliation)			Date) :			4303 W. Lap Fort Collins, (970) 41	CO 805 6-0916	21
Signature:	\	Tin	ne:		Signature:		NAMED !! .			Time			محما	(970) 490-2 er lem e		
Relinquished by: (Print Name)/(Affiliat	ion)	Da			Received I	∪y: (Print Nai	me)/(Alfiliation)			Date			Shipped V		OWN K	Temp blank
Signature:	·	Tin	ne:		Signature:					Time	 	UPS (FedEx	Courier C	Other	Yes (No

AECOM		СНАІ	N OF CUSTOD	/ RECC)RD				6.	6.20	12
AECUM C	84-089										Page of
Offignt/Project Name: Olaska	Project L	ocation: FCE	l C		A	nalysis R	equested		A ~ Am	ner Type istlic iber Glass ear Glass	Preservation 1 - HCl, 4° 2 - H2SO4, 4° 3 - HNO3, 4°
Project Number: 0002252102-058		book No.:					- !		V - VO O - Oth E - End	A Vial her	4 NaOH, 4° 5 NaOH/ZnA 4°
Sampler (Print Name)/(Affiliation):	FIG Chain of	Custody Tape Nos.:							Matrix (Codes;	6.– Na2S2O3. 4 7 – 4°
Bon Brewstor	010-	4258	8 xinta	2 1 X					WW \	Orinking Water Wastewater Groundwater	S – Soil SL – Sludge 90 – Sediment
Signature: Berein Bouts	Send Res	sults/Report to:	TAT:		-				SW - S	Surface Water torm Water	SO - Solid A - Air Liquid P - Product
Field Sample No./Identification Date	Time C G O R M A P B	Sample Container Matrix (Size/Mat'l)	Preserv. Field Filtered						Lab I.D.	P	Remarks
Sedinent (460 7/2/20	2900 %	1 gal 045	ICE	X					25	932	
LSLA 7/3/12 C		1 aal 0 450	ICE	X						933	
	400 8	gal 0 4-50		X					29	_l _	
1 1 USC 7/2/4 e	900 X	402 015		χ					25	935	
	2900 X	402 045	ICE	X					250	136	
1 EFSC 7/10/12 1	400 X	402 015	ICE	X					250	137	
				<u> </u>				ļ.			
								<u> </u>			
								ļ			
				 							•
					+					100	
Relinquished by: (Print Name)/(Affiliation)	Date:	Received by: (Print Na	nje)/(Affijiatjon)	<u> </u>	Date:	1/20/12	Analyti	ical Labora		(D69)	<u>}</u>
Pren Preusto ADFG		Amber 603	me)/(Affiliation)	•		•	rec.	Uids 1	ntory (Destination Policy (Destination AECOM Toxic	Cology Lab	
Relinquished by: (Pint Name)/(Affiliation)	Time:	Signature: Received by: (Print Na	Selection)	<u>/.)</u>	Time:	015			4303 W. Lapo	orte Avenue	
·	Date:		Propagation of the control of the co		Date:				Fort Collins, (970) 416	6-0916	
Signature:	Time:	Signature: Received by: (Print Na			Time:			-	(970) 490-29	963 (FAX) Nev ten	n ()
Relinquished by: (Print Name)/(Affiliation)	Date:	Treceived by, (Print Na	mey(Anillacon)		Date:	3	Sampl	e Shipped	Via:	T	Temp blank
Signature:	Tíme:	Signature:	7		Time:	\$\$\frac{1}{2}\cdot\frac{1}{2}\	UPS	FedEx	Courier O	ther Y	es (No
1 w 6.5.2012 Er.	,			. ,					Sarial Na	MO	E224
DEGRAPHICS/FORMS/Chain of Custody (COC)(Chain-of-Custody_FL Collins_10_07.doc								•	Serial No	· 14 =	5234

APPENDIX B

Data Sheets

10-day Survival and Grow	rth, Testing Cover Page
--------------------------	-------------------------

H. azteca

Paye 1 & 33

•	60225262-058-(084-089)	^	•	Protocol #:	HA3AKITE 058	700.2	489/18/12
Test Substance:	Sediment						QA: ARO9 25/1
Test Species:	H. azteca	Lot #:	12-022	Age:	9-11 2(7314 days)	Supplier:	ABS
Overlying Water: Sampling Date(s): FCETL Sample #(s):	Chronic, Static-Renewal Reconstituted Fresh Wate 07/02/12 - 07/10/12 25938, 25939, 25940, 25 08/10/12 @ 1510 - 15 08/20/12 @ 0820 -	932, 25933, 25934 3 3 G	710430	パタレ Investigators: 「Sampling Time(s):	CU/AB/BJDM/ LJH= 7/21/20120 MSH= 7/3/12/00 LSLA= 7/3/12/00	n. USC = 7/2/1	\$\frac{\Af/not/\alpha}{\pi\alpha\left(\frac{\Af/not/\alpha}{\pi\alpha\left(\frac{\Af}{\pi\alpha\
· · ·	Cont. drip, 2+ vol/day	Feeding Freq:		Food Type/Amount:		Test Temp:	23 +/- 1 deg C
Test Chamber Capacity:	500-ML	rest Soith. Voi:	100 mL sed/175 mL H2C	# Repl's/Trtmnt:	8		
Test Duration:	10 days	# Org.'s/Repl:	10	Env. Chmb(Bath)	3		
Water Characterization:	Minimum of Hardness, Al on overlying water aerate if dissolved oxyget		vity on days 0 and 10; Am	monia on days 0, 3, 7, a	nd 10; No TRC; pH, ter	nperature & DO c	daily
Test Sediment (s):	1) <u>S</u> 4) <u>L</u> 7) <u>L</u> 10)			2) Form Sed. (Cont.) 5) MSH 8) EFSC	3) <u>L.J</u> 6) <u>US</u> 9)		- - -
			•		•		
Reference Tox. Dates Study Director Initials	8/10/12-8/14/12	LC50; Date:	2,562 mg/LC	Hist. Limits:	1184-3274	Method	- Probat

Overlying water added at a minimum of 2 volume additions/day; equivalent to >350 ml/day or >0.24 ml/min

A Upon Sample receipt, each container of sediment-was assigned a different sample number resulting in each site howing two sample 10's. Since both containers for each site contained aliquots of the same sediment, only one number will be used for reporting purposes.

@ stapped using new overlying water on 8/19/12

SEDIMENT/SOIL PREPARATION

Project Number: 60225262-058-(084-089)

OF 9/18/12

Artificial soil	:
Constituent/source	Amount added (g)
Coarse Silica Sand	1242
Silt/Clay (ASP 400)	219
Dolomite	7.5
α-cellulose	77.3
Humic Acid	0.15
Total	1545.95
Notes: Container was placed into tumbler for a minimum of an hour to homogenize prior to	use
See TIE Sheet Daily Log for notes on the preparation of the formulated sediment (0000)	3)
	,

Soil/sediment	ECETI #	Homogenization											
	FCETL#	Date	From	То	Analyst As								
Sand (Cont.)	NA	8/9/12	1015	1018									
Form Sed. (Cont.)	NA	819/12	1010	1013	ಲ								
LJH	25938	819/12	101501029	1018 1032	A CN								
LSH	25939	8/9/12	וטון	uio	AB ·								
MSH	25940	89112	1017	1024	K2								
USC	25932	8/9/12	llo2	1/07	188								
LSLA	25933	8912	1106	1109	a)								
EFSC	25934	04/a 12	1040	1043	83								
	······································												
· · · · · · · · · · · · · · · · · · ·													
	. _												

@ Re-homogenized form. Sed. wested on monday 8/16/12

OAB 8/1/12 UP BAS FOR AB 7/18/12 CA = DAR= 8/9/12

	08-9/18/12 OH: 1809/25/12
SUBJECT: DAILY LOG	OA: ARO9/25/12
ALL ENTRIES MUST BE INITIALLED WITH DATE AND TIME:	
60225268-058 H. azleca C. dilutus	
Preparation of formulated Sediment	
"Combined the following Ingredients together in a 4-1 glas	35 JOI 8
-3105 g Coarge Silica Sand (washed w DI + baked ur -547.5 g Silt Clay (ASP400)	Hildry)
-18.75a Dolomite	
- 193, 26g a-cellulose (cog-054 cent), c12.087 (start))	
-0.375 g Humic Acid (Lot* 010-034)	
Total = 3864.875g	
a Mixed Inqualients together on 8/4/12 @ 1110-1120 at	<u> </u>
 Mixed Ingralients together on 8/6/12 @ 1110 -1130 au Placed Jar In tumbelog tumbler from 1145 - 1450 	ເນ
-Homogenized ~1/2 of the formulated sediment	
with a small amount of Mod Hard + 50 mg/c ci-	
to wet the sediment from 1459 to 1500. Ars	· · · · · · · · · · · · · · · · · · ·
4 Placed the wet sediment @4°C in the dark. cu	
8/8/12 - Pulled wet formulated sediment out of 4°C cham	hac
and placed It In the 25°C Chamber C 0815 au.	
310 ploces 11 11 11 20 00 0 0 11 10 10 00 00 00 00 00 00 00 0	
	<u> </u>
· · · · · · · · · · · · · · · · · · ·	
	<u> </u>

H. azteca

Chronic, Static-Renewal Project No. 60225262-058-(084-089)

Sediment	Test Termination	Α	В	C	D	Ē	F_	G]H	(4): M209 25 12 -1. SURNIV
Sand (cont)	# Surviving	10	18	18	10	10	10	lσ	104	97.5
	# Observed Dead	0	0	O	0	O	0	0	0	9
	# Not Found	0	0	2	O	Ö	0	Ó	0	
	Initials	Af	VB.	mt	Je .	ريه	72	AP	Áf	
Form Sed. (Cont.)	# Surviving	ÌO	4	<u> </u>	10	1/0	10/		10	Diorganism injured during tourdown
	# Observed Dead	0	Ø	0	2	0	0	70	0	not included in growth analysis
	# Not Found	0	3	3	0	0	0	1	0	L
	Initials	18	w	nt	િસ	AP	Ap	ω	NP	91.2
_JH	# Surviving	10	10	10	10	9	10	7	9	95
	# Observed Dead	0	Ö	0	0	1	O	Ö	0	
	# Not Found	O	0	0	0	٥.	0	La	1	
	Initials	AP	183	KB	ಲು	nut	mt	KR	ÀP	
_SH	# Surviving	10 200	ÌΒ	10	10	10	10	19	10	98.6
············	# Observed Dead	0	0	0	0	.0	0	0	0	
	# Not Found	00 \$10	0	0	0	0	0	1	Ø	
	Initials	AP.	R	رن	ധ	(3)	lut	AP	1AP	
MSH	# Surviving	Ŋ	10	Tto	8	10	10	10	7	92.5
· · · · · · · · · · · · · · · · · · ·	# Observed Dead	1	0	0	٥	0	ð	0.	1	
	# Not Found	$\neg \uparrow $	Ø	0	2	0	0	٥.	Ø8.2	
	Initials	VQ	w	180	Mul	cu	لین	Not	\ AQ	
USC	# Surviving	10	10	10	9	10	10	10	10	98.8
	# Observed Dead	0	0	0	1	0	0	0	0	
	# Not Found	0	0	Ŏ	0	0	0	0	0	
	Initials	AP	_\(\(\) \(\)	VQ	cas	ω	AP	AP	AP	
LSLA	# Surviving	10	10	10	10	19	10	(0	(υ	98.8
	# Observed Dead	0	0	Ö	18	0	0	0	O.	
	# Not Found	0	٥	0	0	1	0	0	0	
	Initials	ENO.	_AX	AP	ΚQ	Mt	w	AP	R	
EFSC	# Surviving	16	8	10	10	10	9	1040	10	96.2
	# Observed Dead	10	0	0	0	O	0	0	0	
	# Not Found	0	2	0	0	0		0	0	
	Initials	₹n-	₩ <u></u>	VR	(3)	IAP	hot.	AP	T 4K	
	# Surviving			1						
	# Observed Dead		·							
	# Not Found									
	Initials							<u> </u>	<u></u>	
	# Surviving									
	# Observed Dead					\				
	# Not Found	Ti.						<u> </u>		
	Initials		1	1				L		

Porm Sed. (Cont.)																	•	Page Saz	33
Parameter Sediment Day 0 Day 1 Day 2 Day 3 Day 4 Day 5 Day 0 Day 1 Day Day 10 Day Meter Date Time Initiatis Dissolved Day 10 Day 10 Day D	CHEMICAL	_DATA (Composite of Ov	verlying	Water)			H. azte	eca	Chronic	c, Static	-Renew	al Pro	ject No.	60225	262-05	8-(084-0	Q19 ² 89) 48	1209/25)	12
Form Sed. (Cont.)	Parameter	Sediment	Day 0	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8		Day 10	Day	Meter	Date			
Form Sed. (Cont.)	Dissolved	Sand (cont)	6.6	10.60	<u> </u>	6.3	4.5	6.7	6,6	6.4	6.6	6.9	6.7	0	5	8/10/12	1335	ω l	
Cont Cont	Oxygen	Form Sed. (Cont.)			7.2		5.9	6.6		5.7	5.7	6.6	6.2	1			1015	/25	
SH	I .	LJH									6.2			2	5		1600		
MSH	` 0 7											6.1		3					
USC 6-3 6-3 6-3 6-6 5-5 5 5 5 5 5 5 5 5		MSH		1.01	6.0	5.9	6.3	6.4			6.4_	6.8	6.7	4	5	8/14/12	1600	AD	
EFSC 5.8 S. 11 5.6 5.2 5.3 5.7 5.7 5.0 6.0 5.7 6.4 7 7 7 7 7 7 7 7 7		USC		6.0	10.0	5.8	6.4	6.3					6.5	5	S			DM	
EFSC 5.18 5.14 5.6 5.2 5.3 6.4 5.7 5.6 6.0 5.7 6.4 7 6 7 6 1 130 150			6.1			5.8				Ce.1	5.9		6.5		5			DM	
Replicate A B C D E F 6 H A B C C	l · .	EFSC		S.u	5.6	5,2	5.3	6.4	5.7	5.6	6.0	5.7	6.4		6	glode	10%	₹	
Replicate A B C D E F F F F F F F F F					<u> </u>		<u> </u>					<u> </u>			6				
Replicate A B C D E F F F F F F F F F				<u> </u>												\$/19%	1510	<i>D</i> .4	
Femp Sand (cont) 3.2 3.3 3.1 2.3 3.3 3.1 3.2 2.2 2.2 2.2 0 0.45 8 0 2 13.25 0.3								<u> </u>	<u> </u>			` `	1	10	5	8 2012	10V55	<u> </u>	
Femp Sand (cont) 3.2 3.3 3.1 2.3 3.3 3.1 3.2 2.2 2.2 2.2 0 0.45 8 0 2 13.25 0.3			<u> </u>	ļ	<u> </u>	<u> </u>	<u> </u>		<u> </u>	ļ	<u> </u>		ļ						
Femp Sand (cont) 3.2 3.3 3.1 2.3 3.3 3.1 3.2 2.2 2.2 2.2 0 0.45 8 0 2 13.25 0.3							<u> </u>	<u> </u>	1,	<u> </u>	<u> </u>		ļ		<u> </u>			<u> </u>	
(deg C) Form Sed. (Cont.) 22 23 23 23 23 24 22 24 22 24 24			A	B	<u> </u>						<u> </u>	<u> </u>					•		
Cleg C	Temp									ଅଧ	22	22		0	D45	8110112			
LSLA 22 23 24 27 21 21 22 22 6 145 816/12 1345 124 125					Da.					22				1				107	
LSLA 22 23 24 27 21 21 22 22 6 145 816/12 1345 124 125	(deg C)			-	33					82									
LSLA 22 23 24 27 21 21 22 22 6 145 816/12 1345 124 125										83									
LSLA 22 23 24 27 21 21 22 22 6 145 816/12 1345 124 125										33	22								
EFSC 22 22 22 23 24 27 21 21 22 22 7 045 9/712 150 20 20 20 20 20 20 20 20 20 20 20 20 20				البين كي	32														
Replicate A B C D E F G H A B C C D E	:		33	33	33					18 SY						3/16/12			
Post Post		EFSC	92	アプ	33	33	76	21	21	do.	31	32	22						
Replicate A R C D E F G H A B C			ļ				1	<u> </u>	ļ <u> </u>	<u> </u>	 	<u> </u>	 		1 -				
Replicate A R C D E F G H A B C C C C C C C C C			<u> </u>	 		<u> </u>	 	-	 	<u> </u>	· · · · · · · · · · · · · · · · · · ·		<u> </u>		-				
Sand (cont)			ļ	<u> </u>	ļ			- 			<u> </u>			10	045	8 20112	0830	2	
Sand (cont)				<u> </u>	L	ļ		ļ			<u> </u>							<u> </u>	
Sand (cont)				<u> </u>	<u> </u>	ļ <u>.</u>		₩		<u> </u>	<u> </u>								
Sand (cont)		Daylanta	- 	-	<u> </u>		-	<u> </u>		 	- <u> </u> -		-		 				
Form Sed. (Cont.) 8.3 6.0 6.1 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	al I						وجروب والمجروبات	<u>'</u>			10/1		i 	^	CALAR	Of No	1025		
LUH B.1 7-8 7.8 7.7 7.8 7.9 8.0 7.9 8.0 2 5mm 8/13/13 15/15 DM LSH B.1 7.8 7.9 8.0 8.2 8.0 8.1 8.0 7.8 8.1 3 FM20 8/13/13 15/15 DM MSH USC B.0 8.0 8.0 8.0 7.9 8.0 7.9 8.1 8.1 8.0 8.2 4 FM20 2/14/12 1600 AD LSLA T.9 7.9 7.9 7.9 7.8 8.1 7.9 8.0 7.9 8.0 8.1 5 FM20 8/16/12 1350 DM EFSC T.9 7.9 7.9 7.9 7.8 8.1 7.9 8.0 7.9 8.0 8.1 6 FM20 3/16/12 1350 DM EFSC T.9 7.9 7.9 7.8 8.1 7.7 8.1 7.7 7.9 7.9 7.8 8.0 7 FM30 9/17/12 1035 50m 8 FM20 8/18/12 1330 DM	рн											No A							
LSH 8.1 8.0 8.2 8.0 8.9 8.0 7.8 8.1 3 FM20 8/13/14 15/15 DM		 		7 0								7 9			1	(3).5			
MSH USC B.O 8.0 8.0 7.9 8.0 7.9 8.1 8.0 8.2 4 FAZO 914/12 1600 AD USC LSLA T.9 7.9 7.9 7.9 7.8 8.1 7.9 8.0 8.1 5 FM20 8/15/12 1350 DM EFSC T.9 7.9 7.9 7.8 8.1 7.9 8.0 8.1 6 FM20 8/16/12 1350 DM EFSC T.9 7.9 7.8 7.7 8.1 7.7 7.9 7.9 7.8 8.0 7 FM30 8/18/12 1330 DM 8 FM20 8/18/12 1330 DM 9 FM20 8/19/12 1310 DM				12 1											_				
USC 8.0 8.0 8.0 79 8.8 79 8.1 7.9 8.0 8.1 5 FM20 8/15/12 1350 PM LSLA 7.9 7.9 7.9 7.8 8.1 7.9 8.0 7.9 8.0 8.1 6 FM20 8/16/12 1350 PM EFSC 7.9 7.9 7.8 7.8 7.7 8.1 7.7 7.9 7.9 7.8 8.0 7 FM30 8/18/12 1330 PM 8 FM20 8/18/12 1330 PM 9 FM20 8/19/12 1330 PM																			
EFSC 7.9 7.9 7.8 7.8 7.7 8.1 7.7 1.9 7.8 8.0 / fmgo 9/7/12 1530 17/2 17/2 17/2 17/2 17/2 17/2 17/2 17/2				4.7			70	18.7		<u>81</u>	79	0.0							
EFSC 7.9 7.9 7.8 7.8 7.7 8.1 7.7 1.9 7.8 8.0 / fmgo 9/7/12 1530 17/2 17/2 17/2 17/2 17/2 17/2 17/2 17/2						79	178			<mark> A</mark> 方	7 9	4.0			ENTO	8/16/17	1250		
8 M 20 8/18/12 1330 17/1 9 EN20 8/19/12 1510 12/1			1				155	Q:		 ਨੋ'ਨ ੋਂ	70								
9 FN20 3/19/12 1510 PM			7.~	1,57	140	4.0	7.7	10,1	1.5	1,24	7.	+.0	15.0				_		
Replicate 4 R C b & F & U A B C 10 Empo Strate (1)			 			 	 	+	 . 	 	 		\vdash						
		Replicate	A	B	 (' 	h	RE.	 	G	Н	A	13		10				ان	

A8 9/18/12 OA: AR09/25/12

note: all dost	ra trav	suribed	from U'	FET Chew	ustry L	09	<u></u>			QA: A	1209/25/12
	Conductivity	 (μS/cm)		g/L as CaCO3)	Alkalinity (m	g/L as CaCO3)	Ammonia (
Sediment	Day 0	Day 10	Day 0	Day 10	Day 0	Day 10	Day 0	Day 3	Day 7	Day 10]
Sand (cont)	475	496	94	001	(e)	lu S	<1.0	<1.0	41.0	<\\.0	1
Form Sed. (Cont.)	512	524	114	1/10	45	81	<1.0	<1.0	<1.0	41.0	1
LJH	452	517	92	100	56	\(\delta\)	<1.0	<1.0	<1.0	<1.0	1
LSH	481	580	106	124	72	85	<1.0	< 1.0	<1.0	/</td <td>1 . '</td>	1 . '
MSH	462	504	98	102	62	68	<1.0	<1.0	<1.0	41.0	1
USC	4109	510	98	112	68	74	<1.0	< 1.0	<1.0	<1.0	1 '
LSLA	475	549	100	112	74	72	<1.0	<1.0	< 1.0	<1.0	1
EFSC	497	561	128	136	93	97	1.46	<1.0	< 1.0	<1.0	-
Overlying Water			ļ							 	TR(1(#21) (11d)
RN#10425(C1=502m9)	457		92		40		<1.0		 	 	50.03 (Blie) D. 10.8.1
Rw+10438(C1=50.1m3/2)		[90		59	<u> </u>	<1.0*				TRC: (#ZI) (818/11) >0.03 (8/10/12) PH·8.1 >20.02 (8/19/12) PH·8.0 (8119/11)
Meter #	15	15	TITR	TTR	1 1 1 1 1 1	THR	HA#1	[HA#]	HA#1		
 	11	+ 	6/10/12/10/10/12	8/20/2	Olyla Jaliana					HA#	-
Time:	1500/0945		1430/945		8/10/12/8/19/12 1430/0945		8/10/12	8/13/12	8/17/12		4
	ASGI AMP PAG		AS FOT AMPY AB		143010145 A& Gr AMP \$AB	1500	1550 Ar G. AND	1600	1100 1 AS GAR	1600	4
initials.	NOTOLINI IIIN	08.00 A	We do not (1.0)	108 101 111	The contraction of	The for in	INSOLLINE	MAN WILL	MS TOI LIN	108 401 17 1	1

Q AS 9/18/12 2

*Measured m source water A measured in a preserved sample on 8/29/12

DAILY TESTIN	G LOG H. azteca	Chronic, Static-Renew		100/2 19 60225262-058-(084-089) an: ARO9/25/12 As 9/18/12
Day -1		omogenized @ 1010 +0 1110 ater added to chambers @ 1150		Initials/Date: CUING
Day 0	Test organ	sms added to chambers @ 1510 - 1530	A AMARA A A A A A A A A A A A A A A A A	cu 143
	Bath CT = 23, 2.*C	Range = 23.0 - 23.4 °C	Feeding: @ 1535 A	Initials/Date:08110112
Day 1	Bath CT = _よ 3. み	Range = 23.0 - 23.4°	Feeding: (2)	Initials/Date: KB
Day 2	Bath CT = 23.2	Pange = 33.0-23.4	Feeding: Chas	Initials/Date: 18 12/12
Day 3	Bath CT = えるいな	Range = 23. 0 . 23. 4 %	Feeding: @ 1610 [I by I by
Day 4	Bath CT = 73.2° C	Range = 23.0 - 23.4 °	Feeding: @ 160	Initials/Date: AD SIU/17
Day 5	Bath CT = 23.2 °C	Range = 23.0 - 23.8 °C	Feeding: @ 1340	Initials/Date:
Day 6	Bath CT = 23.2 C	Range = 13.0 ~ 23.4 °C	Feeding: @ 1400	Initials/Date: DM 8/16/19
Day 7	Bath CT = 23 つ	- Range = 2216 - 2314 ^で	Feeding: @ Ç'35	Initials/Date: Am
Day 8	Bath CT = 23.4 °C	Range = 21.6. 23.8 °C	Feeding: @ 133S	Initials/Date: PM 8/18/18
Day 9	Bath CT = 23.4 °C	Range = 23,0 ~ 23,8 °C		Initials/Date: PM 8/19/12
Day 10	Bath CT = 43, 4 °C	Range = 23.0 - 23.8 °C	Feeding: NA	Initials/Date: cul Af (An-) B 8) zol 1 z

Page 6 of 33 FCETL QA Form No. 010 Revision 5 Effective 08/99

TEST ORGANISM LENGTHS, WEIGHTS, AND LOADING a oglitliz an: 109/25/12 Project Number: (20225262-058-(084-089)) Test Substance: Pre-welants Comments: Analytical Balance ID: Sart #1 الن : Anaiyst Tare Analyst Gross: W Species: Hyalella azteca Dried in Oven # 3 from Date: 811012 Time: 1610 to Date: 8(17)12 Time: 0750 Date/Time of Gross Wt.: 8(17)12 @ 0825 Date/Time of Tare Wt.: 8\10\12@1530 DD (>100°C) AFDW (>500°C) Weight Type (Circle): Wet Blot Dry Treatment | Rep. Length (Lot)or Batch Number: \2-022 Boat Units: No. Net Weight Tare Gross Adjusted No. of Mean Wt. per Mean Wt. per No. of Mean Wt. Mean Wt. per Weight (g) | Weight (g) Net Weight Oria. Original Treatment (g) Surv. Treatment (mg) per $(g)^1$ Organism Organisms (mg) Organisms Surviving (Surviving) (mg) (Original) Organism (mg) 15011 0.94193 0.94210 Re-weights 0.00017 2 0.94450 0.94473 0.00023 15 15 3 0.94157 0.94186 0.00029 15 15 4 0.947690.94794 0.00025 15 15 0.93018 10.95044 10.00026 15 15 0.94638 0.94636 Blank -0.00002 Range Mean Test Solution Volume: Loading Rate:

TEST ORGANISM LENGTHS, WEIGHTS, AND LOADING

Project Number: 60225262-058-(084-089)

Species: Hyalella azteca

an: ARCA 125/12 an: W 09/14/12 AE 8/23/12

						Adiustad		Mean Wt./	· ·		Mean Wt./	
		Length	Tare	Gross	Net Weight	Adjusted Net Weight		Original Organism		Number of Surv.	<u> ۱</u>	
Treatment	Rep	Units:	Weight (g)	Weight (g)	(g)	(g)	Organisms	(mg)	(Original)	Organisms	(mg)	(Surviving)
	Α		0.94193	0.94210	0.00017	0.00019	11	0.017	0.0183	11	0.017	0.0183
1	В	·	0.94450	0.94473	0.00023	0.00025	15	0.017		15	0.017	
Initial wts	С		0.94157	0.94186	0.00029	0.00031	15	0.021	•	15	0.021	
1	D		0.94769	0.94794	0.00025	0.00027	15	0.018		15	0.018	
	Е		0.95018	0.95044	0.00026	0.00028	15	0.019		15	0.019	
Blank			0.94638	0.94636	-0.00002							

Summary Statistics for Growth Data (dry wt per original)

<u>Treatment N Min Max Mean SD C.V.</u> Initial wts 5 0.017 0.021 0.0183 0.0015 8.459%

Summary Statistics for Growth Data (dry wt per surviving organism)

,			() [
<u>Treatmen</u>	<u>t</u> <u>N</u>	<u>Min</u>	<u>Max</u>	<u>Mean</u>	<u>SD</u>	<u>C.V.</u>
Initial wts	5	0.017	0.021	0.0183	0.0015	8.459%

TEST ORGANISM LENGTHS, WEIGHTS, AND LOADING a ogluliz 084-UA:1/209/25/12 Project Number 200502-058-089/Test Substance: Sediment Comments: Analytical Balance ID: Sart #1 az teca Dried in Oven # 3 from Date: 08/2012 Time: 1450 Species: ىت :Analyst Tare Analyst Gross: دی to Date: 08/22/12 ime: 0840 Date/Time of Gross Wt.: 08122112 @1115 - 1315 Date/Time of Tare Wt.: 08/20/12 @/2301/390 60.90℃) Dry (>100°C) Lot or Batch Number: (タークスス Weight Type (Circle): Wet AFDW (>500°C) Treatment | Rep. Length Blot Dry **Boat** Units: No. Mean Wt. per Tare Gross Net Weiaht Adjusted No. of Mean-Wt. per No. of Mean Wt. Mean Wt. per Treatment (mg) Weight (g) | Weight (g) (g) Net Weight Oria. Original Treatment Surv. per $(g)^1$ Organism Surviving Organisms (mg) Organisms (Surviving) (Original) (mg) Organism (mg) (Cortrai) Sond 10 0,93169 0.93246 0.00077 3 0.937540.93848 0.00097 10 8 6.94671 0.94735 0.00064 0.94757 0.94835 0.00038 10 94 a 0.94405 0.00061 0,94344 0.93778 0.93862 0.00084 10 7 0.93\97@\0.0088 0.93100 10 0 0.72728 0.92804 0.00076 (Cortrol) A 0.92595 0.00056 Form. Sed 0.92539 io 7 0.94624 0.94669 0.00045 0.928190 0.92860 0.00040 7 0.94663 0.94729 0.00666 lO 0.93369 0,93355 Blank -0.00004 Range Mean Loading Rate: Test Solution Volume:

OW BIZOITZ E

@ cu osterliz is it-weighed pay

one organism was injured auring takedown Procese and was evoluted from dry wt analysis

Aone organism was lost during transfer from oven to dessicator. Bremoved organisms from original part and re-weighed on a new part and got the same net weight.

Add in weight loss of blank boat, if appropriate.

TEST ORGANISM LENGTHS, WEIGHTS, AND LOADING CU 09/14/12 684an: AR09/25/12 Project Number: 100225262 -058-108 V Test Substance: Sediment Comments: Analytical Balance ID: Sart #1 H. noteco Analyst Tare: 📣 Species: Analyst Gross: دى Dried in Oven # 3 from Date: 08/2012 Time: 1450 to Date: 08/22/12Time: 0840 Date/Time of Tare Wt.: 08/20/12 @ 1230 - 1320 Date/Time of Gross Wt.: 08/20/12 @ 1115 - 1315 Dry (≥ 100°C) Weight Type (Circle): Wet Blot Dry AFDW (>500°C) Lot or Batch Number: 12-022 Treatment Rep. Length Boat Units: No. Tare Gross Net Weight Adjusted No. of Mean Wt. per Mean Wt. per No. of Mean Wt. Mean Wt. per Net Weight Weight (g) | Weight (g) Orig. Original Treatment Surv. Treatment (mg) (g) per $(g)^1$ Surviving (Surviving) Organisms Organism (mg) Organisms (mg) Organism (Original) (mg) (contral) Form Sed E 10 0.94365 0.94414 0.00049 0,94006 0.94056 0.00050 10 5 10.92886 10.92949 10.00063 a 0.93050 0.93105 0.00055 10 121 0.93912 0.93990 0.00074 10 0.94254 0.94323 0.00069 10 0.94773 0.00071 0.94702 10 0,94627 0.9462800.0050 10 F 4 0.94755 0.94809 0.00054 F. 0.94769 0.00067 0.94702 10 83 0.93450 0.93532 0.00082° G 9* 0.93164 0.93209 0.00045 Blank Range Mean Loading Rate: est Solution Volume:

Add in weight loss of blank boat, if appropriate.

Ow 08/20112 E Ow 08/22/12 E; re-weighed part

¹⁰ Removed organisms from original from and weighed on a new tored from Net Weight remained the same,

^{*} a very small organisms @ 3 Large organisms

TEST ORGANISM LENGTHS, WEIGHTS, AND LOADING a callelia Project Number (2003 SOLO) - 058 - 084 Test Substance: Sediment an: neoglesto Comments: Analytical Balance ID: Sart #1 H. Oztera Species: ده :Analyst Tare Analyst Gross: வ Dried in Oven # 3 from Date: @8/20/12 Time: 1450 to Date: 08/22/12Time: 0840 Date/Time of Gross Wt.: 08122112 @1115-1315 Date/Time of Tare Wt.: 08/20/12 @1230 - 1320 (Dry (≤100°C) Weight Type (Circle): Wet Lot or Batch Number: 12 · 022 Treatment Rep. Length Blot Drv AFDW (>500°C) Boat Units: Nο. Net Weight Tare Gross Adjusted No. of Mean Wt. per Mean Wt. per No. of Mean Wt. Mean Wt. per Orig. Weight (g) | Weight (g) Net Weight Original Treatment Surv. Treatment (mg) (g) per $(g)^1$ Surviving Organisms Organism (mg) Organisms (Surviving) (mg) (Original) Organism (mg) 427 0.44085 0.60080 0.94005 10 0.940520 0.000960 0.93956 10 10 0,93512 0,93590 0,00078 <u>|0.94621 | 0.94</u>707 | 980000 10 6.94469 0.94559 10.00090 10 10* 0.94040 0.94113 0.00073 5 q 0.92564 0.92652 0.00088 10 0.92713 0.92795 0.00682 H2M9 0.93101 0.93182 0.00081 10 A 0.92765 0.92830 0.00065 0.92202 0.92281 0.00079 10 8 0.93663 0.93730 0.00067 Blank Range Mean

Loading Rate:

Test Solution Volume:

Add in weight loss of blank boat, if appropriate.

① cu 08/22/12 E; re-ucigned ton

② cu 08/22/12 Up

[@] Removed organisms from original pan and re-weighed in a new tated pan. Net weight did not crange.

TEST ORGANISM LENGTHS, WEIGHTS, AND LOADING W 09/14/12 Project Number 6002 5262 - 058 - 087 Test Substance: Sediment aA: AR09/25/12 Comments: Analytical Balance ID: Sart #1 Dried in Oven # 3 from Date: 08/10/12Time: 1450 027010 Analyst Tare: வ Analyst Gross: دین Species: to Date:08/22/12 Time: 0840 Date/Time of Gross Wt.: 0812212 @1115-1315 Date/Time of Tare Wt.: 08/20/12 @ 1230 - 1320 (Dry (>100°C) (Lot or Batch Number: 12-02-2 Weight Type (Circle): Wet Blot Dry AFDW (>500°C) Treatment | Rep. Boat Length Units: No. Mean Wt. per Tare Gross Net Weight Adjusted No. of Mean Wt. per Mean Wt. per No. of Mean Wt. Treatment (mg) Weight (g) | Weight (g) Net Weight Oria. Original Treatment Surv. (g) per $(g)^1$ (mg) Surviving (Surviving) Organisms Organism Organisms (mg) (Original) Organism (ma) 10* HZM 0.92769 0.92831 0.00062 0.92657 0.92733 0.00076 10 0.00088® 5 0.91700 0.91788 10 7 0.91791 0.00051 0.91740 **(** USC 10 0.91905 0.00105 0.91800 0.92287 0.00088 10 0.92199 0.92328 0.92404 0.00076 10 9 0.92342 0.92407 0.00065 0, 926276 0.00068 10. 0.92551 10 0.92722 0.92808 0.00086 70° 0,92905 0.92934 0.00069 10* 0.92489 0.92553 0.00064 Blank Range Mean

Loading Rate:

Test Solution Volume:

Add in weight loss of blank boat, if appropriate.

^{*3} very small organisms

[@] cibanisms visibin lands

Ow 08/22/12 E

[@] Removed organisms from original pan and re-weighed on a new taxed Pan. Net weight did not change,

[@] a very omall organisms

Page <u>II</u> of <u>33</u> FCETL QA Form No. 010 Revision 5 Effective 08/99

TEST ORGANISM LENGTHS, WEIGHTS, AND LOADING en 00/11/12 Project Number: (2002) SOCO - DSB - 087 Test Substance: Sediment AN: 109(25/1) Comments: Analytical Balance ID: Sart #1
Dried in Oven # <u>೨</u> from Date: <u>০৪/২০/৮</u>Time: ৸50
to Date: <u>০৪/৮২</u>/৮Time: ০৪৸০ 02teca Species: Analyst Tare: الم Analyst Gross: W Date/Time of Gross Wt.: 08122/12 @1115-1315 Date/Time of Tare Wt.: 08/20/12 @ 1230 - 1320 (66-90°C) Dry (>100°C) Weight Type (Circle): Wet Blot Dry AFDW (>500°C) Lot or Batch Number: 12-022 Treatment Rep. Length. **Boat** Units: No. Mean Wt. per Net Weight Adjusted No. of Tare Gross Mean Wt. per Mean Wt. per No. of Mean Wt. Net Weight Weight (g) | Weight (g) Original (g) Oria. Treatment Surv. per Treatment (mg) $(g)^1$ Organism Surviving (Surviving) Organisms (mg) Organisms (mg) (Original) Organism (mg) 10 @ LSLA 0.93206 0.93315 0.00109 0.93683 0.93764 0.00081 10 0.94179 0.94275 0.00096 10 0.94462 0.94552 0.00096 10 0.94596 0.94674 0.00078 વ 10 0,94679 0,94771 0.00092 0.94089 0.94181 0.00092 10 0,93311 0,93399 0.00088 10 EFSC 0.92987 0.93048 0.00061 10 8 0.93466 0.93511 0.00045 0.93144 0.93206 0.00062 10 10 0.93077 0.93137 0.00060 Blank Range Mean Loading Rate: Test Solution Volume:

Page 15 of 33 FCETL QA Form No. 010 Revision 5 Effective 08/99

TEST ORGANISM LENGTHS, WEIGHTS, AND LOADING w09/14/12 Project Number: 60925262 - 088-089 Test Substance: Sedimont OA: ARO9/25/12 Comments: Analytical Balance ID: Sart #1 aztera Dried in Oven # 3 from Date: 08/20/12Time: 1450 to Date: 08/22/12 Time: 0840 كنة :Analyst Tare Species: Analyst Gross: 📣 Date/Time of Tare Wt.: 08/20/12 @ 1230 -1320 Date/Time of Gross Wt.: 08/22/12 @ 1115 - 1315 00-90°C) Dry (>100°C) Weight Type (Circle): Wet AFDW (>500°C) Length Blot Dry Lot or Batch Number: 12-022 Treatment | Rep. Boat Units: Nο. No. of Tare Gross Net Weight Adjusted Mean-Wt. per Mean Wt. per No. of Mean Wt. Mean Wt. per Net Weight Weight (g) Weight (g) Original · (g) Orig. Treatment Surv. per Treatment (mg) $(g)^1$ Surviving Organisms Organism (mg) (Surviving) Organisms (mg) (Original) Organism (mg) EFSC. 10.* 0.92648 0.92696 0.00048 90 0.92586 0.92631 0.00045 10* 5 0.92668 0.92726 0.00058 0.93488 0.93559 0.0071 Ю Blank Range Mean Loading Rate: Test Solution Volume:

an: woogles/12

TEST ORGANISM LENGTHS, WEIGHTS, AND LOADING

Project Number:

60225262-058-(084-089)

Species:

Hyalella azteca

A6 8/23/12

Treatment	Rep	Length Units:	Tare Weight (g)	Gross Weight (g)	Net Weight (g)	Adjusted Net Weight (g)	No of Orig. Organisms	Original Organism	(mg)	Number of Surv. Organisms	Surviving Organism	Mean Wt./ Treatment (mg) (Surviving)
	Α		0.93169	0.93246	0.00077	0.00081	10	0.081		10	0.081	
Sand	В		0.93751	0.93848	0.00097	0.00101	10	0.101		10	0.101	
Control	C		0.94671	0.94735	0.00064	0.00068	10	0.068		8	0.085	
1 1	D		0.94757	0.94835	0.00078	0.00082	10	0.082		10	0.082	
	Е		0.94344	0.94405	0.00061	0.00065	9	0.072		9	0.072	
1 1	F		0.93778	0.93862	0.00084	0.00088	10	0.088		10	0.088	
	G		0.93100	0.93188	0.00088	0.00092	10	0.092		10	0.092	
	Н		0.92728	0.92804	0.00076	0.00080	9	0.089	0.0841	9	0.089	0.0863
Blank			0.93359	0.93355	-0.00004							

Project Number:

60225262-058-(084-089)

Species:

Hyalella azteca

Summary Statistics for Growth Data (dry wt per original organism)

<u>Treatment</u> <u>N</u> <u>Min</u> <u>Max</u> <u>Mean</u> <u>SD</u> <u>C.V.</u> Sand Control 8 0.068 0.101 0.0841 0.0107 12.709%

Summary Statistics for Growth Data (dry wt per surviving organism)

<u>Treatment</u> <u>N</u> <u>Min</u> <u>Max</u> <u>Mean</u> <u>SD</u> <u>C.V.</u> Sand Control 8 0.072 0.101 0.0863 0.0085 9.842%

TEST ORGANISM LENGTHS, WEIGHTS, AND LOADING

an: w 09/14/12

Project Number:

60225262-058-(084-089)

Species:

Hyalella azteca

A8 8/03/12

Treatment	Rep	Length Units:	Tare Weight (g)	Gross Weight (g)	Net Weight (g)	Adjusted Net Weight (g)	No of Orig. Organisms	Original Organism	Mean Wt./ Treatment (mg) (Original)	Number of Surv. Organisms	Organism	Mean Wt./ Treatment (mg) (Surviving)
	Α		0.92539	0.92595	0.00056	0.00060	10	0.060		10	0.060	
Form Sed	В		0.94624	0.94669	0.00045	0.00049	10	0.049		7	0.070	
Control	C		0.92820	0.92860	0.00040	0.00044	- 10	0.044		7	0.063	
	D		0.94663	0.94729	0.00066	0.00070	10	0.070		10	0.070	
	Ē		0.94365	0.94414	0.00049	0.00053	10	0.053		10	0.053	
	F		0.94006	0.94056	0.00050	0.00054	10	0.054		10	0.054	
l	G	,	0.92886	0.92949	0.00063	0.00067	10	0.067		9	0.074	
	H		0.93050	0.93105	0.00055	0.00059	10	0.059	0.0570	10	0.059	0.0629
Blank			0.93359	0.93355	-0.00004					· · · · ·		

Project Number:

60225262-058-(084-089)

Species:

Hyalella azteca

Summary Statistics for Growth Data (dry wt per original organism)

<u>Treatment</u> N Min Max Mean SD C.V. Form Sed Control 8 0.044 0.070 0.0570 0.0088 15.409%

Summary Statistics for Growth Data (dry wt per surviving organism)

<u>Treatment</u> <u>N</u> <u>Min</u> <u>Max</u> <u>Mean</u> <u>SD</u> <u>C.V.</u> Form Sed Control 8 0.053 0.074 0.0629 0.0079 12.529%

TEST ORGANISM LENGTHS, WEIGHTS, AND LOADING

Project Number: 60225262-058-(084-089)

Species:

Hyalella azteca

A8 8/23/18

												0 - 1
							Mr. =	Mean Wt./	•	ſ	Mean Wt./	
i l						Adjusted		Original	Treatment	Number of	Surviving	Treatment
		Length	Tare	Gross	Net	Net	No of Orig.	Organism	(mg)	Surv.	Organism	(mg)
Treatment	Rep	Units:	Weight (g)	Weight (g)	Weight (g)	Weight (g)	Organisms	(mg)	(Original)	Organisms	(mg)	(Surviving)
	Α		0.93916	0.93990	0.00074	0.00078	10	0.078		10	0.078	
LJH	В		0.94254	0.94323	0.00069	0.00073	10	0.073		10	0.073	
	С		0.94702	0.94773	0.00071	0.00075	10	0.075		10	0.075	
	D		0.94627	0.94695	0.00068	0.00072	10	0.072		10	0.072	
1 [E		0.94755	0.94809	0.00054	0.00058	10	0.058		9	0.064	
	F		0.94702	0.94769	0.00067	0.00071	10 ·	0.071		10	0.071	
	G		0.93450	0.93532	0.00082	0.00086	10	0.086		8	0.108	
	Н		0.93164	0.93209	0.00045	0.00049	10	0.049	0.0703	9	0.054	0.0744
Blank			0.93359	0.93355	-0.00004							

Project Number:

60225262-058-(084-089)

Species:

Hyalella azteca

Summary Statistics for Growth Data (dry wt per original organism)

<u>Treatment</u> <u>N</u> <u>Min</u> <u>Max</u> <u>Mean</u> <u>SD</u> <u>C.V.</u> LJH 8 0.049 0.086 0.0703 0.0116 16.526%

Summary Statistics for Growth Data (dry wt per surviving organism)

<u>Treatment</u> N Min Max Mean SD C.V.
LJH 8 0.054 0.108 0.0744 0.0152 20.476%

Dage 19 of 33

GA: AR09/25/12

TEST ORGANISM LENGTHS, WEIGHTS, AND LOADING

Project Number:

60225262-058-(084-089)

Species:

Hyalella azteca

DE 8/23/10-

									Mean Wt./			Mean Wt./
l [Adjusted		Original	Treatment	Number of	Surviving	Treatment
		Length	Tare	Gross	Net .	Net	No of Orig.	Organism	(mg)	Surv.	Organism	(mg)
Treatment	Rep	Units:	Weight (g)	Weight (g)	Weight (g)	Weight (g)	Organisms	(mg)	(Original)	Organisms	(mg)	(Surviving)
	Α		0.94005	0.94085	0.00080	0.00084	10	0.084		10	0.084	
LSH	В		0.93956	0.94047	0.00091	0.00095	10	0.095		10	0.095	
LON	C		0.93512	0.93590	0.00078	0.00082	10	0.082		10	0.082	
	D		0.94621	0.94707	0.00086	0.00090	10	0.090		10	0.090	
[E		0.94469	0.94559	0.00090	0.00094	10	0.094		10	0.094	
	F		0.94040	0.94113	0.00073	0.00077	10	0.077		10	0.077	
l [G		0.92564	0.92652	0.00088	0.00092	10	0.092		9	0.102	
[Н		0.92713	0.92795	0.00082	0.00086	10	0.086	0.0875	10	0.086	0.0888
										•		
Blank			0.93359]	0.93355	-0.00004							

Project Number:

60225262-058-(084-089)

Species:

Hyalella azteca

Summary Statistics for Growth Data (dry wt per original organism)

Treatment N <u>Min</u> <u>Max</u> <u>Mean</u> <u>SD</u> <u>C.V.</u> LSH 8 0.077 0.095 0.0875 0.0063 7.228%

Summary Statistics for Growth Data (dry wt per surviving organism)

<u>N</u> 8 <u>SD</u> <u>C.V.</u> <u>Treatment</u> <u>Min</u> <u>Max</u> Mean LSH 0.077 0.102 0.0888 0.0081 9.165%

Page 20 00 33

ania oglializ

QA: ARO9/25/12

TEST ORGANISM LENGTHS, WEIGHTS, AND LOADING

Project Number:

60225262-058-(084-089)

Species: Hyalella azteca

888318

Treatment	Don	Length Units:	Tare	Gross	Net		No of Orig. Organisms		Treatment (mg)	Number of Surv. Organisms	Surviving Organism	Mean Wt./ Treatment (mg) (Surviving)
Treatment	Rep	Villo.									(0)	(Our viving)
	Α		0.93101	0.93182			10	0.085		9	0.094	
MSH	В		0.92765	0.92830	0.00065	0.00069	10	0.069		10	0.069	
IVION	C		0.92202	0.92281	0.00079	0.00083	10	0.083		10	0.083	
	D		0.93663	0.93730	0.00067	0.00071	10	0.071		8	0.089	
	E		0.92769	0.92831	0.00062	0.00066	10	0.066		10	0.066	
1	F		0.92657	0.92733	0.00076	0.00080	10	0.080		10	0.080	
	G		0.91700	0.91788	0.00088	0.00092	10	0.092		10	0.092	
i i	Н		0.91740	0.91791	0.00051	0.00055	10	0.055	0.0751	7	0.079	0.0815
Blank			0.93359	0.93355	-0.00004							

Project Number:

60225262-058-(084-089)

Species:

Hyalella azteca

Summary Statistics for Growth Data (dry wt per original organism)

<u>Treatment</u> <u>N</u> <u>Min</u> <u>Max</u> <u>Mean</u> <u>SD</u> <u>C.V.</u> MSH 8 0.055 0.092 0.0751 0.0120 15.996%

Summary Statistics for Growth Data (dry wt per surviving organism)

<u>Treatment</u> <u>N</u> <u>Min</u> <u>Max</u> <u>Mean</u> <u>SD</u> <u>C.V.</u> MSH 8 0.066 0.094 0.0815 0.0103 12.620%

Page 31 of 33 on: 00 09/14/12 OA: A209/25/12

TEST ORGANISM LENGTHS, WEIGHTS, AND LOADING

Project Number:

60225262-058-(084-089)

Species:

Hyalella azteca

J8 8/23/10

Treatment	Rep	Length Units:	Tare	Gross Weight (a)	Net Weight (a)	Adjusted Net Weight (a)	No of Orig. Organisms	Organism	Treatment (mg)	Number of Surv. Organisms	Mean Wt./ Surviving Organism (mg)	Mean Wt./ Treatment (mg) (Surviving)
Treatment	A	O mo	0.91800					0.109	, ,	10	0.109	(Cui viviiig)
	В		0.92199		0.00088			0.092		10	0.092	
USC	С		0.92328	0.92404	0.00076	0.00080	10	0.080		10	0.080	
	D		0.92342	0.92407	0.00065	0.00069	10	0.069		9	0.077	
l . [Е		0.92551	0.92619	0.00068	0.00072	10	0.072		10	0.072	
	F		0.92722	0.92808	0.00086	0.00090	10	0.090		10	0.090	
1 [G		0.92905	0.92974	0.00069	0.00073	10	0.073		10	0.073	
	Н		0.92489	0.92553	0.00064	0.00068	10	0.068	0.0816	10	0.068	0.0826
Blank			0.93359	0.93355	-0.00004							

Project Number:

60225262-058-(084-089)

Species:

Hyalella azteca

Summary Statistics for Growth Data (dry wt per original organism)

<u>Treatment</u> N Min Max Mean SD C.V. USC 8 0.068 0.109 0.0816 0.0144 17.583%

Summary Statistics for Growth Data (dry wt per surviving organism)

<u>Treatment</u> N Min Max Mean SD C.V. USC 8 0.068 0.109 0.0826 0.0136 16.500%

TEST ORGANISM LENGTHS, WEIGHTS, AND LOADING

OA: 00 00/14/12 OA: A209/25/12

Project Number:

60225262-058-(084-089)

Species:

Hyalella azteca

8/23/12

Treatment	Rep	Length Units:	Tare Weight (g)	Gross Weight (g)	Net Weight (g)		No of Orig. Organisms	Original Organism	(mg)	Number of Surv. Organisms	Mean Wt./ Surviving Organism (mg)	Mean Wt./ Treatment (mg) (Surviving)
	Α		0.93206	0.93315	0.00109	0.00113	10	0.113		10	0.113	
LSLA	В		0.93683	0.93764	0.00081	0.00085	10	0.085		10	0.085	
LOLA	С		0.94179	0.94275	0.00096	0.00100	10	0.100		10	0.100	
[D .		0.94462	0.94552	0.00090	0.00094	10	0.094		10	0.094	
1 [Е		0.94596	0.94674	0.00078	0.00082	10	0.082		9	0.091	
	F		0.94679	0.94771	0.00092	0.00096	10	0.096		10	0.096	
	G		0.94089	0.94181	0.00092	0.00096	10	0.096		10	0.096	
	Н		0.93311	0.93399	0.00088	0.00092	10	0.092	0.0948	10	0.092	0.0959
Blank			0.93359	0.93355	-0.00004							

Project Number:

60225262-058-(084-089)

Species:

Hyalella azteca

Summary Statistics for Growth Data (dry wt per original organism)

<u>Treatment N Min Max Mean SD C.V.</u> LSLA 8 0.082 0.113 0.0948 0.0095 10.009%

Summary Statistics for Growth Data (dry wt per surviving organism)

<u>Treatment</u> <u>N</u> <u>Min</u> <u>Max</u> <u>Mean</u> <u>SD</u> <u>C.V.</u> LSLA 8 0.085 0.113 0.0959 0.0082 8.544%

TEST ORGANISM LENGTHS, WEIGHTS, AND LOADING

QA: 09/14/12 QA: AR09/25/12

Project Number:

60225262-058-(084-089)

Species:

Hyalella azteca

AZ 8/23/10

						Adjusted		Mean Wt./ Original		Number of		Mean Wt./ Treatment
		Length	Tare	Gross	Net	•	No of Orig.	Organism	(mg)	Surv.	Organism	(mg)
Treatment	Rep	Units:					Organisms	_	,	Organisms		(Surviving)
	Α		0.92987	0.93048	0.00061	0.00065	10	0.065		10	0.065	
EFSC	В		0.93466	0.93511	0.00045	0.00049	10	0.049		8	0.061	
EFSC	С		0.93144	0.93206	0.00062	0.00066	10	0.066		10	0.066	
1	D		0.93077	0.93137	0.00060	0.00064	10	0.064		10	0.064	
	E		0.92648	0.92696	0.00048	0.00052	10	0.052		10	0.052	
	<u> </u>		0.92586	0.92631	0.00045	0.00049	10	0.049	,	9	0.054	
	G		0.92668	0.92726	0.00058	0.00062	10	0.062		10	0.062	
	Н		0.93488	0.93559	0.00071	0.00075	10	0.075	0.0603	10	0.075	0.0625
Blank	<u>-</u>		0.93359	0.93355	-0.00004						•	

Project Number:

60225262-058-(084-089)

Species:

Hyalella azteca

Summary Statistics for Growth Data (dry wt per original organism)

<u>Treatment</u> <u>N</u> <u>Min</u> <u>Max</u> <u>Mean</u> <u>SD</u> <u>C.V.</u> EFSC 8 0.049 0.075 0.0603 0.0093 15.513%

Summary Statistics for Growth Data (dry wt per surviving organism)

<u>Treatment</u> <u>N</u> <u>Min</u> <u>Max</u> <u>Mean</u> <u>SD</u> <u>C.V.</u> EFSC 8 0.052 0.075 0.0625 0.0071 11.384% Toxstat Version 3.5, Study #60225262-058-(084-089)

Coeur Alaska, Inc.

Hyalella azteca 10-day Sub Chronic Study

List Data and Summary for Growth Per ORIGINAL Organism-Controls only

Page 24 of 33

Out 000114112

Out 00125/12

OB 8194/13

Title: 60225262-058-(084-089) H.azteca-Growth PO-controls

File: 0584cgpo.dat

Transform:

NO TRANSFORMATION

Number of Groups: 2

GRP	IDENTIFICATION	REP	VALUE	TRANS VALUE	
1	Sand	1.	0.0810	0.0810	
1	Sand	2	0.1010	0.1010	
1	Sand	3	0.0680	0.0680	
1	Sand	4	0.0820	0.0820	
1	Sand	5	0.0720	0.0720 •	
1	Sand	6	0.0880	, 0.0880	
1	Sand	7	0.0920	0.0920	
1	Sand	8	0.0890	0.0890	
2	Form Sed	1.	0.0600	0.0600	
2	Form Sed	2	0.0490	0.0490	
2	Form Sed	3	0.0440	0.0440	
2	Form Sed	4	0.0700	0.0700	
2	Form Sed	5	0.0530	0.0530	
2	Form Sed	6	0.0540	0.0540	
2	Form Sed	7	0.0670	0.0670	
2	Form Sed	8	0.0590	0.0590	

Title: 60225262-058-(084-089) H.azteca-Growth PO-controls

File:

0584cgpo.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

TABLE 1 of 2

TABLE 2 of 2

GRP IDENTIFICATION N MIN MAX MEAN 1 Sand 8 0.0680 0.1010 0.0841 2 Form Sed 8 0.0440 0.0700 0.0570					i i	
	GR	P IDENTIFICATION	N N	MIN	MAX	MEAN
2 Form Sed 8 0.0440 0.0700 0.0570	1	Sand	8	0.0680	0.1010	0.0841
	2	Form Se	d 8	0.0440	0.0700	0.0570

Title: 60225262-058-(084-089) H.azteca-Growth PO-controls

Summary Statistics on Data

File:

0584cgpo.dat

Transform:

NO TRANSFORMATION

GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %
1 2	Sand Form Sed	0.0001	0.0107	0.0038	12.7623 15.4089

Toxstat Version 3.5, Study #60225262-058-(084-089)

Coeur Alaska, Inc.

Hyalella azteca 10-day Sub Chronic Study

Analysis of Growth Per ORIGINAL Organism-Controls only (Sand and Form Sed)

Page 25 of 33

QA:00 09114112

QA: AR09/25/12

-61/46/8 8D

Title: 60225262-058-(084-089) H.azteca-Growth PO-controls

File:

0584cgpo.dat

Transform:

NO TRANSFORMATION

Shapiro - Wilk's Test for Normality

D = 0.0013

W = 0.9794

Critical W = 0.8440 (alpha = 0.01 , N = 16)

W = 0.8870 (alpha = 0.05, N = 16)

Data PASS normality test (alpha = 0.01). Continue analysis.

Title: 60225262-058-(084-089) H.azteca-Growth PO-controls

File:

0584cgpo.dat

Transform:

NO TRANSFORMATION

F-Test for Equality of Two Variances

GROUP	IDENTIFICATION	VARIANCE	F .	
1	Sand	0.0001		
2	Form Sed	0.0001	1.4942	
		· 		

(p-value = 0.6093)

Critical F = 8.8854 (P=0.01, 7, 7)

4.9949 (P=0.05, 7, 7)

Since F <= Critical F, FAIL TO REJECT Ho: Equal Variances (alpha = 0.01).

Page <u>**20</u> of <u>33</u></u>**

an: ARU9/25/12 QA:0009/14/12

61/4618 3A

Coeur Alaska, Inc. Hyalella azteca 10-day Sub Chronic Study

Analysis of Growth Per ORIGINAL Organism-Controls only (Sand and Form Sed)

Title: 60225262-058-(084-089) H.azteca-Growth PO-controls

File: 0584cgpo.dat Transform:

NO TRANSFORMATION

DF	ss	MS	F
1 14	0.0029	0.0029 0.0001	30.5915
15	0.0043		
	1 14	1 0.0029 14 0.0013	1 0.0029 0.0029 14 0.0013 0.0001

(p-value = 0.0001)

Critical F = 8.8616 (alpha = 0.01, df = 1,14) = 4.6001 (alpha = 0.05, df = 1,14)

Since F > Critical F REJECT Ho: All equal (alpha = 0.05)

Title: 60225262-058-(084-089) H.azteca-Growth PO-controls

File: 0584cgpo.dat Transform: NO TRANSFORMATION

	2 Sample t-Test -	TABLE 1 OF 2	Ho: Control	<treatme< th=""><th>nt</th></treatme<>	nt
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	t STAT	SIG 0.05
1	Sand	0.0841	0.0841		
2 	Form Sed	0.0570	0.0570	5.5310	*
Equa	l var: t critical valu	ie = 1.7613 (1 Tailed, $alpha = 0.05$	df = 1	4)

(p-value = 0.0000)TRANSFORMED MEAN CALCULATED IN SIG GROUP IDENTIFICATION MEAN ORIGINAL UNITS T STAT 0.05

-----0.0841 Sand 0.0841 Form Sed 0.0570 0.0570 5.5310 *

Unequal Var: t critical value = 1.7709 (1 Tailed, alpha = 0.05, df = 13) (p-value = 0.0000)

2 Sample t-Test	-	TABLE 2 OF 2	Ho: Control <treatment< th=""></treatment<>

Equal	Variances:				
GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL
1 2	Sand Form Sed	8	0.0086	10.3	0.0271

Unequal	/ariances:	

GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL
1 2	Sand Form Sed	8 8	0.0087	10.3	0.0271

Toxstat Version 3.5, Study #60225262-058-(084-089)

Coeur Alaska, Inc.

Hyalella azteca 10-day Sub Chronic Study

List Data and Summary of Growth Per SURVIVING Organism-Controls only

D8 8/24/12-

an.w 09114/12

Title: 60225262-058-(084-089) H.azteca-Growth PS-controls 0584cgps.dat Transform:

File:

Number of Groups: 2

NO TRANSFORMATION

AA: NRO9/25/12

GRP	IDENTIFICATION	REP	VALUE	TRANS VALUE
1	Sand	1	0.0810	0.0810
1	Sand	2	0.1010	0.1010
1	Sand	3	0.0850	0.0850
ĺ	Sand	4	0.0820	0.0820
1.	Sand	5	0.0720	0.0720
1.	Sand	6	0.0880	0.0880
1	Sand	7	0.0920	0.0920
1	Sand	8	0.0890	0.0890
2	Form Sed	1	0.0600	0.0600
2	Form Sed	2	0.0700	0.0700
2	Form Sed	3	0.0630	0.0630
2	Form Sed	4	0.0700	0.0700
2	Form Sed	5	0.0530	0.0530
2	Form Sed	6	0.0540	0.0540
2	Form Sed	7	0.0740	0.0740
2	Form Sed	8	0.0590	0.0590

Title: 60225262-058-(084-089) H.azteca-Growth PS-controls

File:

0584cgps.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

TABLE 1 of 2

TABLE 2 of 2

GRP	IDENTIFICATION	N	MIN	MAX	MEAN	
1	Sand	8	0.0720	0.1010	0.0862	
. 2	Form Sed	8	0.0530	0.0740	0.0629	

Title: 60225262-058-(084-089) H.azteca-Growth PS-controls

Summary Statistics on Data

File:

0584cgps.dat

Transform:

NO TRANSFORMATION

GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %
1	Cand	0.0001	0.0005	0 0000	0.0100

Sand 0.0001 0.0085 0.0030 9.9109 0.0078 0.0028 Form Sed 0.0001

12.3909

Page $\frac{28}{2}$ of $\frac{33}{2}$

Toxstat Version 3.5, Study #60225262-058-(084-089)

Coeur Alaska, Inc.

Hyalella azteca 10-day Sub Chronic Study

Analysis of Growth Per SURVIVING Organism-Controls only (Sand and Form Sed)

Title: 60225262-058-(084-089) H.azteca-Growth PS-controls

File:

0584cgps.dat

Transform:

NO TRANSFORMATION

088/24/12 anio 09/14/12 an: 1/209/25/12

Shapiro - Wilk's Test for Normality

D = 0.0009

W = 0.9882

Critical W = 0.8440 (alpha = 0.01 , N = 16)

W = 0.8870 (alpha = 0.05, N = 16)

Data (PASS) normality test (alpha = 0.01). Continue analysis.

Title: 60225262-058-(084-089) H.azteca-Growth PS-controls

File:

0584cgps.dat

Transform:

NO TRANSFORMATION

F-Test for Equality of Two Variances

GROUP	IDENTIFICATION	VARIANCE	F	
1	Sand	0.0001	•	
2	Form Sed	0.0001	1.2039	•

(p-value = 0.8129)

Critical F = 8.8854 (P=0.01, 7, 7) 4.9949 (P=0.05, 7, 7)

Since F <= Critical F, FAIL TO REJECT Ho: Equal Variances (alpha = 0.01).

Toxstat Version 3.5, Study #60225262-058-(084-089)

Coeur Alaska, Inc.

Hyalella azteca 10-day Sub Chronic Study

Analysis of Growth Per SURVIVING Organism-Controls only (Sand and Form Sed)

ANOVA Table

Title: 60225262-058-(084-089) H.azteca-Growth PS-controls

File:

0584cgps.dat

Transform:

NO TRANSFORMATION

Q4:0009/14/12 an: MO9 125/12

SOURCE	DF	SS	MS	F
Between	1	0.0022	0.0022	32.6769
Within (Error)	14	0.0009	0.0001	
Total	1.5	0.0031		

Critical F = 8.8616 (alpha = 0.01, df = 1.14) = 4.6001 (alpha = 0.05, df = 1,14)

Since F > Critical F REJECT Ho: All equal (alpha = 0.05)

	2 Sample t-Test -	TABLE 1 OF 2	Ho: Control	<treatme< th=""><th>nt </th></treatme<>	nt
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	t STAT	SIG 0.05
1	Sand	0.0862	0.0862	,	
. 2	Form Sed	0.0629	0.0629	5.7164	*
Pojua	l Var t critical value	e = 1.7613 (1	Tailed, alpha = 0.05 (p-value =	•	4)

TRANSFORMED MEAN CALCULATED IN SIG GROUP IDENTIFICATION T STAT 0.05 MEAN ORIGINAL UNITS -----Sand 0.0862 0.0862 Form Sed 0.0629 0.0629 5.7164 *

Unequal Var: t critical value = 1.7613 (1 Tailed, alpha = 0.05, df = 14) (p-value = 0.0000)

	2 Sample t-Test -	TABLE 2	2 OF 2 F		l <treatment< th=""></treatment<>
Equal	Variances:				
GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)		DIFFERENCE FROM CONTROL
1 2	Sand Form Sed	8	0.0072	8.4	0.0234
Uneq	ual Variances:				
GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)		DIFFERENCE FROM CONTROL
1	Sand	8			
2	Form Sed	8	0.0072	8.4	0.0234

Page 30 of 33

Toxstat Version 3.5, Study #60225262-058-(084-089)

Coeur Alaska, Inc.

Hyalella azteca 10-day Sub Chronic Study

List Data for Growth Per SURVIVING Organism - Form Sediment as control

21/14/18 301

Title: 60225262-058-(084-089)-H.azteca-Growth PS-Form Sed

File: 0584FGPS.DAT

Transform: NO TRANSFORMATION

Number of Groups: 7

GRP	IDENTIFICATION	REP	VALUE	TRANS VALUE
1	Form Sed	1	0.0600	0.0600
1	Form Sed	2	0.0700	0.0700
1	Form Sed	3	0.0630	0,0630
1.	Form Sed	4	0.0700	0.0700
1	Form Sed	5	0.0530	0.0530
1	Form Sed	6	0.0540	0.0540
1.	Form Sed	7	0.0740	0.0740
1	Form Sed	8	0.0590	0.0590
2	LJH	1	0.0780	0.0780
Ś	LJH	2	0.0730	0.0730
2	LJH	3	0.0750	0.0750
2	LJH	4	0.0720	0.0720
2	LJH	5	0.0640	0.0640
2	LJH	6	0.0710	0.0710
2	LJH	7	0.1080	0.1080
. 2	LJH	8	0.0540	0.0540
3	LSH	1.	0.0840	0.0840
3	LSH	2	0,0950	0.0950
3	LSH	. 3	0.0820	0.0820
3	LSH	4	0.0900	0.0900
3	LSH	5	0.0940	0.0940
3	LSH	6	0.0770	0.0770
3	LSH	7	0.1020	0.1020
3	LSH	8	0.0860	0.0860
4	MSH	1	0.0940	0.0940
4 4	MSH	2	0.0690	0.0690
4	MSH MSH	3 4	0.0830	0.0830
4		4 5	0.0890	0.0890
4	MSH MSH	6	0.0660	0.0660
4	MSH	7	0.0800 0.0920	0.0800
4	MSH	8	0.0790	0.0920 0.0790
5	USC	1	0.1090	0.1090
5	USC	2	0.0920	0.0920
5	USC	` 3	0.0800	0.0800
5	USC	4	0.0770	0.0770
5	USC	5	0.0720	0.0720
5	USC	6	0.0900	0.0900
5	USC	7	0.0730	0.0730
5	USC	8	0.0680	0.0680
6	LSLA	1	0.1130	0.1130
6	LSLA	2	0.0850	0.0850
6	LSLA	3	0.1000	0.1000
6	LSLA	4	0.0940	0.0940
6	LSLA	5	0.0910	0.0910
- 6	LSLA	6	0.0960	0.0960
6	LSLA	7	0.0960	0.0960
6	LSLA	8	0.0920	0.0920
· 7	EFSC	1	0.0650	0.0650
7	EFSC	2	0.0610	0.0610
7	EFSC	3	0.0660	0.0660

Toxstat Version 3.5, Study #60225262-058-(084-089)

Coeur Alaska, Inc.

Hyalella azteca 10-day Sub Chronic Study

Page 31 of 33

SIP1/60 W:ND

A8 812412

List Data and Summary for Growth Per SURVIVING Organism - Form Sediment as control (A) 1/25/12

7 EFSC 5 0.0520 0.0520	
7 EFSC 6 0.0540 0.0540	
7 EFSC 7 0.0620 0.0620	
7 EFSC 8 0.0750 0.0750	

Title: 60225262-058-(084-089)-H.azteca-Growth PS-Form Sed

0584FGPS.DAT Transform:

NO TRANSFORMATION

Summary Statistics on Data

TABLE 1 of 2

GRP	IDENTIFICATION	N	MIN	MAX	MEAN
1	Form Sed	8	0.0530	0.0740	0,0629
2	LJH	8	0.0540	0.1080	0.0744
3	LSH	8	0.0770	0.1020	0.0888
4	MSH	8	0.0660	0.0940	0.0815
5	USC	8	0.0680	0.1090	0.0826
6	LSLA	8	0.0850	0.1130	0.0959
7	EFSC	8	0.0520	0.0750	0.0624

Title: 60225262-058-(084-089)-H.azteca-Growth PS-Form Sed

0584FGPS.DAT

Transform:

NO TRANSFORMATION

Summary	Stati	atics	on	Data

TABLE 2 of 2

					the state of the s
GRP	IDENTIFICATION	VARIANCE	, SD	SEM	C.V. %
1.	Form Sed	0.0001	0.0078	0.0028	12.3909
2	LJH	0.0002	0.0155	0.0055	20.8659
3	LSH	0.0001	0.0081	0.0029	9.1092
4	MSH	0.0001	0.0102	0.0036	12.5301
5	USC -	0.0002	0.0136	0.0048	16,4672
6	LSLA	0.0001	0.0082	0.0029	8.5546
. 7	EFSC	0.0001	0.0072	0.0025	11.5271

Toxstat Version 3.5, Study #60225262-058-(084-089) Coeur Alaska, Inc. Hyalella azteca 10-day Sub Chronic Study Analysis of Growth Per SURVIVING Organism - Form Sediment as control

Title: 60225262-058-(084-089)-H.azteca-Growth PS-Form Sed

0584FGPS.DAT

A8 80412 Transform: NO TRANSFORMATION CA: W 09/14/12 AA: ARO9/25/12

Shapiro - Wilk's Test for Normality

****** Shapiro - Wilk's Test is aborted *******

This test can not be performed because total number of replicates is greater than 50.

Total number of replicates = 56

Title: 60225262-058-(084-089)-H.azteca-Growth PS-Form Sed

File: 0584FGPS.DAT

Transform:

NO TRANSFORMATION

Chi-Square Test for Normality

Actual and Expected Frequencies

INTERVAL	<-1,5	-1.5 to <-0.5	-0.5 to 0.5	>0.5 to 1.5	>1.5
EXPECTED	3.7520	13.5520	21.3920	13.5520	3.7520
OBSERVED	1	15	23	12	5

Chi-Square = 2.8870

(p-value = 0.5769)

Critical Chi-Square = 13.277 (alpha = 0.01 , df = 4) = 9.488 (alpha = 0.05 , df = 4)

Data PASS normality test (alpha = 0.01). Continue analysis.

Title: 60225262-058-(084-089)-H.azteca-Growth PS-Form Sed

File: 0584FGPS.DAT

Transform:

NO TRANSFORMATION

Bartlett's Test for Homogeneity of Variance

Calculated B1 statistic = 7.6941

(p-value = 0.2614)

Data PASS B1 homogeneity test at 0.01 level. Continue analysis.

Critical B = 16.8119 (alpha = 0.01, df = 6) = 12.5916 (alpha = 0.05, df = 6) Toxstat Version 3.5, Study #60225262-058-(084-089)

Coeur Alaska, Inc.

Hyalella azteca 10-day Sub Chronic Study

Analysis of Growth Per SURVIVING Organism - Form Sediment as control

Title: 60225262-058-(084-089)-H.azteca-Growth PS-Form Sed

0584FGPS.DAT

Transform:

NO TRANSFORMATION

A8 8724/12 04:00 09/14/12 at 1209/1/2

ANOVA Table

SOURCE	DF	SS	MS	F
Between	6	0.0076	0.0013	11.4846
Within (Error)	49	0.0054	0.0001	·
Total	55	0.0131		

(p-value = 0.0000)

Critical F = 3.1948 (alpha = 0.01, df = 6,49) = 2.2904 (alpha = 0.05, df = 6,49)

Since F > Critical F REJECT Ho: All equal (alpha = 0.05)

Title: 60225262-058-(084-089)-H.azteca-Growth PS-Form Sed

File:

0584FGPS.DAT

Transform:

NO TRANSFORMATION

	Dunnett's Test -	TABLE 1 OF 2	Ho:Control <treatment< th=""></treatment<>				
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	T STAT	SIG 0.05		
1	Form Sed	0.0629	0.0629				
2	LJH	0.0744	0.0744	-2.1855			
3	LSH	0.0888	0.0888	-4.9174			
4	MSH	0.0815	0.0815	-3.5396			
5	USC	0.0826	0.0826	-3.7534			
6	LSLA	0.0959	0.0959	-6.2714			
7	EFSC	0.0624	0.0624	0.0950			

Dunnett critical value = 2.3700 (1 Tailed, alpha = 0.05, df [used] = 6,40) (Actual df = 6,49)

Title: 60225262-058-(084-089)-H.azteca-Growth PS-Form Sed

File: 0584FGPS.DAT Transform:

NO TRANSFORMATION

	Dunnett's Test -	TABLE 2 C	OF 2 Ho	Ho:Control <treatment< th=""></treatment<>			
GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL		
1	Form Sed	8					
2	LJH	8	0,0125	19.8	-0.0115		
3	LSH	8	0.0125	19.8	-0.0259		
4	MSH	8	0.0125	19.8	-0.0186		
5	USC	8	0.0125	19.8	-0.0198		
6	LSLA	8	0.0125	19.8	-0.0330		
7	EFSC	8	0.0125	19.8	0.0005		

APPENDIX C

Analytical Data

Page ___ of ___ FCETL QA Form No.131 Revision 0 Effective 10/06 Wood 13/12

PERCENT TOTAL SOLIDS AND PERCENT TOTAL VOLATILE SOLIDS (TVS)

Project	No: 60225 (084-089)	4 (04 393-	05 0)-095)	TARE:		୳ଏଠୁ~।୭୪5Analyst: ୧೬୦ ୦୫५୦ ^{-୦୫,50} Analyst: ୯୯୦		Dried in Oven # 1 from Date: 8 30 12 Time: 1526 Oven °C: 104 to Date: 8 30 12 Time: 0135		
	cal Balance l				ROSS: Date/time:9/4/12@0	_	Ashed in Furnace from Date: 8 3 12 Time: 0855 Furnace °C: 550 to Date: 313112 Time: 1550			
Dish	Treatment	Rep						`		
No.			Ta Weight o	Dish (g)	Dish + Wet Sample (g) B	Dry Gross Weight (g) (dish + dry sample) C	% Total Solids (g) [(C-A)(100)]/(B-A)	Ashed Gross Weight (dish + sample)(g) D	% Total Volatile Solids (g) [(C-D)(100)]/(C-A)	
10	Sand	Α	18.01	46	26.2266	27.808 <i>2</i>		27,7974		
8		В	12.08	315	23.2549	22.7950	- <u>-</u>	22.1835		
21	Form Sed	A	19.98	17	29.1327	27.9679		27.4246		
9A		В	12.3	192	22.3766	21,0345		20.4131		
3A	4 <u>7</u> 4	A	10, 41	177	21.1086	18.7410		18.5258		
6A		В	12.15	77	21,2732	19,2273		19.0506		
14A	LSH	Α	12, 3	597	B2.0940	20.0165		19.7829		
10A		В	12.00	·85	22, 08 77	19.9266		19.6866		
AOS	USC	A	11.25	664	21,4682	19.1632		18.8393		
-AF		B	12.02	104	22.2977	19.9080		19, 5836		
19A	MSH	A	10, 70	19	20.5502	18.5951		18.3622	·	
18A		В	10.68	60	21.1700	18,9697		18.7328		
Blank			20,211	.6	NIA	20.2112		20,2115		

¹ Add in weight loss of blank boat, if appropriate.

Ow valodliact

Page ___ of ___ FCETL QA Form No.131 Revision 0 Effective 10/06 cogglish12 ar: neogleshe

PERCENT TOTAL SOLIDS AND PERCENT TOTAL VOLATILE SOLIDS (TVS)

	Project No: 60223262-058 ~ (064-089) + (090-095) Analytical Balance ID: A+D #2			TARE: DRY GROS ASHED GF		2 1440-1515 Analyst: cu 0840-08 ⁵⁹ Analyst: ಯ 35-0840 Analyst: ಉ	Dried in Oven # 1 from Date: 8 30 12 Time: 1520 Oven °C: 104 to Date: 8 31 12 Time: 0135 Ashed in Furnace from Date: 8 31 12 Time: 0855 Furnace °C: 580 to Date: 8 31 12 Time: 1550		
Dish No.	Treatment	Rep	Ta Weight o	f Dish (g)	Dish + Wet Sample (g) B	Dry Gross Weight (g) (dish + dry sample) C	% Total Solids (g) [(C-A)(100)]/(B-A)	Ashed Gross Weight (dish + sample)(g) D	% Total Volatile Solids (g) [(C-D)(100)]/(C-A)
17	LSLA	·A	11.931	<u> </u>	21.4140	19.4808		19.2242	
5A		В	12.001	o8	22.6386	20, 38 70		20,1074	
44	efsc	A	10.77	30	20.3986	13.0271		19.3821	
120		В	10.797	<u> </u>	21.2367	13.3044		12.5907	
			· ·					, a	
				,					
,									
-									
Blank			:						

¹ Add in weight loss of blank boat, if appropriate.

Percent Total Solids and Percent Total Volatile Solids

Project Number: 60225262-058-(084-089), (090-095)

QA: CU 09/13/12 QA: AR09/25/12

Treatment	Rep		Tare Weight (g) A	Dish + Wet Sample (g) B	Dry Gross Weight (g) (dish + dry sample) C	% Total Solids [(C-A)(100)]/(B-A)	Treatment Mean % Total Solids	Ashed Gross Weight (g) (dish + sample) D	% Total Volatile Solids [(C-D)(100)]/(C-A)	Treatment Mean % Total Volatile Solids
Sand	Α		18.0146	28.2266	27.8082	95.9029	95.9033	27.7974	0.1103	0.1085
Odriu	В		12.0275	23.2549	22.7950	95.9038		22.7835	0.1068	
	A		19.9277	29.1327	27.9679	87.3460	86.9608	27.4246	6.7573	6.9684
Form Sed	В		12.3792	22.3766	21.0345	86.5755		20.4131	7.1794	
	A		10.4477	21.1086	18.7410	77.7917	77.6738	18.5258	2.5949	2.5471
LJH	B -		12.1577	21.2732	19.2273	77.5558	77.0700	19.0506	2.4994	2.0-171
1.011	A		12.3597	22.0940	20.0165	78.6579	78.5506	19.7829	3.0509	3.0514
LSH	В		12.0625	22.0877	19.9266	78.4433		19.6866	3.0518	
USC	A		11.2564	21.4682	19.1632	77.4281	77.0879	18.8393	4.0965	4.1046
	В		12.0204	22,2977	19.9080	76.7478		19.5836	4.1128	
MOLL	A	.	10.7019	20.5502	18.5951	80.1478	79.5803	18.3622	2.9506	2.9052
MSH	В	· · · · · · · · · · · · · · · · · · ·	10.6860	21.1700	18.9697	79.0128		18.7328	2.8598	
	A		11.9310	21.4140	19.4808	79.6140	79.2180	19.2242	3.3988	3.3676
LSLA	В		12.0068	22.6386	20.3870	78.8220		20.1074	3.3364	
· · · · · · · · · · · · · · · · · · ·	A		10.7730	20.3986	13.0271	23,4178	23.7164	12.3821	28.6145	28,5431
EFSC	В		10.7977	21.2357	13.3044	24.0151	23.7.101	12.5907	28.4717	20.0101
Blank			20.2110		20.2112			20.2115		

Tuesday, September 25, 2012

Rami Naddy AECOM 4303 W Laporte Ave Fort Collins, CO 80521

RE: Sediment Analysis - 60225262-058

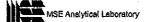
Work Order: 1208087

Dear Rami Naddy:

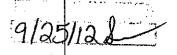
MSE Lab Services received 8 sample(s) on 8/14/2012 for the analyses presented in the following report.

Please find enclosed analytical results for the sample(s) received at the MSE Laboratory.

If you have any questions regarding these test results, please feel free to call.


Sincerely,

Sara Ward


Laboratory Manager

406-494-7334

Enclosure

P.O. Box 4078 200 Technology Way Butte, MT 59701 Lab: 406-494-7334
Fax: 406-494-7230
labinfo@mse-ta.com

MSE Lab Services

Date: 25-Sep-12

CLIENT:

AECOM

Client Sample ID: Sand

Lab Order:

1208087

Collection Date: 8/9/2012 11:10:00 AM

Project:

Sediment Analysis - 60225262-058

Lab ID:

1208087-001

Matrix: SOIL

Analyses	Result	MDL	Rpt Limit	Qualifier	Units	DF	Date Analyzed
SW-846-ICP-AES TOTAL METALS			SW6010B	SW305	0B	-	Analyst: SW
Aluminum	181	6.19	15.6		mg/Kg-dry	1	9/19/2012 12:12:00 PM
Zinc	ND	3.93	15.6		mg/Kg-dry	1 .	9/19/2012 12:12:00 PM
ICP-MS METALS, SOLID SAMPLES	3		SW6020	SW305	0B		Analyst: tj
Arsenic	ND	0.091	0.312		mg/Kg-dry	2	9/13/2012 12:12:08 PM
Cadmlum	0.073	0.005	0.021		mg/Kg-dry	2	9/13/2012 12:12:08 PM
Chromium	4.25	0.114	0.417		mg/Kg-dry	2	9 24/2012 1:00:05 PM
Copper	0.324	0.085	0.260		mg/Kg-dry	2	9/13/2012 12:12:08 PM
Lead	0.165	0.009	0.042	-	mg/Kg-dry	2	9/13/2012 12:12:08 PM
Nickel	0.511	0.060	0.208		mg/Kg-dry	2	9/13/2012 12:12:08 PM
Selentum	ND	0.141	0.417		mg/Kg-dry	2	9/13/2012 12:12:08 PM
Silver	ND	0.077	0.208	•	mg/Kg-dry	2	9/24/2012 1:00:05 PM
MERCURY IN SOIL/SEDIMENT - S	W846 7471B		SW7471	SW747	1 A		Analyst: jc
Mercury	ND .	0.0754	0.260		mg/Kg-dry	1	8/28/2012 12:41:55 PM
ORGANIC MATTER-WALKLEY BL	ACK	OM_W	ALKLEYBL	ACK			Analyst: hb
Organic Matter - Walkley Black	ND	0.09	0.20		%	1	8/30/2012 10:00:00 AM
PERCENT COARSE MATERIAL	•	1	ASTMD422				Analyst: dk
1" Gradation	ND	0.05	0.10		%	1	8/23/2012 9:50:00 AM
2mm Gradation	ND	0.05	0.10		%	1	8/23/2012 9:50:00 AM
RAPID HYDROMETER (2 HOUR)	MOD ASA 15-5		MSA15-5				Analyst: bo/jr
% Clav	ND	0.1	0.1		%	1	8/30/2012 4:00:00 PM
% Sand	96.0	0.1	0.1		%	1	8/30/2012 4:00:00 PM
% Silt	4.0	0.1	0.1		%	1	8/30/2012 4:00:00 PM
Soil Class	SAND					1	8/30/2012 4:00:00 PM
PERCENT MOISTURE			D2216				Analyst: dk/jr
Percent Moisture	4.00	0.01	0.05		wt%	1	8/22/2012 9:35:00 AM

Qualifiers:	E	Value above quantitation range	Н	Holding times for preparation or analysis ex	xceeded
Qualiforoi	J	Analyte detected below the Reporting Limit	Limit	Reporting Limit	
•	MDL	Method Detection Limit	ND	Not Detected at the Method Detection Limit	it (MDL)

MSE Lab Services

Date: 25-Sep-12

CLIENT:

AECOM

Client Sample ID: FORM SED

Lab Order:

1208087

Collection Date: 8/9/2012 11:10:00 AM

Project:

Sediment Analysis - 60225262-058

Lab ID:

1208087-002

Matrix: SOiL

Analyses	Result	MDL	Rpt Limit	Qualifier	Units	DF	Date Analyzed
SW-846-ICP-AES TOTAL METAI	_S		SW6010B	SW305	0B		Analyst: SW
Aluminum	609	6.73	17.0		mg/Kg-dry	1	9/19/2012 12:12:00 PM
Zinc	ND	4.27	17.0		mg/Kg-dry	1	9/19/2012 12:12:00 PM
ICP-MS METALS, SOLID SAMPI	.E\$		SW6020	SW305	0B		Analyst: tj
Arsenic	ND	0.099	0.340		mg/Kg-dry	2	9/13/2012 12:12:08 PM
Cadmium	0.072	0.006	0.023		mg/Kg-dry	2	9/13/2012 12:12:08 PM
Chromium	8.25	0.125	0.453		mg/Kg-dry	2	9/24/2012 1:00:05 PM
Copper `	0.783	0.093	0.283		mg/Kg-dry	2	9/13/2012 12:12:08 PM
Lead	0.380	0.010	0.045		mg/Kg-dry	2	9/13/2012 12:12:08 PM
Nickel	0.820	0.065	0.227		mg/Kg-dry	2	9/13/2012 12:12:08 PM
Selenium	ND .	0.154	0.453		mg/Kg-dry	2	9/13/2012 12:12:08 PM
Silver	ND	0.083	0.227		mg/Kg-dry	2	9/24/2012 1:00:05 PM
MERCURY IN SOIL/SEDIMENT	SW846 7471B		SW7471	SW747	1A .		Analyst jc
Mercury	ND	0.0326	0.113		mg/Kg-dry	1	8/28/2012 12:41:55 PM
ORGANIC MATTER-WALKLEY	BLACK	OM_W	ALKLEYBLA	ACK			Analyst: bo/ht
Organic Matter - Walkley Black	28.7	0.09	0.20		%	1	9/1 <mark>2/2012 12:00:00 PM</mark>
PERCENT COARSE MATERIAL			ASTMD422				Analyst: dk
1" Gradation	ND	0.05	0.10		%	1	8/23/2012 9:50:00 AM
2mm Gradation	ND	0.05	0.10		%	1	8/23/2012 9:50:00 AM
RAPID HYDROMETER (2 HOUR) MOD ASA 15-5		MSA15-5				Analyst: bo/jr
% Clay	10.0	0.1	0.1		%	1	8/30/2012 4:00:00 PM
% Sand	86.0	0.1	0.1		%	1	8/30/2012 4:00:00 PM
% Silt	4.0	0.1	0.1		%	1	8/30/2012 4:00:00 PM
Soll Class	LOAMY SAND					1	8/30/2012 4:00:00 PM
PERCENT MOISTURE			D2216				Analyst: dk/jr
Percent Moisture	11.8	0.01	0.05		wt%	1	8/22/2012 9:35:00 AM

Qualifiers:	E	Value above quantitation range	Н	Holding times for preparation or analysis	sexceeded
GAMILIO I	J	Analyte detected below the Reporting Limit	Limit	Reporting Limit	
	MDL	Mathod Detection Limit	ND	Not Detected at the Method Detection Li	imit (MDL)

MSE Lab Services

Date: 25-Sep-12

CLIENT:

AECOM

Client Sample ID: LJH(#25938)

Lab Order:

1208087

Collection Date: 8/9/2012 11:10:00 AM

Project:

Sediment Analysis - 60225262-058

Lab ID:

1208087-003

Matrix: SOIL

Analyses	Result	MDL	Rpt Limit	Qualifier	Units	DF	D	ate Ana	alyzed
SW-846-ICP-AES TOTAL METAL	s		SW6010B	SW305	0B		P	nalyst:	SW
Aluminum	13100	7.32	18.5		mg/Kg-dry	1	9/1	9/2012 12:1	12:00 PM
Zinc	97.3	4.64	18.5		mg/Kg-dry	1	9/1	9/2012 12:1	12:00 PM
ICP-MS METALS, SOLID SAMPL	ES		SW6020	SW305	8 0		P	nalyst:	tj
Arsenic	12.8	0.107	0.369		mg/Kg-dry	2	9/1	3/2012 12:1	12:08 PM
Cadmlum	0.250	0.006	0.025		mg/Kg-dry	2	9/1	3/2012 12:1	12:08 PM
Chromium	35.5	0.135	0.493		mg/Kg-dry	2	9/	24/2012 1:0	00:05 PM
Copper	76.8	0.101	0.308		mg/Kg-dry	2	9/1	3/2012 12:1	12:08 PM
Lead	9.45	0.011	0.049		mg/Kg-dry	2	9/1	8/2012 12:1	12:08 PM
Nickel	23.4	0.071	0.246		mg/Kg-dry	2	9/1	3/2012 12:1	12:08 PM
Selenium	ND	0.167	0.493		mg/Kg-dry	2	9/1	3/2012 12:1	12:08 PM
Silver	0.342	0.091	0.246		mg/Kg-dry	2	9/	2 4/ 2012 1:0	00:05 PM
MERCURY IN SOIL/SEDIMENT -	SW846 7471B		\$W7471	SW747	1A		F	nalyst:	Jс
Mercury	0.119	0.0356	0.123	J	mg/Kg-dry	1	8/2	8/2012 12:4	41:55 PM
ORGANIC MATTER-WALKLEY E	BLACK	OM_W	ALKLEYBLA	ACK			F	nalyst:	hb
Organic Matter - Walkley Black	1.19	0.09	0.20		%	1	8/3	0/2012 10:0	MA 00:00
PERCENT COARSE MATERIAL			ASTMD422				4	nalyst:	dk
1" Gradation	ND	0.05	0.10		%	1	8/	23/2012 9:8	MA 00:00
2mm Gradation	ND	0.05	0.10		%	1	8/	23/2012 9:	50:00 AM
RAPID HYDROMETER (2 HOUR)	MOD ASA 15-5		MSA15-5		•		A	nalyst:	bo/jr
% Clay	8.0	0.1	0.1		%	1	8/	80/2012 4:0	00:00 PM
% Sand	92.0	0.1	0.1		%	1	8/	80/2012 4:0	00:00 PM
% Silt	ND	0.1	0.1		%	1	8/	80/2012 4:0	00:00 PM
Soll Class	SAND					1	8/	80/2012 4:0	00:do PM
PERCENT MOISTURE		•	D2216					nalyst:	dk/jr
Percent Moisture	18.8	0.01	0.05		wt%	1	8/	22/201 2 9 :	35:00 AM

Qualifiers:	Е	Value above quantitation range	Н	Holding times for preparation or analys	is exceeded
	J	Analyte detected below the Reporting Limit	Limit	Reporting Limit	
	MDL	Method Detection Limit	ND	Not Detected at the Method Detection	Limit (MDL)
				•	

Date: 25-Sep-12

CLIENT:

AECOM

Client Sample ID: LSH(#25939)

Lab Order:

Project:

1208087

Collection Date: 8/9/2012 11:10:00 AM

Sediment Analysis - 60225262-058

Lab ID:

1208087-004

Matrix: SOIL

			•		Units		Date Analyzed
SW-846-ICP-AES TOTAL METALS			SW6010B	SW305	0B ·		Analyst: SW
Aluminum	17900	7.61	19.2		mg/Kg-dry	1	9/19/2012 12:12:00 PM
Zinc	128	4.83	19.2	,	mg/Kg-dry	1	9/19/2012 12:12:00 PM
ICP-MS METALS, SOLID SAMPLES	;		SW6020	SW305	В		Analyst: tj
Arsenic	24,3	0.111	0.384		mg/Kg-dry	2	9/13/2012 12:12:08 PM
Cadmium	0.578	0.007	0.026		mg/Kg-dry	2	9/13/2012 12:12:08 PM
Chromlum	51.4	0.141	0.512		mg/Kg-dry	2	9 24/2012 1:00:05 PM
Copper	79.1	0.105	0.320		mg/Kg-dry	. 2	9/13/2012 12:12:08 PM
Lead	8.43	0.012	0.051		mg/Kg-dry	2	9/13/2012 12:12:08 PM
Nickel	40.2	0.074	0.256		mg/Kg-dry	2	9/13/2012 12:12:08 PM
Selenium	ND	0.174	0.512		mg/Kg-dry	2	9/13/2012 12:12:08 PM
Silver	0.289	0.094	0.256		mg/Kg-dry	2	9/24/2012 1:00:05 PM
MERCURY IN SOIL/SEDIMENT - SW846 7471B		SW7471		SW747	1A		Analyst: [c
Mercury	0.0681	0.0360	0.124	J	mg/Kg-dry	1	8/28/2012 12:41:55 PM
ORGANIC MATTER-WALKLEY BLA	ACK	OM_W	ALKLEYBLA	ACK			Analyst: hb
Organic Matter - Walkley Black	0.82	0.09	0.20		%	1	8/30/2012 10:00:00 AM
PERCENT COARSE MATERIAL		,	ASTMD422			_	Analyst: dk
1" Gradation	. ND	0.05	0.10		%	1	8/23/2012 9:50:00 AM
2mm Gradation	0.09	0.05	0.10	J	%	1	8/23/2012 9:50:00 AM
RAPID HYDROMETER (2 HOUR)	NOD ASA 15-5		MSA15-5				Analyst: bo/jr
% Clay	4.0	0.1	0.1		%	1	8/30/2012 4:00:00 PM
% Sand	96.0	0.1	0.1	•	%	1	8/30/2012 4:00:00 PM
% Silt	ND	0.1	0.1		%	1	8/30/2012 4:00:00 PM
Soil Class	SAND					1	8/30/2012 4:00:00 PM
PERCENT MOISTURE			D2216				Analyst: dk/jr
Percent Moisture	21.9	0.01	0.05		wt%	1	8/22/2012 9:35:00 AM

Qualifiers:	E	Value above quantitation range	Н	Holding times for preparation or analysis exceeded	
Qualifiers.	J	Analyte detected below the Reporting Limit	Limit	Reporting Limit	
	MDL	Method Detection Limit	ND	Not Detected at the Method Detection Limit (MDL)	

P.O. Box 4078 200 Technology Way Butte, MT 59701

Lab: 406-494-7334 Fax: 406-494-7230 labinfo@mse-ta.com

Date: 25-Sep-12

CLIENT:

AECOM

Client Sample ID: MSH(#25940)

Lab Order:

1208087

Collection Date: 8/9/2012 11:10:00 AM

Project:

Sediment Analysis - 60225262-058

Lab ID:

1208087-005

Matrix: SOIL

Analyses	Result	MDL	Rpt Limit	Qualifier	Units	DF	Date Analyzed
SW-846-ICP-AES TOTAL METALS			SW6010B	SW305	0B		Analyst: SW
Aluminum	18800	7.43	18.8		mg/Kg-dry	1	9/19/2012 12:12:00 PM
Zinc	124	4.72	18.8		mg/Kg-dry	1	9/19/2012 12:12:00 PM
ICP-MS METALS, SOLID SAMPLE	S		SW6020	SW305	0B		Analyst: tj
Arsenic	56.1	0.109	0.375		mg/Kg-dry	2	9/13/2012 12:12:08 PM
Cadmium	0.269	0.007	0.025		mg/Kg-dry	2	9/13/2012 12:12:08 PM
Chromium	48.1	0.138	0.501		mg/Kg-dry	-2	9/24/2012 1:00:05 PM
Copper	87.5	0.103	0.313		mg/Kg-dry	2	9/13/2012 12:12:08 PM
Lead	11.3	0.011	0.050		mg/Kg-dry	2	9/13/2012 12:12:08 PM
Nickel	39.3	0.072	0.250		mg/Kg-dry	2	9/13/2012 12:12:08 PM
Selenium	ND	0.170	0.501		mg/Kg-dry	2	9/13/2012 12:12:08 PM
Silver	0.225	0.092	0.250	J	mg/Kg-dry	2	9/24/2012 1:00:05 PM
MERCURY IN SOIL/SEDIMENT - S	W846 7471B		SW7471	SW747	1 A		Analyst: jc
Mercury	0.0581	0.0359	0.124	J	mg/Kg-dry	1	8/28/2012 12:41:55 PM
ORGANIC MATTER-WALKLEY BI	ACK	OM_W	ALKLEYBL	ACK			Analyst: hb
Organic Matter - Walkley Black	1.05	0.09	0.20		%	1	8/30/2012 10:00:00 AM
PERCENT COARSE MATERIAL	,	,	ASTMD422				Analyst: dk
1" Gradation	ND	0.05	0.10		%	1	8/23/2012 9:50:00 AM
2mm Gradation	0.44	0.05	0.10		%	1	8/23/2012 9:50:00 AM
RAPID HYDROMETER (2 HOUR)	MOD ASA 15-5		M\$A15-5				Analyst: bo/jr
% Clay	4.0	0.1	0.1		%	1	8/30/2012 4:00:00 PM
% Sand	96.0	0.1	0.1		%	1	8/30/2012 4:00:00 PM
% Silt	ND	0.1	0.1		%	1	8/30/2012 4:00:00 PM
Soll Class	SAND					1	8/30/2012 4:00:00 PM
PERCENT MOISTURE			D2216				Analyst: dk/jr
Percent Moisture	20.1	0.01	0.05		wt%	1	8/22/2012 9:35;00 AM

Qualifiers:	E	Value above quantitation range	н	Holding times for preparation or analy	sis exceeded
quanticis.	J	Analyte detected below the Reporting Limit	Limit	Reporting Limit	
	MDL	Method Detection Limit	ND	Not Detected at the Method Detection	Limit (MDL)

Date: 25-Sep-12

CLIENT:

AEÇOM

Client Sample ID: USC(#25932)

Lab Order:

Project:

1208087

Collection Date: 8/9/2012 11:10:00 AM

Sediment Analysis - 60225262-058

Lab ID:

1208087-006

Matrix: SOIL

Analyses	Result	MDL	Rpt Limit	Qualifier	Units	DF	Date Analyzed
SW-846-ICP-AES TOTAL METALS			SW6010B	SW305	0B		Analyst: SW
Aluminum	20300	7.61	19.2		mg/Kg-dry	1	9/19/2012 12:12:00 PM
Zinc	134	4.83	19.2		mg/Kg-dry	1	9/19/2012 12:12:00 PM
ICP-MS METALS, SOLID SAMPLES			SW6020	SW305	0B		Analyst: tj
Arsenic	14.4	0.111	0.384		mg/Kg-dry	2	9/18/2012 12:12:08 PM
Cadmium	0.776	0.007	0.026		mg/Kg-dry	2	9/13/2012 12:12:08 PM
Chromium	125	0.141	0.513		mg/Kg-dry	2	9/24/2012 1:00:05 PM
Copper	55.4	0.105	0.320		mg/Kg-dry	2	9/1 <mark>3/2012 12:12:08 PM</mark>
Lead	4.05	0.012	0.051		mg/Kg-dry	2	9/13/2012 12:12:08 PM
Nickel	78.4	0.074	0.256		mg/Kg-dry	2	9/13/2012 12:12:08 PM
Selenium	0.606	0.174	0.513		mg/Kg-dry	2	9/13/2012 12:12:08 PM
Silver	0.132	0.094	0.256	J	mg/Kg-dry	2	9/24/2012 1:00:05 PM
MERCURY IN SOIL/SEDIMENT - SW	/846 7471B		SW7471	SW747	1 A		Analyst: Jc
Mercury	0.0625	0.0365	0.126	1	mg/Kg-dry	1	8/28/2012 12:41:55 PM
ORGANIC MATTER-WALKLEY BLA	CK	OM_W	ALKLEYBL	ACK			Analyst: hb
Organic Matter - Walkley Black	3.74	0.09	0.20		%	1	8/30/2012 10:00:00 AM
PERCENT COARSE MATERIAL			ASTMD422				Analyst: dk
1" Gradation	ND	0.05	0.10		%	1	8/23/2012 9:50:00 AM
2mm Gradation	0.32	0.05	0.10		%	1	8/23/2012 9:50:00 AM
RAPID HYDROMETER (2 HOUR) M	OD ASA 15-5		MSA15-5				Analyst: bo/jr
% Clay	2.0	0.1	0.1		%	1	8/30/2012 4:00:00 PM
% Sand	98.0	0.1	0.1		%	1	8/30/2012 4:00:00 PM
% Silt	NĐ	0.1	0.1		%	1	8/30/2012 4:00:00 PM
Soll Class	SAND					1	8/30/2012 4:00:00 PM
PERCENT MOISTURE			D2216				Analyst: dk/Jr
Percent Moisture	22.0	0.01	0.05		wt%	1	8/22/2012 9:35:00 AM

_	ua	17.67		
IJ	IJa	HFI	Ar	S :

E Value above quantitation range Н Holding times for preparation or analysis exceeded

Analyte detected below the Reporting Limit Method Detection Limit MDL

Llmit Reporting Limit

> ND Not Detected at the Method Detection Limit (MDL)

P.O. Box 4078 200 Technology Way Butte, MT 59701

Lab: 406-494-7334 Fax: 406-494-7230 labinfo@mse-ta.com

Date: 25-Sep-12

CLIENT:

AECOM

Lab Order:

1208087

Client Sample ID: LSLA(#25933) Collection Date: 8/9/2012 11:10:00 AM

Project:

Sediment Analysis - 60225262-058

Lab ID:

1208087-007

Matrix: SOIL

Analyses	Result	MDL	Rpt Limit	Qualifier	Units	DF	Date Analyzed
SW-846-ICP-AES TOTAL METAL	.s		SW6010B	SW305	0B		Analyst: SW
Aluminum	13600	7.43	18.8		mg/Kg-dry	1	9/19/2012 12:12:00 PM
Zinc	200	4.72	18.8		mg/Kg-dry	1	9/19/2012 12:12:00 PM
ICP-MS METALS, SOLID SAMPL	ES		SW6020	SW305	0B		Analyst: tj
Arsenic	9.31	0.109	0.375		mg/Kg-dry	2	9/13/2012 12:12:08 PM
Cadmium	1,22	0.007	0.025		mg/Kg-dry	2	9/13/2012 12:12:08 PM
Chromium	32.0	0.138	0.500		mg/Kg-dry	·2	9/24/2012 1:00:05 PM
Copper	50.7	0.103	0.313		mg/Kg-dry	2	9/13/2012 12:12:08 PM
Lead	8.45	0.011	0.050		mg/Kg-dry	2	9/13/2012 12:12:08 PM
Nickel	43.2	0.072	0.250		mg/Kg-dry	2	9/13/2012 12:12:08 PM
Selenium	ND	0.170	0.500		mg/Kg-dry	2	9/13/2012 12:12:08 PM
Silver	0.145	0.092	0.250	J	mg/Kg-dry	2	9/24/2012 1:00:05 PM
MERCURY IN SOIL/SEDIMENT -	SW846 7471B		SW7471	SW747	1A		Analyst: jc
Mercury	0.0994	0.0355	0.122	Ĵ	mg/Kg-dry	1	8/28/2012 12:41:55 PM
ORGANIC MATTER-WALKLEY	BLACK	OM_W	ALKLEYBL	ACK			Analyst: hb
Organic Matter - Walkley Black	1.67	0.09	0.20		%	1	8/30/2012 10:00:00 AM
PERCENT COARSE MATERIAL			ASTMD422				Analyst: dk
1" Gradation	ND	0.05	0.10		%	1	8/23/2012 9:50:00 AM
2mm Gradation	0.13	0.05	0.10		%	1	8 23/2012 9:50:00 AM
RAPID HYDROMETER (2 HOUR)) MOD ASA 15-5		MSA15-5				Analyst: bo/j r
% Clay	2.0	0.1	0.1		%	1	8/30/2012 4:00:00 PM
% Sand	98.0	0.1	0.1		%	1	8/30/2012 4:00:00 PM
% Silt	ND	0.1	0.1		%	1	8/30/2012 4:00:00 PM
Soll Class	SAND					1	8/30/2012 4:00:00 PM
PERCENT MOISTURE			D2216				Analyst: dk/j r
Percent Moisture	20.1	0.01	0.05		wt%	1	8/22/2012 9:35:00 AM
							1

Qualifiers:	E	Value above quantitation range	Н	Holding times for preparation or analysis exceeded	_
4	J	Analyte detected below the Reporting Limit	Limit	Reporting Limit	
	MDL	Method Detection Limit	ND	Not Detected at the Method Detection Limit (MDL)	

Date: 25-Sep-12

CLIENT:

AECOM

Client Sample ID: EFSA(#25934)

Lab Order:

1208087

Collection Date: 8/9/2012 11:10:00 AM

Project:

Sediment Analysis - 60225262-058

Lab ID:

1208087-008

Matrix: SOIL

Analyses	Result	MDL	Rpt Limit	Qualifier	Units	DF	Date Analyzed
SW-846-ICP-AES TOTAL METAL	.s		SW6010B	SW305	0B		Analyst: SW
Aluminum	15300	22.0	55.5		mg/Kg-dry	1	9/19/2012 12:12:00 PM
Zinc	1490	13.9	55.5		mg/Kg-dry	1	9/19/2012 12: 12:00 PM
ICP-MS METALS, SOLID SAMPL	.ES		SW6020	SW305	0B		Analyst: t j
Arsenic	24.0	0.322	1.11		mg/Kg-dry	2	9/13/2012 12:12:08 PM
Cadmium	23.2	0.019	0.074		mg/Kg-dry	2	9/13/2012 12:12:08 PM
Chròmium	38.9	0.406	1.48		mg/Kg-dry	2	9/24/2012 1:00:05 PM
Copper	159	0.303	0.924		mg/Kg-dry	2	9/13/2012 12:12:08 PM
Lead	14.2	0.033	0.148		mg/Kg-dry	2	9/13/2012 12:12:08 PM
Nickel	153	0.212	0.739		mg/Kg-dry	2	9/1β/2012 12:12:08 PM
Selenium	0.934	0.502	1.48	J	mg/Kg-dry	2	9/13/2012 12:12:08 PM
Silver	0.513	0.272	0.739	J	mg/Kg-dry	2	9/24/2012 1:00:05 PM
MERCURY IN SOIL/SEDIMENT -	SW846 7471B		SW7471	SW747	1 A		Analyst: jc
Mercury	0.327	0.107	0.369	J	mg/Kg-dry	1	8/28/2012 12:41:55 PM
ORGANIC MATTER-WALKLEY	BLACK	OM_W	ALKLEYBL	ACK			Analyst: BO
Organic Matter - Walkley Black	16.7	0.09	0.20		%	1	8/31/2012 3:00:00 PM
PERCENT COARSE MATERIAL			ASTMD422				Analyst: dk
1" Gradation	ND	0.05	0.10		%	1	8/23/2012 9:50:00 AM
2mm Gradation	ND	0.05	0.10		%	1	8/23/2012 9:50:00 AM
RAPID HYDROMETER (2 HOUR)	MOD ASA 15-5		MSA15-5				Analyst: bo/jr
% Clay	40.0	0.1	0.1		%	1	8/30/2012 4:00:00 PM
% Sand	26.0	0.1	0.1		%	1	8/30/2012 4:00:00 PM
% Silt	34.0	0.1	0.1		%	1	8/30/2012 4:00:00 PM
Soil Class	CLAY			*		1	8/30/2012 4:00:00 PM
PERCENT MOISTURE			D2216				Analyst: dk/jr
Percent Moisture	73.0	0.01	0.05		wt%	1	8/22/2012 9:35:00 AM

Qualifiers:	É	Value above quantitation range	Н	Holding times for preparation or analyst	is exceeded
4444114141	J	Analyte detected below the Reporting Limit	Limit	Reporting Limit	
	MDL	Method Detection Limit	ND	Not Detected at the Method Detection	Limit (MDL)

Lab: 406-494-7334 Fax: 406-494-7230 labinfo@mse-ta.com

Date: 25-Sep-12 Report Date: 25-Sep-12

QA/QC SUMMARY REPORT

Client:

AECOM

Work Order:

1208087

Project:

Sediment Analysis - 60225262-058

BatchID:

5917

nalyte	Result	RL	Units	Spike Lvi	% Rec	Low Limit	High Limit	RPD	RPD Llm	t Qualifie
Sample ID: PB-UI	NFILTERED-5917		Method: \$	SW6010B	Batch ID:	5917	Analys	sis Date:	9/19/2012 1:	2:12:00 PM
Aluminum	ND	15.0	mg/Kg							
Zinc	ND	15.0	mg/Kg							
Sample ID: PB-FI	LTERED-5917		Method: 5	SW6010B	Batch ID:	5917	Analys	sis Dete:	9/19/2012 1:	:12:00 PM
Aluminum	ND	15.0	mg/Kg							
Zinc	ND	15.0	mg/Kg							:
Sample ID: LCS-5	917		Method: \$	SW6010B	Batch ID:	5917	Analys	is Dete:	9/19/2012 1	2:12:00 PM
Aluminum	6630	15.0	mg/Kg	9672	68.5	80	120			S*
Zinc	193	15.0	mg/Kg	198.0	9 7.7	80	120			
Sample ID: 12080	87-003A-MS		Method: \$	SW6010B	Batch ID:	5917	Analys	sis Date:	9/19/2012 1	2:12:00 PM
Aluminum	27900	18.5	mg/Kg-dr	y 11910	124	75	125			
Zinc	347	18.5	mg/Kg-dŋ	y 243.8	103	75	125			
Sample ID: 12080	87-003A-MSD	·-··	Method: \$	SW6010B	Batch ID:	6917	Analys	ds Date:	9/19/2012 1	:12:00 PM
Aluminum	23400	18.5	mg/Kg-dry	y 11910	87.2	75	125	17.3	20	
Zinc	334	18.5	mg/Kg-dr	y 243.8	97.1	75	125	3.89	20	
Sample ID: 1208 0	87-003A-MST		Method: \$	SW6010B	Batch ID:	5917	Analys	ús Date:	9/19/2012 1:	:12:00 PM
Aluminum	25400	18.5	mg/Kg-dr	y 11910	104	75	125	9.28	20	
Zinc	357	18.5	mg/Kg-dr	y 243.8	107	75	125	2.86	20	
Sample ID: PB-UI	VFILTERED-5917		Method: \$	SW6020	Batch ID:	5917	Anelys	ds Date:	9/13/2012 1:	2:12:08 PM
Cadmium	0.018	0.020	mg/Kg							J
Copper	0.136	0.250	mg/Kg							j
Lead	0.016	0.040	mg/Kg							j
Nickel	0.495	0.200	mg/Kg							
Sample ID. PB-FI	LTERED-5917		Method: 3	SW6 02 0	Batch ID:	5917	Analys	sis Date:	9/13/2012 1:	2:12:08 PM
Cadmium	0.020	0.020	mg/Kg							
Соррег	0.138	0.250	mg/Kg							J
Lead	0.016	0.040	mg/Kg							J
Nickel	0.444	0.200	mg/Kg							
Sample ID: LCS-5	5917		Method: \	SW6020	Batch ID:	5917	Analys	sis Date:	9/13/2012 1:	2:12:08 PM
Cadmium	247	0.020	mg/Kg	274.0	90.1	80	120			
Copper	271	0.250	mg/Kg	242.0	112	80	120]
Lead	261	0.040	mg/Kg	240.0		80	120			
Nickel	85.7	0.200	mg/Kg	74.70	115	80	120			·
Sample I D: 12080	987-003A-MS		Method: \$	SW6020	Batch ID:	5917	Analys	sis Date:	9/13/2012 1	2:12:08 PN
Cadmium	338	0.025	mg/Kg-dr	-		75	125			
Copper	451	0.308	mg/Kg-dr	y 298.0	126	75	125			\$*
Lead	366	0.049	mg/Kg-dr	v 295.6	121	75	125			

Qualifiers:

Sample conc. is > 4*spike level

Spike Recovery outside limits; within Manufacturer Limits Manufacturer Limits for Aluminum 4270-15100 mg/Kg; Copper 184-326 mg/Kg; Mercury 2.97-80.4 mg/Kg; Silver 16.1-37.5 mg/Kg; Arsenic 39.7-100 mg/Kg; Mercury 2.97-80.4 mg/Kg; Nickel 63.3-100 mg/Kg
Selentum 121-340 mg/Kg; Nickel 63.3-100 mg/Kg
Page 9 of 18

Lab: 406-494-7334 Fax: 406-494-7230 labinfo@mse-ta.com

Date: 25-Sep-12 Report Date: 25-Sep-12

QA/QC SUMMARY REPORT

Client: Project: **AECOM**

ECOM

Sediment Analysis - 60225262-058

Work Order:

1208087

BatchID: 5917

Result	RL	Units	Splke Lvl	% Rec	Low Limit	High Limit	RPD	RPD Limit	Qualifie
003A-MS		Method: 3	SW6020	Batch ID:	5917	Analys	is Date: 9/	13/2012 12	:12:08 PM
141	0.246	mg/Kg-dr	y 92.00	127	75	125			S*
003A-MSD		Method:	SW6020	Batch ID:	5917	Analys	ls Date: 9/	13/2012 12	:12:08 PM
300	0.025	mg/Kg-dr	y 337.4	89.0	75	125	11.7	20	
387	0.308	mg/Kg-dr	y 298.0	104	75	125	15.2	20	
323	0.049	mg/Kg-dr	y 295.6	106	75	125	12.7	20	
122	0.246	mg/Kg-dr	y 92.00	107	75	125	14.2	20	
003A-MST	•	Method: 3	SW6020	Batch ID:	5917	Analys	is Date: 9/	13/2012 12	:12:08 PM
317	0.025	mg/Kg-dr	y 337.4	93.8	75	125	6.34	20	
424	0.308	mg/Kg-dr	y 298.0	116	75	125	6.20	20	
346	0.049	mg/Kg-dr	y 295.6	114	75	125	5.80	20	
133	0.246	mg/Kg-dr	y 92.00	119	75	125	5.36	20	
LTERED-5917		Method:	SW6020	Batch ID:	5917	Analys	ls Date: 9/	13/2012 12	:12:08 PM
ND	0.300	mg/Kg							
ND	0.400	mg/Kg							
ERED-5917		Method:	SW6020	Batch ID:	5917	Analys	is Date: 9/	13/2012 12	:12:08 PM
ND	0.300	mg/Kg							
ND	0.400	mg/Kg]	
7		Method:	SW6020	Batch ID:	5917	Analys	is Date: 9/	13/2012 12	:12:08 PM
66.3	0.300	mg/Kg	59.10	112	80	120			
192	0.400	mg/Kg	178.0	108	80	120			
003A-M\$		Method:	SW6020	Batch ID:	5917	Analys	is Date: 9/	13/2012 12	:12:08 PM
121	0.369	mg/Kg-dr	y 72.78	149	75	125			S*
276	0.493	mg/Kg-dr	y 219.2	126	76	125			S*
003A-MSD		Method:	SW6020	Batch ID:	5917	Analys	ils Date: 9/	13/2012 12	:12:08 PM
99.4	0,369	mg/Kg-dr	y 72.70	119	75	125	19.7	20	
239	0.493	mg/Kg-dr	y 219.	109	75	. 125	14.6	20	
-003A-MST		Method:	SW6020	Batch ID:	5917	Analys	ils Date: 9/	13/2012 12	:12:08 PM
108	0.369	mg/Kg-dr	y 72.76	131	75	125	11.2	20	S*
255	0.493	mg/Kg-dr	y 219.	116	75	125	7.97	20	
LTERED-5917		Method:	SW6020	Batch ID:	5917	Analys	als Date: 9/	24/2012 1:	00:05 PM
5.83	0.400	mg/Kg							
ND	0.200	mg/Kg							
ERED-5917		Method:	SW6020	Batch ID:	5917	Analys	sis Date: 9/	24/2012 1	00:05 PM
5.03	0.400	mg/Kg						ļ	
ND	0.200	mg/Kg						i	
	003A-MS 141 003A-MSD 300 387 323 122 003A-MST 317 424 346 133 LTERED-5917 ND ND ERED-5917 ND ND 7 66.3 192 003A-MSD 99.4 239 003A-MST 108 255 LTERED-5917 5.83 ND	003A-MS 141 0.246 003A-MSD 300 0.025 387 0.308 323 0.049 122 0.248 003A-MST 317 0.025 424 0.308 346 0.049 133 0.246 LTERED-5917 ND 0.300 ND 0.400 ERED-5917 ND 0.300 ND 0.400 003A-MS 121 0.369 276 0.493 003A-MSD 99.4 0.369 239 0.493 003A-MST 108 0.369 239 0.493 LTERED-5917 5.83 0.400 ND 0.200 ERED-5917 5.83 0.400 ND 0.200	003A-MS 141 0.246 mg/Kg-dr 003A-MSD 300 0.025 mg/Kg-dr 387 0.308 mg/Kg-dr 323 0.049 mg/Kg-dr 122 0.246 mg/Kg-dr 003A-MST Method: 3 317 0.025 mg/Kg-dr 346 0.049 mg/Kg-dr 346 0.049 mg/Kg-dr 133 0.246 mg/Kg-dr ND 0.300 mg/Kg ND 0.400 mg/Kg ND 0.400 mg/Kg ND 0.400 mg/Kg 192 0.400 mg/Kg 192 0.400 mg/Kg 192 0.400 mg/Kg-dr 276 0.493 mg/Kg-dr 276 0.493 mg/Kg-dr 003A-MSD 99.4 0.369 mg/Kg-dr 279 0.493 mg/Kg-dr 003A-MST Method: 3 003A-MSD Method: 4 003A-MSD Method: 5 003A-MSD Method: 6 003A-MSD	Method: SW6020 Meth	Method: SW6020 Batch ID: mg/Kg-dry 92.00 127 mg/Kg-dry 92.00 127 mg/Kg-dry 92.00 127 mg/Kg-dry 92.00 127 mg/Kg-dry 93.7.4 89.0 387 0.308 mg/Kg-dry 298.0 104 323 0.049 mg/Kg-dry 295.6 106 122 0.246 mg/Kg-dry 92.00 107 mg/Kg-dry 92.00 107 mg/Kg-dry 92.00 107 mg/Kg-dry 298.0 116 mg/Kg-dry 298.0 116 346 0.049 mg/Kg-dry 298.0 116 346 0.049 mg/Kg-dry 92.00 119 mg/Kg-dry 92.00 119 mg/Kg-dry 92.00 119	Method: SW6020 Batch ID: 5917	Method: SW6020 Batch ID: 5917 Analys	Method: SW6020 Batch ID: 5917 Analysis Date: 9/	Method: SW6020 Batch ID: 5917 Analysis Date: 9/13/2012 12

Lab: 406-494-7334 Fax: 406-494-7230 labinfo@mse-ta.com

Date: 25-Sep-12 Report Date: 25-Sep-12

QA/QC SUMMARY REPORT

Client:

AECOM

Work Order:

1208087

Project:

Sediment Analysis - 60225262-058

BatchID:

5917

Analyte	Result	RŁ	Units	Spike Lvl	% Rec	Low Limit	High Limit	RPD	RPD Limi	t Qualifie
Sample ID: LCS-5	917		Method: S	W6020	Batch ID:	5917	Analys	sis Date: \$	9/24/2012 1:	00:05 PM
Chromium	166	0.400	mg/Kg	150.0	110	80	120			
Silver	32.3	0.200	mg/Kg	24.90	130	80	120			S*
Sample ID: 12080	87-003A-MS		Method: S	W6020	Batch ID:	5917	Analys	sis Date: !	9/24/2012 1:	00:05 PM
Chromium	257	0.493	mg/Kg-dry	184.7	120	7 5	125			
Silver	42.0	0.246	mg/Kg-dry	30.67	136	75	125			S*
Sample ID: 12080	87-003A-MSD		Method: S	W6020	Batch ID:	5917	Analys	sis Date: 1	9/24/2012 1;	00:05 PM
Chromium	228	0.493	mg/Kg-dry	184.7	104	75	125	11.9	20	
Silver	38.3	0.246	mg/Kg-dry	30.67	124	75	125	9.13	20	
Sample ID: 12080	87-003A-MST		Method: S	W6020	Batch ID:	5917	Analys	sis Date: :	9/24/2012 1:	00:05 PM
Chromium	239	0.493	mg/Kg-dry	184.7	110	75	125	7.28	20	
Silver	38.5	0.246	mg/Kg-dry	30.67	124	75	125	8.64	20	

NΑ

Lab: 406-494-7334 Fax: 406-494-7230 labinfo@mse-ta.com

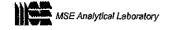
Date: 25-Sep-12

Report Date: 25-Sep-12

QA/QC SUMMARY REPORT

Client: Project: **AECOM**

Sediment Analysis - 60225262-058


Work Order:

1208087

BatchID:

5924

Analyte	Result	RL	Units	Spike Lvi	% Rec	Low Limit	High Limit	RPD	RPD Limi	t Qualifler
Sample ID: 5924-PB Mercury	NĐ	0.100	Method: mg/Kg		Batch ID:	5924	Anaiy	sis Date:	6/28/2012 12	2:41:55 PM
Sample ID: LCS-5924 Mercury	17.3	2.45	Method: mg/Kg		Batch ID: 62.2	5924 80	Analy 120	sis Date:	8/28/2012 12	2:41:65 PM S*
Sample ID: 1208087-0	01A-MS 19.2	2.51	Method: mg/Kg-di		Batch ID: 66.4	5924 75	Analy 125	sis Date:	8/28/2012 1	2:41:55 PM S*
Sample ID: 1208087-0 Mercury	01A-MSD 19.8	2.60	Method: mg/Kg-d		Batch ID: 68.2	5924 75	Anely 125	sis Date: 2,74	8/28/2012 12 20	2:41:55 PM S*

Lab: 406-494-7334 Fax: 406-494-7230 labinfo@mse-ta.com

Date: 25-Sep-12 Report Date: 25-Sep-12

QA/QC SUMMARY REPORT

Spike Lví % Rec

Client:

AECOM

Work Order:

1208087

Project:

Analyte

Sediment Analysis - 60225262-058

RL

BatchID:

R20718

Units

.....

Low Limit High Limit RPD

RPD Limit Qualifier

Sample ID: 1208087-005A-D

Method: D2216 wt% Batch ID: R20713

Analysis Date: 8/22/2012 9:35:00 AM

Percent Moisture 20.6 0.05

Result

2.26

35

NA

Lab: 406-494-7334

Fax: 406-494-7230
labinfo@mse-ta.com

Date: 25-Sep-12 Report Date: 25-Sep-12

QA/QC SUMMARY REPORT

Client:

AECOM

Work Order:

1208087

Project:

Sediment Analysis - 60225262-058

BatchID:

Analyte	Result	RL	Units	Splke Lvi	% Rec	Low Limit	High Limit	RPD	RPD Lim	it Qualifier
Sample ID: 1208087	-003A-D		Method:	ASTMD422	Batch ID:	R20774	Analys	is Date:	8/23/2012 9	:50:00 AM
1" Gradation	ND	0.10	%					0	35	
2mm Gradation	ND	0.10	%					0	35	

Lab: 406-494-7334
Fax: 406-494-7230
labinfo@mse-ta.com

Date: 25-Sep-12 Report Date: 25-Sep-12

QA/QC SUMMARY REPORT

Client:

AECOM

Work Order:

1208087

Project:

Sediment Analysis - 60225262-058

BatchID:

R20826

Analyte	Result	RL	Units	Spike Lvi	% Rec	Low Limit	High Limit	RPD	RPD Lim	t Qualifier
Sample ID: LCS Organic Matter - Walki	48.8	0.20	Method:	OM_WALKLE 49.60		R20826 70.7	Anelys 109	ls Date:	8/31/2012 3	00:00 PM
Sample ID: PB Organic Matter - Walki	ND	0.20	Method: %	OM_WALKLE	Batch ID:	R20828	Analys	ls Date:	8/31/2012 3	00:00 PM
Sample ID: 1208165-00 Organic Matter - Walkl	0 1A-D 1.05	0.20	Method: %	OM_WALKLE	Batch ID:	R20826	Analys	is Date: 3.06	8/31/2012 3 35	00:00 PM

NA

Lab: 406-494-7334 Fax: 406-494-7230 labinfo@mse-ta.com

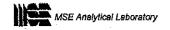
Date: 25-Sep 12 Report Date: 25-Sep-12

QA/QC SUMMARY REPORT

Client:

AECOM

Work Order:


1208087

Project:

Sediment Analysis - 60225262-058

BatchID:

		•								
Analyte	Result	RL.	Units	Spike Lvi	% Rec	Low Limit	High Limit	RPD	RPD Lim	it Qualifier
Sample ID: 1208114-0	01A-D		Method	: OM_WALKLI	E Batch ID:	R20829	Analysi	ls Date:	8/30/2012 1	0:00:00 AM
Organic Matter - Walki	0.83	0.20	%					2.00	35	
Sample ID: LCS			Method	: OM_WALKLI	E Batch ID:	: R20829	Analysi	is Date:	8/30/2012 1	0:00:00 AM
Organic Matter - Walki	54.6	0.20	%	49.60	110	80	120			
Sample ID: PB			Method.	: OM_WALKLI	E Batch ID.	: R20829	Analysi	is Date:	B/30/2012 1	0:00:00 AM
Organic Matter - Walki	ND	0.20	%							

Lab: 406-494-7334 Fax: 406-494-7230 labinfo@mse-ta.com

Date: 25-Sep-12

Report Date: 25-Sep-12

QA/QC SUMMARY REPORT

Client:

AECOM

Work Order:

1208087

Project:

Sediment Analysis - 60225262-058

BatchID:

Analyte	Result	RL	Units	Spike Lvl	% Rec	Low Limit	High Limit	RPD	RPD Lim	it Qualifier
Sample ID: 12080	087-001 A-D		Method:	MSA15-5	Batch ID:	R20843	Analys	ais Date:	8/30/2012 4	;00:00 PM
% Clay	ND	0.1	% %			,,	. •		35	!
% Sand	96.0	0.1	%					(35	<u>:</u>
% Silt	4.0	0.1	%					(35	!
Soll Class	SAND							-		ž ž

Lab: 406-494-7334
Fax: 406-494-7230
labinfo@mse-ta.com

Date: 25-Sep-12 Report Date: 25-Sep-12

QA/QC SUMMARY REPORT

Cllent:

AECOM

Work Order:

1208087

Project:

Sediment Analysis - 60225262-058

BatchID:

Analyte	Result	RL	Units	Splke Lvi	% Rec	Low Limit	High Limit	RPD	RPD Limi	t Qualifier
Sample ID: 1208157-00 Organic Matter - Walki	01A-D 0.61	0.20	Method: %	OM_WALKLE	Batch ID:	R20928	Analys	ls Date; 2.81	9/12 / 2012 12 35	2:00:00 PM
Sample ID: LCS Organic Matter - Walkl	49.9	0,20	Method:	OM_WALKLE 49.60		R20928 70.7	Analys 109	is Date:	9/12/2012 1	2:00:00 PM
Sample ID: PB Organic Matter - Walki	ND	0.20	Method: %	OM_WALKLI	Batch ID.	R20928	Analys	is Date:	9/12/2012 1	2:00:00 PM

AECOM									CHAI	и оі	F CL	ISTODY	' RE	co	RD						12	له زم	P 08	フ	Р	agel	of
Client/Project Name:	``				Pro	ject l	.ocatio							- "		Ann	lysis F		otad	<u></u>			Contain P - Pfa	er Type		Prese	rvalion
058 (2013	<u>2)</u>			···					OM FO	ET	<u></u>					A118			เรเยน	,			A – Am G – Cko	ber Glas er Glass		1 HO 2 H2 3 HN	21, 4° 2804, 4° 103, 4°
Project Number: 603-252-658					Fle	ld Lo	gbook	No.:						8	Ą		3						V - VO. O - Oll	er		4 ~ Na	iOH, 4ª iOH/ZnAo.
Sampler (Print Name)/(Affiliation	1):				Ch	ain of	Custo	dy Tape I	Nos.:	· '	. <u> </u>		_	900	9		Š.	•					 E − E nc	are-		4,	28203, 41
Christina Needham (f		1 Cm						.,	10011				د) ; ;			Sit					l	Metrix C	ades:		7 – 4°	
Karce Barnett (ABC					۱ ۲	3 72	* 1						E. W. V.	3 3	1	g	[[[]					l	DW-D		Vater	S - So	di
Signature: Chuistin Necch	•				R	mi.		teport to:	am·com	TAT	31d		TOC. (unastrem	P	2	% conse material	Rapid Hydro					ı.	WW - V GW - G SW - St ST - St W - Wa	/astowal toundwa inface W inface Wale	ter ster /aler	SL - S SD - S SO - S A - Alr L - Liq P - Pro	sludge Bediment Solid Tuid
Field Sample No./Identification	D	ale	Ti	me	C O M P	G R A B	Co	imple ntainer e/Mat'i)	Matrix	Pros	erv.	Fleld Filtered	10C (c	Total Mobile	Merchan	% (COS	Rapid					1	Lab I.D.		Re	emerks	
Sand	8	9/12	111	0		×	80%	Plosifi C	Soi I	100	301)		×	X	火	X	X						1001				
Form sed			İ			1		\	j	1			X	X	×	X	X						102	<u> </u>			
LJH (#25938)													×	Х	X	X	X						003	 	······································		
LSH (#25939)													X	X	X	X	X						004	1			
MSH (#25940)													X	X	X	χ	X						005	"-		· · · · · · · · · · · · · · · · · · ·	
USC (#25932)													メ	X	X	X	X						006				
LSLA (#25933)													×	メメ	X	X	X						107				
EF8A (#25934)	1	/	•					V	V	<u> </u>			X	X	X	X	X						008				,
•	<u> </u>						,	··· <u>- · · · · · · · · · · · · · · · </u>															<u> </u>				
	<u> </u>			. ~~~																							
																	-									7/	
	<u></u>																								·		
	<u> </u>																										
Relinquished by: (Print Name)(Affilial Chrishna Needham (A		MΝ		Dat	e: & (13112	Z R	ceived b	Y' (Print Nan	ne)/(Affili	lation)	MSE L	ab s	2111	ci)ate	: 8/1	4/17	An	alytica	l Lat	orator	y (De	silnation	1):			
Signature: Chuistin Ne.				Tim	ie: []	ንለ		gnature:			IM.	1				: [0;		ſ	٨		AE	CON	/ Toxice	ology	146		
Relinquished by: (Print Name)(Affiliali	ion)			Dat			Re	eceived b	y: (Print Nan		allon)				Date	· · · · · · · · · · · · · · · · · · ·		人	3 MB	,	· 43	03 W ort C	/. Lapori ollins	e AVei 3. 805	10e 21 M	SE	
				Tim	e:										Time			.00	A eve	Par .	,	(97	70) 416- 490-296	0916		140	
Signature: Relinquished by: (Print Nemoy(Affiliati	ion)			Date				gnature: ceived b	y: (Print Nan	ne)/(Alßii	ation)		· · · · · ·		Date			T	PO C	jce	ealede	cont	490-290 41 <i>nu</i> (5	o (FA)	Ŋ		
				Tím							•			Ì	Time			Sai	nple S	Shlpp	ed Via	:			Ter	np blar	
Signature:				<u>L</u>			J SI	gnature:			.,					· · · · · · · · · · · · · · · · · · ·		UP	<u>s (</u>	edE	x) C	ourie	r_Olh	er	Yes	\$	(NO)

Serial No. No. 52557

Sample Receipt Checklist

Client Name AECOM_INC	•	•	Date and T	ime Received:	8/4//2012 40	20.00 454
Work Order Number 1208087	RoptNo: 1		Received		er J 2	کان کان AM ک
COC_ID: 1208087 Coo	eriD:			, 7, 147	·/ (J	
Checklist completed by Signature	/ 1 .	8-15	-/2 Reviewed	by <u>bo</u>	<u>81</u>	17/12
Matrix:	Camier name	<u>FedEx</u>			1	Date
		-				
Shipping container/cooler in good condition	?	Yes 🗹	No 🗀	Not Present		
Custody seals intact on shippping container	/cooler?	Yes 🗹	No 🗀	Not Present		
Custody seals intact on sample bottles?		Yes 🗹	No 🗌	Not Present		
Chain of custody present?		Yes 🗹	No 🗌			
Chain of custody signed when relinquished	and received?	Yes 🗹	No 🗔			•
Chain of custody agrees with sample labels	?	Yes 🔽	No 🗆			, , ,
Samples in proper container/bottle?	•	Yes 🔽	No 🗀			
Sample containers intact?		Yes 🗹	No 🗆			:
Sufficient sample volume for indicated test?		Yes 🗹	No 🗌		;	
All samples received within holding time?		Yes 🔽	No 🗆			1
Container/Temp Blank temperature in comp	lance?	Yes 🔽	No 🗔			· · ·
Water - VOA vials have zero headspace?	No VOA vials submit	tted 🗹	Yes [J No □		
Water - pH acceptable upon receipt?	•	Yes 🗌	No 🗌	Blank 🔲		
	Adjusted? N/4 Soi/5	<u>.</u>	Checked by	DF 8/15	112	
Any No and/or NA (not applicable) response		nmenis se	action be			,
						:
Client contacted	Date contacted:		Per	rson contacted		; ;
Contacted by:	Regarding:		···			
Comments: REC'D IN COOLER/ICE;	TEMP≃5 DEGREE C					
Corrective Action						•
						· · · · · · · · · · · · · · · · · · ·
			,			
				<u> </u>		

Tuesday, September 25, 2012

Rami Naddy AECOM 4303 W Laporte Ave Fort Collins, CO 80521

RE: 60225262-058

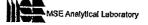
Work Order: 1207139

Dear Rami Naddy:

MSE Lab Services received 6 sample(s) on 7/25/2012 for the analyses presented in the following report.

Please find enclosed analytical results for the sample(s) received at the MSE Laboratory.

if you have any questions regarding these test results, please feel free to call.


Sincerely,

Sara Ward

Laboratory Manager

406-494-7334

Enclosure

P.O. Box 4078 200 Technology Way Butte, MT 59701

Lab: 406-494-7334
Fax: 406-494-7230
labinfo@mse-ta.com

CLIENT:

AECOM

Lab Order:

1207139

Project:

60225262-058

Lab ID:

1207139-001

Date: 25-Sep-12

Client Sample ID: LSH (#25942)

Collection Date: 7/3/2012

Matrix: SEDIMENT

Analyses	Result	MDL	Rpt Limit	Qualifier Units	DF	Date Analyzed
AVS-SEM METALS			AVS-SEM	SW3005A	 ,	Analyst: tj
Cadmium	0.00137	0.00002	0.00010	µmoles/g	1	9/13/2012 12:12:08 PM
Соррег	0.2112	0.00020	0.00100	µmoles/g	1	9/13/2012 12:12:08 PM
Lead	0.01701	0.00001	0.00010	µmoles/g	1	9/13/2012 12:12:08 PM
Nickel	0.04684	0.00001	0.00010	rimo(es/a	1	9/13/2012 12:12:08 PM
Simultaneously Extracted Metal:	0.6375	0.00051	0.00191	µmoles/g	1	9/13/2012 12:12:08 PM
Zine	0.3611	0.00050	0.00100	µmoles/g	1	9/13/2012 12:12:08 PM
PERCENT SOLIDS			A2540G	• •		Analyst: dk/jr
Percent Solids	79.6	0.01	0.1	%	1	8/21/2012 3:40:00 PM
ACID VOLATILE SULFIDE-SIM, E	XT. METALS		AVS-SEM			Analyst: jo
Sulfide	ND	0.55	1.50	µmoles/g	1	8/29/2012 8:00:00 AM

Qualifiers:

Value above quantitation range

Analyte detected below the Reporting Limit

MDL Method Detection Limit

H Holding times for preparation or analysis exceeded

Limit Reporting Limit

D Not Detected at the Method Detection Limit (MDL)

CLIENT:

AECOM

Lab Order:

Project:

1207139

Lab ID:

60225262-058 1207139-002

Date: 25-Sep-12

Client Sample ID: MSH (#25943)

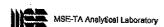
Collection Date: 7/3/2012

Matrix: SEDIMENT

Analyses	Result	MDL	Rpt Limit	Qualifier	Units	DF	Date An	alyzed
AVS-SEM METALS	<u> </u>		AVS-SEM	SW300	5A		Analyst:	tj
Cadmlum	0.00070	0.00002	0.00010		µmoles/g	1	9/13/2012 12:	_
Соррег	0.2810	0.00020	0.00100		µmoles/g	1	9/13/2012 12:	
Lead	0.03112	0.00001	0.00010		µmoles/g	1	9/13/2012 12:	12:08 PM
Nickel	0.05961	0.00001	0.00010		µmoles/g	1 -	9/13/2012 12:	12:08 PM
Simultaneously Extracted Metal:	0.6320	0.00051	0.00191		µmoles/g	1	9/13/2012 12:	12:08 PM
Zinc	0.2595	0.00050	0.00100		µmoles/g	1	9/13/2012 12:	12:08 PM
PERCENT SOLIDS			A2540G				Analyst	dk/ir
Percent Solids	84.8	0.01	0.1		%	1	8/21/2012 3:4	
ACID VOLATILE SULFIDE-SIM. I	EXT. METALS		AVS-SEM				Analyst:	jo
Sulfide	0.93	0.55	1.50	J	µmoles/g	1	8/29/2012 8:0	-

Qualifiers:

Value above quantitation range


J Analyte detected below the Reporting Limit

MDL Method Detection Limit Н

Holding times for preparation or analysis exceeded

Limit Reporting Limit

ND Not Detected at the Method Detection Limit (MDL)

CLIENT:

AECOM

Lab Order:

1207139

Project:

60225262-058

Lab ID:

1207139-003

Date: 25-Sep-12

Client Sample ID: USC (#25935)

Collection Date: 7/2/2012

Matrix: SEDIMENT

Analyses	Result	MDL	Rpt Limit	Qualifier	Units	DF	Date Analyzed
AVS-SEM METALS			AVS-SEM	SW300	5A	· · · · · · · · · · · · · · · · · · ·	
Cadmium	0.00192	0.00002	0.00010		µmoles/g	1	Analyst: tj 9/13/2012 12:12:08 PM
Copper	0.08115	0.00020	0.00100		µmoles/g	1	9/13/2012 12:12:08 PM
Lead	0.00379	0.00001	0.00010		µmoles/g	1	9/13/2012 12:12:08 PM
Nickel	0.05206	0.00001	0.00010		µmoles/q	1	9/13/2012 12:12:08 PM
Simultaneously Extracted Metal:	0.4368	0.00051	0.00191		µmoles/g	1	9/13/2012 12:12:08 PM
Zine	0.2979	0.00050	0.00100		µmoles/g	. 1	9/13/2012 12:12:08 PM
PERCENT SOLIDS			A2540G		•	•	
Percent Solids	78.8	0.01	0.1		%	1	Analyst: dk/jr 8/21/2012 3:40:00 PM
ACID VOLATILE SULFIDE-SIM. E	EXT. METALS		AV\$-SEM			•	Analyst: jo
Sulfide	1.35	0.55	1.50	J.	µmoles/g	1	8/29/2012 8:00:00 AM

Δ	12.67 .	
Qua	mie	IS:

Value above quantitation range

Analyte detected below the Reporting Limit

MDL Method Detection Limit

H Holding times for preparation or analysis exceeded

Limit Reporting Limit

Not Detected at the Method Detection Limit (MDL)

CLIENT:

AEÇOM

Lab Order:

1207139

Project:

60225262-058

Lab ID:

1207139-004

Date: 25-Sep-12

Client Sample ID: EFSC (#25937)

Collection Date:

Matrix: SEDIMENT

Analyses	Result	MDL	Rpt Limit	Qualifier	Units	DF	Date An	alyzed
AVS-SEM METALS		,	AVS-SEM	SW300	5A		Analyst:	tj
Cadmium	0.06460	0.00002	0.00010		µmoles/g	1	9/13/2012 12:	•
Copper	0.3021	0.00020	0.00100		µmoles/g	1	9/13/2012 12:	
Lead	0.00944	0.00001	0.00010		µmoles/g	1	9/13/2012 12:	
Nickel	0.5195	0.00001	0.00010		µmoles/g	1	9/13/2012 12:	. ,
Simultaneously Extracted Metal:	7.827	0.00051	0.00191		µmoles/g	1	9/13/2012 12:	
Zinc	6.931	0.00050	0.00100		µmoles/g	1	9/13/2012 12:	
PERCENT SOLIDS		,	A2540G		-		Analyst:	dk/jr
Percent Solids	72.3	0.01	0.1		%	1	8/21/2012 3:4	-
ACID VOLATILE SULFIDE-SIM. E	XT. METALS	A	VS-SEM				Analyst:	jo
Sulfide	1.10	0.55	1.50	ţ	µmoles/g	1	8/29/2012 8:0	-

_		114		
ч	uа	ш	10	rs:

Value above quantitation range

Holding times for preparation or analysis exceeded

Analyte detected below the Reporting Limit MDL Method Detection Limit

Limit Reporting Limit

Not Detected at the Method Detection Limit (MDL)

CLIENT:

AECOM

Lab Order:

1207139

Project:

60225262-058

Lab ID:

1207139-005

Date: 25-Sep-12

Client Sample ID: LJH (#25941)

Collection Date: 7/2/2012

Matrix: SEDIMENT

Analyses	Result	MDL	Rpt Limit	Qualifier	Units	DF	Date An	—— alyzed
AVS-SEM METALS			VS-SEM	SW300	5A		Analyst:	tj
Cadmium	0.00101	0.00002	0.00010		µmoles/g	1	9/13/2012 12:	_
Copper	0.3437	0.00020	0.00100		µmoles/g	1	9/13/2012 12:	
Lead	0.02664	0.00001	0.00010		p/moles/g	1	9/13/2012 12:	
Nickei	0.03198	0.00001	0.00010		µmoles/g	1	9/13/2012 12:	
Simultaneously Extracted Metal:	0.6427	0.00051	0.00191		µmoles/g	1	9/13/2012 12:	
Zinc	0.2393	0.00050	0.00100		µmoles/g	1	9/13/2012 12:	
PERCENT SOLIDS		,	A2540G		p2.2.2.8	. •	Analyst:	dk/ir
Percent Solids	80.8	0.01	0.1		%	1	8/21/2012 3:4	-
ACID VOLATILE SULFIDE-SIM. E	XT. METALS	· A	VS-SEM				Analyst	jo
Sulfide	1.05	0,55	1.50	ŗ	µmoles/g	1	8/29/2012 8:0	-

Qualiflers:

Value above quantitation range

Analyte detected below the Reporting Limit

MDL Method Detection Limit

H Holding times for preparation or analysis exceeded

Limit Reporting Limit

NO Not Detected at the Method Detection Limit (MDL)

CLIENT:

AECOM

Client Sample ID: LSLA (#25936)

Lab Order:

1207139

Collection Date: 7/3/2012

Project:

60225262-058

Lab ID:

1207139-006


Matrix: SEDIMENT

Date: 25-Sep-12

Analyses	Result	MDL	Rpt Limit	Qualifier	Units	DF	Date An	alyzed
AVS-SEM METALS			AVS-SEM	SW300:	5A		Analyst:	tj
Cadmium	0.00573	0.00002	0.00010		µmoles/g	1	9/13/2012 12:	_
Copper	0.1204	0.00020	0.00100		umoles/g	1	9/13/2012 12:	
Lead	0.01162	0.00001	0.00010		µmoles/g	1	9/13/2012 12:	
Nickel	0.07371	0.00001	0.00010		µmoles/g	1	9/13/2012 12:	12:08 PM
Simultaneously Extracted Metal:	1.049	0.00051	0.00191		µmoles/g	1	9/13/2012 12:	
Zinc	0.8376	0.00050	0.00100		µmoles/g	1	9/13/2012 12:1	12:08 PM
PERCENT SOLIDS			A2540G				Analyst:	dk/ir
Percent Solids	77.4	0.01	0.1		%	1	8/21/2012 3:4	•
ACID VOLATILE SULFIDE-SIM. I	EXT. METALS	A	AVS-SEM				Analyst:	jo
Sulfide	0.99	0.55	1.50	J	µmoles/g	1	8/29/2012 8:0	-

Qualifiers:	E	Value above quantitation range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the Reporting Limit	Limit	Reporting Limit
	MDL	Method Detection Limit	ND	Not Detected at the Method Detection Limit (MDL)

Lab: 406-494-7334 Fax: 406-494-7230 labinfo@mse-ta.com

Date: 25-Sep-12 Report Date: 25-Sep-12

QA/QC SUMMARY REPORT

Client:

AECOM

Work Order:

1207139

Project:

60225262-058

BatchID: 5937

Analyte	Result	RL	Units	Spike Lvl	% Rec	Low Limit	High Limit	RPD	RPD Limit	Qualifie
Sample ID: X-PB-5937		<u>.</u>	Method: A	VS-SEM	Batch ID:	5037	Anali	reis Deta	9/13/2012 12:	12:00 01
Cadmium	ND	0.00010	µmoles/g		2 0.000000	0407	, ,,,,,	VIII Palo.	0/10/2012 12,	12.00 I-II
Copper	0.00079	0.00100	µmoles/g	•						,
Lead	0.00009	0.00010	µmoles/g							J
Nickel	0.00074	0.00010	µmoles/g							J
Simultaneously Extract	0.05240	0.00191	µmoles/g							
Zinc	0.05076	0.00100	µmoles/g							
Sample ID: PB-5937	<u>-</u>		Method: A	VS-SEM	Batch ID:	5937	Analy	isls Date:	9/13/2012 12:1	12-08 DI
Cadmium	ND	0.00010	µmoles/g		- 41011121	*****	,,	0.0 20 0.0.	0/10/ 2 0/2 /2./	Z.00 111
Copper	0.00050	0.00100	µmoles/g							1
Lead	0.00001	0.00010	µmoles/g							J
Nickel	0.00055	0.00010	µmoles/g							J
Simultaneously Extract	0.00500	0.00191	µmoles/g							
Zinc	0.00393	0.00100	µmoles/g				÷			
Sample ID: LCS-5937			Method: A	VS-SEM	Batch ID:	5937	Analy	sis Date:	9/13/2012 12:1	2:08 PM
Cadmium	0.08513	0.00010	µmoles/g	0.08900	95.7	80	120	0.0 2 4.0.	07 TO/LOTE 12.1	2.00 1-10
Copper	0.1891	0.00100	µmoles/g	0.1570	120	80	120			
Lead	0.05578	0.00010	µmoles/g	0.04800	116	80	120			
Nickel	0.2018	0.00010	μmoles/g	0.1700	119	80	120			
Simultaneously Extract	0.7109	0.00191	umoles/g	0.6170	115	80	120			
Zinc	0.1790	0.00100	µmoles/g	0.1530	117	80	120			
Semple ID: 1207139-002	2A-D	<u> </u>	Method: A	/S-SEM	Batch ID;	5937	Analy:	sls Dete: I	9/13/2012 12:1	2·08 DM
Cadmium	0.00081	0.00010	µmoles/g					15,7	20	2,001 /M
Copper	0.2736	0.00100	µmoles/g					2.68	20 20	
Lead	0.02635	0.00010	μmoles/g					16.6	20	
Nickel	0.04883	0.00010	µmoles/g					19.9	20	
Simultaneously Extract	0.5976	0.00191	µmoles/g					5.60	20	
Zinc	0.2480	0.00100	µmoles/g					4.56	20	
Sample ID: 1207139-002	2A-MS	··· ···	Method: Al	/S-SEM	Batch ID:	5937	Analys	sis Date: 9	0/13/2012 12:1:	2·08 PM
Cadmium	0.06259	0.00010	µmoles/g	0.08278	74.8	75	125			E100 7 70
Copper	0.4461	0.00100	µmoles/g	0.1460	113	75	125			
Lead	0.07930	0.00010	µmoles/g	0.04464	108	75	125			
Nickel	0.2381	0.00010	µmoles/g	0.1581	113	75	125			
Simultaneously Extract	1.244	0.00191	µmoles/g	0.5739	107	75	125			
Zinc	0.4176	0.00100	μmoles/g	0.1423	111	75	125			
Sample ID: 1207139-002	A-MSD	-	Method: AV	S-SEM	Batch ID:	5937	Analys	ils Date: 9	V13/2012 12:12	2:08 PM
Cadmlum	0.06279	0.00010	µmoles/g	0.08278	75.0	75	125	0.327	20	
_	0.4282	0.00100	µmoles/g	0.1460	101	75	125			
Copper	0.4202	0.00100	HILLAGOLA	V. 1400	101	/:5	125	4.09	20	

Lab: 406-494-7334
Fax: 406-494-7230
labinfo@mse-ta.com

Date: 25-Sep-12 Report Date: 25-Sep-12

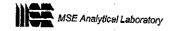
QA/QC SUMMARY REPORT

Client;

AECOM

Project: 6

60225262-058


Work Order:

1207139

BatchID:

5937

Analyte	Result	RL	Units	Spike Lvl	% Rec	Low Limit	High Limit	RPD	RPD Limit Qualifier
Sample ID: 1207139-00 Nickel Simultaneously Extract Zinc	2A-MSD 0.2249 1.189 0.3980	0.00010 0.00191 0.00100	Method: A µmoles/g µmoles/g	0.1581 0.5739	97.1	5937 75 75 75	Analys 125 125 125	5.73 4.46 4.81	- •

Lab: 406-494-7334 Fax: 406-494-7230 labinfo@mse-ta.com

Date: 25-Sep-12 Report Date: 25-Sep-12

QA/QC SUMMARY REPORT

Client:

AECOM

Work Order:

1207139

Project:

60225262-058

BatchID:

R20694

Analyte

Result

RL Units

Spike Lvi % Rec

Low Limit

High Limit RPD

RPD Limit Qualifier

Sample ID: 1207139-001A

Percent Solids

Method: A2540G

Batch ID: R20694

Analysis Date: 8/21/2012 3:40:00 PM

79.4

0.1

%

0.251

35

Lab: 406-494-7334 Fax: 406-494-7230 labinfo@mse-te.com

Date: 25-Sep-12

Report Date: 25-Sep-12

QA/QC SUMMARY REPORT

Client:

AECOM

60225262-058

Work Order:

1207139

Project: 602252

BatchID:

Analyte F	Result	RL,	Units	Spike LvI	% Rec	Low Limit	High Limit RP	,D	RPD Limit	Qualifier
Sample ID: 1207139 Sulfide	3-002A-D 0.93	1.50	Method: µmoles	AVS-SEM	Batch ID:	R20853	Analysis Da	ate: 8/	29/2012 8:00 35):00 AM
Sample ID: 1207139 Sulfide	9.8 5	1.50	Method: µmoles/	<i>AVS-SEM</i> /g 10.64	Batch ID:	R20853 80	Analysis Da	ate: 8/	29/2012 8:00	
Sample ID: LCS-WC Sulfide	2 634 3.63	1.50	Method: µmoles/	AVS-SEM g 4.194	Batch ID: 86.6	R20853 85	Analysis Da	ate: 8/	29/2012 8:00):00 AM
Sample ID; PB Sulfide	ND	1.50	Method: µmoles/	AVS-SEM	Batch ID:	R20853	Analysis Da	ete: 8/:	29/2012 8:00):00 AM

AECON						CH	All	OF C	USTOD	Y REC	COF	RD						(2)	カブ	439	7	p 1
Client/Project Name:			Pr	oject	Location:					7			 -					(X)	<u> </u>		or Type	Pageof
058					FCETU	ነ ሮረር	M						Ana	lysis i	Reque	steci				P-Pla	atic ber Gigas	Preservation 1 HCl, 4*
Project Number:			Fi	ald L	ogbook No.:	- I	·						T		· · ·	<u>1</u>		Τ	T^-	G-Cle	ar Glass	2 - H2SO4. 4° 3 - HNO3, 4°
Sempler (Print Name)/(Affiliation	3012	······································	+					·							-			↓	ļ	O - Oli	81	4 NeOH, 41 5 NeOH/ZnA
	иту:		Cr	iain c	of Custody Tape	Nos.:									İ	ļ		[6 - Na282O3.
chient			1	13:	عاملا								1							Matrix C	odes:	7 - 4
Signature:			Se	nd R	esults/Report to:	·		T A 'r'.		1					ĺ	-				DW~D	rinking Wate Jasicwater	r S – Soil
			Rami Naddy Occom.com Std						GW - G	roundwater Irlace Waler Irm Water	A – Air L – Ekguld											
Field Sample No./Identification	Date	Time	C O M	G R A B	Sample Container (Size/Mat'i)	Malri	х	Preserv.	Field Fillered	AVS										Lab (.D.		P Product
LSH (# 고59시고)	712112	Link			407 Glass	Sed		1ce	<u> </u>	X	-					-					<u> </u>	
MSH (# 25943)	7/3/12	1			100 0100		-	1	<u> </u>	X	-			-		\dashv				001		·
USC (# 25935)	7/2/12								,,,	X				\dashv	\dashv	_				QQZ	ļ	· - ····
EFSC (# 25937)	UNK.						+			X	- }-				-					003		···
LJH (#25941)	7/2/12									X	-					-				1004 OC	<u> </u>	·
LSLA (# 25936)	7/3/12	V			1	*	-	\downarrow	 	X	-	-			_	+	\dashv			205		·
	<u> </u>													_	_ -	+	7		-			
	<u> </u>						_															· · · · · · · · · · · · · · · · · · ·
	-					<u> </u>	+		····					_		_ _	_					
	1						+				_	_				-	-					
						 -	+		<u></u>		+	-				-	+					
												\dashv	 -				+					
Relinquished by: (Print Name)(Attillat 2hd Ethna Neednam (A	lon)	Date	: 71:	щli	Z Received by	(Frint N	laino)	(Affiliation)		·	r)ale:	7/2		Analy	tical L	l .abc	ratory	/ (Des	lination		
Signature: (1444/1477) CA	ECOM)	Time	: 13	/7 <i>/</i> %	30.0		ζ, ε	- (1	00					Analytical Laboratory (Destination):				<i></i>				
Signature: (Military) Relinquished by: (Print Namey(Affiliati	on)	Date		ربر	Signature: Received by	Print	<u> </u>	Affliation		-			13:									
,						••		,			E)ate:		Fort Collins et 80521 MSF 1970 416-0916 MSF				Mac				
Signature: Relinquished by: (Print Name)(Affiliali		Time); 		Signature:						Т	ime:		;				J-18	170) 41	7) 416-0: 90-2963		101-
келпіцованай by. (Рим мате)(Alliliati	Ou)	Date			Received by	: (Print N	ame)/	(Affillation)			D	ate:			Samp	le Shi	ppe					Temp blank
ignature:	·	Time	:	- T	Signature:						T	ime:			UPS	Fed	30	`		Othe	1	Yes No

OHGRAPHICS FORMS Chain of Quality (COC) Charmed Custody Ft, Collins, 10_07. doc

Serial No. Nº 52449

- ·	Sain	hie wacalbi	Cnecklist			•
Client Name AECOM_INC			Date and	Time Received:	7/25/2012 1	30:00 PM
Work Order Number 1207139	RcptNo: 1			d by BO		00.00 W
COC_ID:	CooleriD:			•		
Checklist completed by Signature	Wonnell 7	125/1- ate	Reviewe	d by Initials	7/26/13	Date
Matrix:	Carrier nam	e Priority US	Mali		۱ _. .	
Shipping container/cooler in good of	condition?	Yes 🗹	No 🗌	Not Present		
Custody seals intact on shippping of	container/cooler?	Yes 🗹	No 🗌	Not Present		
Custody seals intact on sample bot	ttes?	Yes 🗌	No 🗀	Not Present	□	1
Chain of custody present?		Yes 🗹	No 🗆	1100111030111		
Chain of custody signed when reline	quished and received?	Yes 🗹	No 🔲			
Chain of custody agrees with sample	le labels?	Yes 🗹	No 🗀			
Samples in proper container/bottle?		Yes 🗹	No 🗆			
Sample containers intact?		Yes 🗹	No 🔲			
Sufficient sample volume for Indicat	ed test?	Yes 🔽	No 🗆			
All samples received within holding t	time?	Yes 🔽	No 🗆	,		
Container/Temp Blank temperature	in compliance?	Yes 🔽	No 🗆			
Water - VOA vials have zero headsp			Yes [ļ	
Water - pH acceptable upon receipt?		Yes 🔲	No 🗀			
	Adjusted? Na		Checked by	Blank LJ	25/m	
Any No and/or NA (not applicable) re	Sedin esponse must be detailed in the	nents sect	lon be		,	
Ellent contacted	Date contacted:		Per	son contacted		
contacted by:	Regarding:					
orrective Action	PREE C - COOLER ON ICE.					
						
			•			·
			·			

APPENDIX F: SPAWNING SUBSTRATE QUALITY DATA

Appendix F.–2012 spawning substrate data for sites sampled near Kensington Gold Mine.

			Slate Cre	ek Sampl	le Point 1,	Sampled	on 7/9/202	12		
		Volume	(mL/L) R	etained Pe	er Sieve (S	Sieve Size	in mm)			Sample Depth
Sample No.	101.6	50.8	25.4	12.7	6.35	1.68	0.42	0.15	Imhoff	(cm)
1	1050	140	140	280	190	395	95	15	24	20
2	0	0	200	225	140	325	140	15	24	20
3	0	515	310	225	250	580	240	27	65	21
4	0	570	510	260	290	750	415	53	54	20
							d on 7/9/12	<u>2</u>		
		Volume	(mL/L) R	etained Pe	er Sieve (S	Sieve Size	in mm)		_	Sample Depth
Sample No.	101.6	50.8	25.4	12.7	6.35	1.68	0.42	0.15	Imhoff	(cm)
1	101.6	250	380	270	260	475	195	23	46.5	20
2	600	75	395	295	180	375	135	15	18.5	20
3	0	450	340	370	340	590	295	30	18	20
4	0	0	320	460	285	545	300	28	16.5	19
		_			_		ed on 7/11	<u>/12</u>		
_		Volume	, ,		er Sieve (S		in mm)		<u>-</u>	Sample Depth
Sample No.	101.6	50.8	25.4	12.7	6.35	1.68	0.42	0.15	Imhoff	(cm)
1	0	0	205	655	725	290	170	60	51.5	25
2	0	0	75	265	670	755	340	100	55.5	25
3	0	0	80	560	605	620	100	89	65.5	25
4	0	0	90	450	560	575	195	65	66.5	25
		-					ed on 7/11	<u>/12</u>		
			, ,		er Sieve (S				<u>-</u>	Sample Depth
Sample No.	101.6	50.8	25.4	12.7	6.35	1.68	0.42	0.15	Imhoff	(cm)
1	0	0	15	260	440	940	1040	150	38	25
2	0	0	215	450	350	370	250	35	16.5	25
3	0	0	510	1000	605	355	55	41	91	25
4	0	190	510	725	350	200	30	25	11	25
					_	_	ed on 7/10	/12		
		Volume	(mI /I) R	etained Pe	er Sieve (S	Sieve Size	in mm)			Sample Depth
			(IIIL/L) IV	cuilled i		ole ve bize			-	
Sample No.	101.6	50.8	25.4	12.7	6.35	1.68	0.42	0.15	Imhoff	(cm)
1	0	50.8 500	25.4 350	12.7 350	6.35 300	1.68 635	0.42 240	25	24.5	17
1 2	0	50.8 500 600	25.4 350 450	12.7 350 350	6.35 300 350	1.68 635 1350	0.42 240 500	25 96	24.5 191	17 22
1 2 3	0 0 0	50.8 500 600 425	25.4 350 450 200	12.7 350 350 290	6.35 300 350 300	1.68 635 1350 650	0.42 240 500 245	25 96 26	24.5 191 17.5	17 22 20
1 2	0	50.8 500 600	25.4 350 450	12.7 350 350	6.35 300 350	1.68 635 1350	0.42 240 500	25 96	24.5 191	17 22
1 2 3	0 0 0	50.8 500 600 425 590	25.4 350 450 200 425 Sherman (12.7 350 350 290 295 Creek San	6.35 300 350 300 235 mple Point	1.68 635 1350 650 300 2, Sample	0.42 240 500 245 150 ed on 7/16	25 96 26 25	24.5 191 17.5	17 22 20 20
1 2 3 4	0 0 0 0	50.8 500 600 425 590 Volume	25.4 350 450 200 425 Sherman (12.7 350 350 290 295 Creek San etained Pe	6.35 300 350 300 235	1.68 635 1350 650 300 2, Sample Sieve Size	0.42 240 500 245 150 ed on 7/16	25 96 26 25	24.5 191 17.5	17 22 20
1 2 3	0 0 0 0	50.8 500 600 425 590 Volume 50.8	25.4 350 450 200 425 Sherman ((mL/L) R	12.7 350 350 290 295 Creek San etained Pe	6.35 300 350 300 235 mple Point er Sieve (\$ 6.35	1.68 635 1350 650 300 2, Sample Sieve Size 1.68	0.42 240 500 245 150 ed on 7/16 in mm) 0.42	25 96 26 25 2/12 0.15	24.5 191 17.5 16.5	17 22 20 20 20 Sample Depth (cm)
1 2 3 4 4 Sample No.	0 0 0 0 0	50.8 500 600 425 590 Volume 50.8 975	25.4 350 450 200 425 Sherman (c (mL/L) R 25.4 290	12.7 350 350 290 295 Creek San etained Pe	6.35 300 350 300 235 mple Point er Sieve (S 6.35 350	1.68 635 1350 650 300 2, Sample Sieve Size 1.68 660	0.42 240 500 245 150 ed on 7/16 in mm) 0.42 375	25 96 26 25 712 0.15	24.5 191 17.5 16.5 Imhoff 49	17 22 20 20 20 Sample Depth (cm) 20
1 2 3 4 Sample No.	0 0 0 0 0	50.8 500 600 425 590 Volume 50.8 975 250	25.4 350 450 200 425 Sherman ((mL/L) R 25.4 290 400	12.7 350 350 290 295 Creek San etained Pe 12.7 310 375	6.35 300 350 300 235 mple Point er Sieve (\$ 6.35 350 340	1.68 635 1350 650 300 2, Sample Sieve Size 1.68 660 450	0.42 240 500 245 150 ed on 7/16 in mm) 0.42 375 180	25 96 26 25 //12 0.15 75 25	24.5 191 17.5 16.5 Imhoff 49 5.5	17 22 20 20 20 Sample Depth (cm) 20 17
1 2 3 4 4 Sample No.	0 0 0 0 0	50.8 500 600 425 590 Volume 50.8 975	25.4 350 450 200 425 Sherman (c (mL/L) R 25.4 290	12.7 350 350 290 295 Creek San etained Pe	6.35 300 350 300 235 mple Point er Sieve (S 6.35 350	1.68 635 1350 650 300 2, Sample Sieve Size 1.68 660	0.42 240 500 245 150 ed on 7/16 in mm) 0.42 375	25 96 26 25 712 0.15	24.5 191 17.5 16.5 Imhoff 49	17 22 20 20 20 Sample Depth (cm) 20

APPENDIX G: ADULT SALMON COUNT DATA

Table G1.–2012 Slate Creek adult pink salmon counts by reach.

	7/16/2	2012 Pink	Salmon	Counts	7/25/2	2012 Pink	Salmon	Counts	7/31/2	Counts		
Stream Reach	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass
0-100m	0	0	0	0	0	0	0	0	30	32	31	0
100-200m	0	0	0	0	0	0	0	0	29	41	35	0
200-300m	0	0	0	0	0	0	0	0	112	98	105	1
300-400m	0	0	0	0	0	0	0	0	110	115	112	1
400-500m	0	0	0	0	0	0	0	0	82	79	80	0
500-600m	0	0	0	0	0	0	0	0	1	1	1	0
600-700m	0	0	0	0	0	0	0	0	0	0	0	0
700-800m	0	0	0	0	0	0	0	0	0	0	0	0
800-900m	0	0	0	0	0	0	0	0	0	0	0	0
900-barrier	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	364	366	364	2

	8/6/2	012 Pink	Salmon (Counts	8/13/2012 Pink Salmon Counts				8/20/2012 Pink Salmon Counts				
Stream Reach	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass	
0-100m	21	58	39	0	495	455	475	15	270	250	260	300	
100-200m	175	217	196	0	490	460	475	16	358	465	411	250	
200-300m	317	325	321	0	570	540	555	35	550	590	570	350	
300-400m	97	107	102	3	600	460	530	40	510	400	455	200	
400-500m	210	144	177	3	390	410	400	25	200	165	182	100	
500-600m	214	225	219	0	211	260	235	15	167	170	168	50	
600-700m	25	19	22	0	270	275	272	25	270	300	285	50	
700-800m	28	17	22	1	160	190	175	5	0	0	0	0	
800-900m	14	2	8	0	36	35	35	0	0	0	0	0	
900-barrier	0	0	0	0	0	0	0	0	0	0	0	0	
Total	1101	1114	1106	7	3222	3085	3152	176	2325	2340	2331	1300	

	8/27/2012 Pink Salmon Counts				9/3/2012 Pink Salmon Counts				9/10/2012 Pink Salmon Counts			
Stream Reach	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass
0-100m	48	60	54	0	0	0	0	37	0	0	0	0
100-200m	73	80	76	0	1	1	1	43	0	0	0	0
200-300m	97	100	98	0	0	0	0	46	0	0	0	0
300-400m	28	17	22	0	0	0	0	32	0	0	0	0
400-500m	27	20	23	0	0	0	0	17	0	0	0	0
500-600m	17	17	17	0	0	0	0	0	0	0	0	0
600-700m	23	23	23	0	0	0	0	0	0	0	0	0
700-800m	5	6	5	0	0	0	0	0	0	0	0	0
800-900m	0	0	0	0	0	0	0	0	0	0	0	0
900-barrier	0	0	0	0	0	0	0	0	0	0	0	0
Total	318	323	318	0	1	1	1	175	0	0	0	0

Table G2.–2012 Johnson Creek adult pink salmon counts by reach.

	7/17/2	2012 Pink	Salmon	Counts	7/24/2	7/24/2012 Pink Salmon Counts				7/31/2012 Pink Salmon Counts			
Stream Reach	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass	
Con-Lace	0	0	0	0	25	35	30	0	120	0	60	0	
Lace-JM	0	0	0	0	0	0	0	0	50	0	25	0	
JM-Trap	0	0	0	0	33	30	31	0	100	0	50	0	
Trap-#4	0	0	0	0	0	0	0	0	50	65	57	0	
#4-#7	0	0	0	0	0	25	12	0	150	130	140	0	
#7-#10	0	0	0	0	0	0	0	0	158	0	79	0	
#10-Power	0	0	0	0	0	0	0	0	0	0	0	0	
Power-LF	0	0	0	0	0	0	0	0	0	0	0	0	
LF-#15	0	0	0	0	0	0	0	0	0	0	0	0	
#15-Falls pool	0	0	0	0	0	0	0	0	0	0	0	0	
Total	0	0	0	0	58	90	73	0	628	195	411	0	

	8/7/2	012 Pink	Salmon (Counts	8/14/2012 Pink Salmon Counts				8/21/2012 Pink Salmon Counts			
Stream Reach	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass
Con-Lace	0	0	0	0	1	0	0	3	0	6	3	0
Lace-JM	0	0	0	0	7	0	3	3	51	3	27	2
JM-Trap	30	26	28	0	400	1	200	0	450	75	262	10
Trap-#4	17	56	36	0	400	300	350	0	560	225	392	25
#4-#7	150	130	140	0	300	260	280	0	350	240	295	10
#7-#10	462	320	391	0	840	550	695	20	550	350	450	50
#10-Power	250	2	126	0	150	100	125	0	520	180	350	120
Power-LF	0	0	0	0	10	0	5	0	40	10	25	10
LF-#15	50	15	32	0	50	30	40	0	15	10	12	15
#15-Falls pool	0	0	0	0	0	0	0	0	0	0	0	0
Total	959	549	753	0	2158	1241	1698	26	2536	1099	1816	242

	8/29/2012 Pink Salmon Counts				9/3/2012 Pink Salmon Counts				9/11/2012 Pink Salmon Counts			
Stream Reach	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass
Con-Lace	0	0	0	0	0	0	0	0	0	0	0	0
Lace-JM	0	0	0	0	0	0	0	0	0	0	0	0
JM-Trap	50	39	45	0	60	16	38	0	5	0	2	0
Trap-#4	50	58	54	0	17	7	12	0	1	0	0	0
#4-#7	32	13	23	0	5	4	4	0	5	3	4	0
#7-#10	100	14	57	0	8	3	5	0	0	0	0	0
#10-Power	30	10	20	0	1	1	1	0	0	0	0	0
Power-LF	0	2	1	0	0	0	0	0	0	2	1	0
LF-#15	0	0	0	0	0	0	0	0	0	0	0	0
#15-Falls pool	0	0	0	0	0	0	0	0	0	0	0	0
Total	262	136	198	0	91	31	60	0	11	5	7	0

	9/19/	/2012 Pin	k Salmor	Counts
Stream Reach	Obs. 1	Obs. 2	Mean	Carcass
Con-Lace	0	0	0	0
Lace-JM	0	0	0	0
JM-Trap	0	0	0	0
Trap-#4	0	0	0	0
#4-#7	0	0	0	0
#7-#10	0	0	0	0
#10-Power	0	0	0	0
Power-LF	0	0	0	0
LF-#15	0	0	0	0
#15-Falls pool	0	0	0	0
Total	0	0	0	0

Table G3.–2012 Johnson Creek adult chum salmon counts by reach.

	7/17/2	012 Chun	n Salmon	Counts	7/24/2012 Chum Salmon Counts				7/31/2012 Chum Salmon Counts			
Stream Reach	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass
Con-Lace	0	0	0	0	0	0	0	0	0	30	15	0
Lace-JM	0	0	0	0	0	0	0	0	0	3	2	0
JM-Trap	0	0	0	0	0	0	0	0	2	50	26	0
Trap-#4	0	0	0	0	0	2	1	0	0	0	0	0
#4-#7	0	0	0	0	2	35	19	0	4	6	5	0
#7-#10	0	0	0	0	65	0	33	0	0	0	0	0
#10-Power	0	0	0	0	0	0	0	0	0	0	0	0
Power-LF	0	0	0	0	0	0	0	0	0	0	0	0
LF-#15	0	0	0	0	0	0	0	0	0	0	0	0
#15-Falls pool	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	67	37	52	0	6	89	48	0

	8/7/20	012 Chum	Salmon	Counts	8/14/2	012 Chun	n Salmon	Counts
Stream Reach	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass
Con-Lace	0	0	0	0	0	0	0	0
Lace-JM	0	0	0	0	0	0	0	0
JM-Trap	0	0	0	0	0	0	0	0
Trap-#4	1	1	1	0	0	0	0	0
#4-#7	0	0	0	0	0	0	0	0
#7-#10	0	0	0	0	0	0	0	0
#10-Power	0	0	0	0	0	0	0	0
Power-LF	0	0	0	0	0	0	0	0
LF-#15	0	0	0	0	0	0	0	0
#15-Falls pool	0	0	0	0	0	0	0	0
Total	1	1	1	0	0	0	0	0

Table G4.–2012 Johnson Creek adult coho salmon counts by reach.

	9/26/2	2012 Coho	Salmon	Counts	10/2/2	2012 Coho	Salmon	Counts	10/9/2012 Coho Salmon Counts			
Stream Reach	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass
Con-Lace	0	0	0	0	0	0	0	0	0	0	0	0
Lace-JM	0	0	0	0	0	0	0	0	0	0	0	0
JM-Trap	0	0	0	0	0	0	0	0	0	0	0	0
Trap-#4	0	0	0	0	0	0	0	0	0	0	0	0
#4-#7	31	31	31	0	30	30	30	0	5	5	5	0
#7-#10	2	2	2	0	10	10	10	0	0	0	0	0
#10-Power	0	0	0	0	0	0	0	0	0	0	0	0
Power-LF	0	0	0	0	0	0	0	0	0	0	0	0
LF-#15	0	0	0	0	0	0	0	0	0	0	0	0
#15-Falls pool	0	0	0	0	0	0	0	0	0	0	0	0
Total	33	33	33	0	40	40	40	0	5	5	5	0

	10/16/	2012 Coh	o Salmon	Counts	10/25/	2012 Coh	o Salmon	Counts	10/30/2012 Coho Salmon Counts			
Stream Reach	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass
Con-Lace	0	0	0	0	0	-	-	0	0	-	-	0
Lace-JM	0	0	0	0	0	-	-	0	0	-	-	0
JM-Trap	0	0	0	0	0	-	-	0	0	-	-	0
Trap-#4	0	0	0	0	0	-	-	0	0	-	-	0
#4-#7	0	0	0	0	4	-	-	0	2	-	-	0
#7-#10	0	0	0	0	0	-	-	0	0	-	-	0
#10-Power	0	0	0	0	1	-	-	0	1	-	-	0
Power-LF	0	0	0	0	0	-	-	0	0	-	-	0
LF-#15	0	0	0	0	0	-	-	0	0	-	-	0
#15-Falls pool	0	0	0	0	0	-	-	0	0	-	-	0
Total	0	0	0	0	5	-	-	0	3	-	-	0

	11/5/2	2012 Coho	Salmon	Counts
Stream Reach	Obs. 1	Obs. 2	Mean	Carcass
Con-Lace	0	-	-	0
Lace-JM	0	-	-	0
JM-Trap	0	-	-	0
Trap-#4	1	-	-	0
#4-#7	2	-	-	0
#7-#10	0	-	-	0
#10-Power	1	-	-	0
Power-LF	0	-	-	0
LF-#15	0	-	-	0
#15-Falls pool	0	-	-	0
Total	4	-	-	0

Note: snorkel surveys on 10/25, 10/30, and 11/5 were performed by a single observer.

Table G5.–2012 Sherman Creek adult pink salmon counts by reach.

	7/16	7/16/2012 Pink Salmon Counts				7/26/2012 Pink Salmon Counts				7/31/2012 Pink Salmon Counts			
Stream Reach	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass	
0-50m	0	0	0	0	2	2	2	0	3	2	2	0	
50-100m	0	0	0	0	0	0	0	0	0	0	0	0	
100-150m	0	0	0	0	0	0	0	0	0	0	0	0	
150-200m	0	0	0	0	0	0	0	0	7	7	7	0	
200-250m	0	0	0	0	0	0	0	0	1	0	0	0	
250-300m	0	0	0	0	0	0	0	0	0	0	0	0	
300-350m	0	0	0	0	0	0	0	0	0	0	0	0	
350-Falls Pool	0	0	0	0	0	0	0	0	0	0	0	0	
Total	0	0	0	0	2	2	2	0	11	9	9	0	

	8/6/2	012 Pink	Salmon (Counts	8/13/2	8/13/2012 Pink Salmon Counts				8/20/2012 Pink Salmon Counts			
Stream Reach	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass	
0-50m	10	6	8	0	48	40	44	3	60	45	52	3	
50-100m	4	4	4	0	49	18	33	0	62	45	53	3	
100-150m	6	5	5	0	5	4	4	1	36	16	26	6	
150-200m	21	15	18	0	30	19	24	2	76	85	80	10	
200-250m	15	14	14	0	55	43	49	0	81	90	85	0	
250-300m	16	13	14	0	50	40	45	0	54	60	57	3	
300-350m	26	19	22	1	45	27	36	3	77	65	71	10	
350-Falls Pool	11	13	12	1	55	46	50	3	99	95	97	7	
Total	109	89	97	2	337	237	285	12	545	501	521	42	

	8/27/2012 Pink Salmon Counts				9/3/2012 Pink Salmon Counts				9/10/2012 Pink Salmon Counts			
Stream Reach	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass
0-50m	75	70	72	3	24	7	15	3	2	1	1	0
50-100m	83	70	76	4	31	32	31	6	10	8	9	0
100-150m	25	25	25	3	6	3	4	3	1	1	1	0
150-200m	80	75	77	15	54	63	58	23	3	3	3	0
200-250m	100	108	104	25	12	18	15	9	2	0	1	0
250-300m	80	56	68	16	9	8	8	7	8	8	8	0
300-350m	60	29	44	0	19	9	14	0	2	2	2	0
350-Falls Pool	55	56	55	0	0	0	0	0	0	0	0	0
Total	558	489	521	66	155	140	145	51	28	23	25	0

	9/18/201	2 Pink Sa	lmon Co	unts
Stream Reach	Obs. 1	Obs. 2	Mean	Carcass
0-50m	0	0	0	0
50-100m	1	1	1	0
100-150m	0	0	0	0
150-200m	0	0	0	0
200-250m	0	0	0	0
250-300m	2	2	2	0
300-350m	0	0	0	0
350-Falls Pool	0	0	0	0
Total	3	3	3	0

Table G6.—Adult salmon counts for pink, chum, and coho salmon by statistical week in Slate, Sherman and Johnson Creeks, 2011-2012.

Pink Salmo	Pink Salmon Survey Data									
Statistical	Slate	Creek	Johnson	n Creek	Sherman Creek					
Week	2011	2012	2011	2012	2011	2012				
29	-	0	-	0	-	0				
30	0	0	1	73	1	2				
31	0	364	180	411	300	9				
32	370	1106	1892	753	774	97				
33	764	3152	3850	1698	1051	285				
34	1396	2331	5264	1816	399	521				
35	1648	318	1351	198	159	521				
36	1815	1	3712	60	873	145				
37	231	0	672	7	417	25				
38	46	-	437	0	611	3				
39	0	-	145	-	36	-				

Chum Saln	Chum Salmon Survey Data									
Statistical	Slate Creek		Johnson	n Creek	Sherman Creek					
Week	2011	2012	2011	2012	2011	2012				
29	-	0	-	0	0	0				
30	0	0	2	52	0	0				
31	0	0	14	48	0	0				
32	52	0	0	1	0	0				
33	8	1	0	0	0	0				
34	0	0	5	0	0	0				
35	0	0	0	0	0	0				

Coho Salmon Survey Data									
Statistical	Slate Creek		Johnson	n Creek	Sherman Creek				
Week	2011	2012	2011	2012	2011	2012			
39	-	0	-	33	-	-			
40	-	0	-	40	-	-			
41	-	0	-	5	-	-			
42	-	0	-	0	-	-			
43	0	-	15	5	-	-			
44	0	_	9	3	-	_			
45	0	_	_	4	-	_			
46	0	_	9	-	-	_			

Note: "-" indicates we did not survey for fish.

APPENDIX H: SHERMAN CREEK CATALOG NOMINATION

Nomination Details For Anadromous Waters Catalog Nomination Number 12-506

Region Southeastern

USGS Quad Juneau D-4

Upper Reach Latitude 0.0000 Longitude 0.0000 (NAD83/WGS84) Lower Reach Latitude 0.0000 **Longitude** 0.0000 (NAD83/WGS84)

AWC Waterbody # 115-31-10330 AWC Waterbody Name Sherman Creek

Observations	egipligation and a		
Species	Date	Observed	Activity

Comments:

Delete coho salmon rearing from stream. Coho rearing was added in 2010 according to an observation made on 5/25/09 by field technician Charmagne Guitierez on behalf of Aquatic Science Inc. In published biomonitoring results from Aquatic Science Inc. 2009 coho were not cited as being observed. The 2005-2010 NPDES annual reports for the Kensington Gold mine have never cited coho as being observed in Sherman Creek. The most recent biomonitoring field work in 2011 which was conducted by Juneau area habitat biologists also confirmed that coho are not present in Sherman creek.

Name of Observer: Benjamin Brewster Submission Date: 03/08/12 ADFG Biologist: Nomination Status: Change

Nomimation Changes To The

AWC Region

115-31-10330

Map(quad) AWC Stream#	Stream Name	Action Taken	Species*	Comments
	561.			
Southeastern JUNEAU D-4		Delete species from existing stream or lake	CO	

Addition files included with this nomination.

File Name	File Size
12-506-Kensington Aquatic Studies ADFG 11-08 FINAL.pdf	12462909
12-506-2005 Annual Report.pdf	19672091
12-506-2009 Kensington Annual Rpt Vol 2.pdf	46812081

This nomination available as a PDF.

*** Best to right click and open in a new window or tab. ***

*Species Codes:			
AC	- Arctic char	AL - Arctic lamprey	AW - Arctic cisco
BC	- broad whitefish	BW - Bering cisco	CH - chum salmon
CO	- coho salmon	CT - cutthroat trout	DV - Dolly Varden
HW	- humpback whitefish	K - chinook salmon	LC - least cisco
LP	 lamprey, undifferentiated 	LV - river lamprey	OL - longfin smelt
OM	- rainbow smelt	OU - eulachon	P - pink salmon
PC	- Pacific lamprey	S - sockeye salmon	SF - inconnu
SH	- Steelhead trout	SM - smelt, undifferentiated	ST - sturgeon, undifferentiated
W	- whitefish, undifferentiated		
*Activity Codes:			
S	- Spawning	r - Rearing	p - Present