Glacier Creek Aquatic Studies, 2019

by

Dylan Krull

December 2019

Alaska Department of Fish and Game

Habitat Section

Symbols and Abbreviations

The following symbols and abbreviations, and others approved for the Système International d'Unités (SI), are used without definition in reports by the Divisions of Sport Fish, and Commercial Fisheries and Habitat Section. All others, including deviations from definitions listed below, are noted in the text at first mention, as well as in the titles or footnotes of tables, and in figures or figure captions.

Weights and measures (metric)		General		Measures (fisheries)	
centimeter	cm	Alaska Administrative		fork length	FL
deciliter	dL	Code	AAC	mideye-to-fork	MEF
gram	g	all commonly accepted		mideye-to-tail fork	METF
hectare	ha	abbreviations	e.g., Mr., Mrs.,	standard length	SL
kilogram	kg		AM, PM, etc.	total length	TL
kilometer	km	all commonly accepted		-	
liter	L	professional titles	e.g., Dr., Ph.D.,	Mathematics, statistics	
meter	m		R.N., etc.	all standard mathematical	
milliliter	mL	at	a	signs, symbols and	
millimeter	mm	compass directions:		abbreviations	
nanometer	nm	east	E	alternate hypothesis	H _A
		north	Ν	base of natural logarithm	е
Weights and measures (English)		south	S	catch per unit effort	CPUE
cubic feet per second	ft ³ /s	west	W	coefficient of variation	CV
foot	ft	copyright	©	common test statistics	$(F, t, \chi^2, etc.)$
gallon	gal	corporate suffixes:		confidence interval	CI
inch	in	Company	Co.	correlation coefficient	
mile	mi	Corporation	Corp.	(multiple)	R
nautical mile	nmi	Incorporated	Inc.	correlation coefficient	
ounce	oz	Limited	Ltd.	(simple)	r
pound	lb	District of Columbia	D.C.	covariance	cov
quart	at	et alii (and others)	et al.	degree (angular)	0
vard	vd	et cetera (and so forth)	etc.	degrees of freedom	df
, ,	5	exempli gratia		expected value	Ε
Time and temperature		(for example)	e.g.	greater than	>
day	d	Federal Information	•	greater than or equal to	≥
degrees Celsius	°C	Code	FIC	harvest per unit effort	HPUE
degrees Fahrenheit	°F	id est (that is)	i.e.	less than	<
degrees kelvin	Κ	latitude or longitude	lat. or long.	less than or equal to	\leq
hour	h	monetary symbols	-	logarithm (natural)	ln
minute	min	(U.S.)	\$,¢	logarithm (base 10)	log
second	s	months (tables and		logarithm (specify base)	\log_2 etc.
		figures): first three		minute (angular)	1
Physics and chemistry		letters	Jan,,Dec	not detected	Ν
all atomic symbols		registered trademark	®	no data	ND
alternating current	AC	trademark	тм	not significant	NS
ampere	А	United States		null hypothesis	Ho
calorie	cal	(adjective)	U.S.	percent	%
direct current	DC	United States of		probability	Р
hertz	Hz	America (noun)	USA	probability of a type I error	
horsepower	hp	U.S.C.	United States	(rejection of the null	
hydrogen ion activity	pH		Code	hypothesis when true)	α
(negative log of)	1	U.S. state	use two-letter	probability of a type II error	
parts per million	ppm		abbreviations	(acceptance of the null	
parts per thousand	ppt,		(e.g., AK, WA)	hypothesis when false)	β
1 1	%			second (angular)	
volts	V			standard deviation	SD
watts	W			standard error	SE
				variance	
				population	Var
				sample	var
				1	

TECHNICAL REPORT NO. 19-12

GLACIER CREEK AQUATIC STUDIES, 2019

By

Dylan Krull

Alaska Department of Fish and Game Habitat Section, Region I 802 3rd Street, Douglas, Alaska 99824

December 2019

This investigation was fully financed by Constantine North, Inc.

Cover: Middle Glacier Creek on June 7, 2019.

Technical Reports are available through the Alaska State Library, Alaska Resources Library and Information Services (ARLIS) and on the Internet: <u>http://www.adfg.alaska.gov/index.cfm?adfg=habitat_publications.main</u>. This publication has undergone editorial and peer review.

Note: Product names or specific company names used in this publication are included for completeness but do not constitute product endorsement. The Alaska Department of Fish and Game, in accordance with State of Alaska ethics laws, does not favor one group over another through endorsement or recommendation.

Alaska Department of Fish and Game, Habitat Section 802 3rd Street, Douglas, Alaska, 99824, USA

This document should be cited as: Krull, D. 2019. Glacier Creek aquatic studies, 2019. Alaska Department of Fish and Game, Technical Report No. 19-12, Douglas, AK.

The Alaska Department of Fish and Game (ADF&G) administers all programs and activities free from discrimination based on race, color, national origin, age, sex, religion, marital status, pregnancy, parenthood, or disability. The department administers all programs and activities in compliance with Title VI of the Civil Rights Act of 1964, Section 504 of the Rehabilitation Act of 1973, Title II of the Americans with Disabilities Act (ADA) of 1990, the Age Discrimination Act of 1975, and Title IX of the Education Amendments of 1972.

If you believe you have been discriminated against in any program, activity, or facility please write: ADF&G ADA Coordinator, P.O. Box 115526, Juneau, AK 99811-5526 U.S. Fish and Wildlife Service, 4401 N. Fairfax Drive, MS 2042, Arlington, VA 22203 Office of Equal Opportunity, U.S. Department of the Interior, 1849 C Street NW MS 5230, Washington DC 20240

The department's ADA Coordinator can be reached via phone at the following numbers: (VOICE) 907-465-6077, (Statewide Telecommunication Device for the Deaf) 1-800-478-3648, (Juneau TDD) 907-465-3646, or (FAX) 907-465-6078

For information on alternative formats and questions on this publication, please contact: ADF&G Habitat Section, 802 3rd Street, Douglas, Alaska 99824 (907) 465-4105

TABLE OF CONTENTS

Page

LIST OF TABLES	i
LIST OF FIGURES	ii
LIST OF APPENDICES	ii
ACKNOWLEDGEMENTS	iii
EXECUTIVE SUMMARY	1
INTRODUCTION	1
Purpose	3
Aquatic Studies	3
Study Area	3
Lower Glacier Creek Middle Glacier Creek	6 7
METHODS	8
Water Quality	8
Periphyton: Chlorophyll Density and Composition	8
Benthic Macroinvertebrate Density and Community Composition	9
Resident Fish Condition	10
Resident Fish Element Concentrations	11
Sediment Element Concentrations	12
RESULTS	14
Lower Glacier Creek	14
Middle Glacier Creek	18
Comparison Among Sites	22
REFERENCES CITED	26

LIST OF TABLES

Table

Page

2019 Lower Glacier Creek sample site location data	6
2019 Middle Glacier Creek sample	7
2019 sediment tests, analytes, and methods	13
Lower Glacier Creek water quality data	14
Lower Glacier Creek mean chlorophylls a, b, and c densities	14
Lower Glacier Creek benthic macroinvertebrate data summaries.	15
Middle Glacier Creek water quality data	18
Middle Glacier Creek mean chlorophylls a, b, and c densities	18
Middle Glacier Creek benthic macroinvertebrate data summaries.	19
	2019 Lower Glacier Creek sample site location data.2019 Middle Glacier Creek sample

LIST OF FIGURES

Figure

Page

1.	Palmer Exploration Project area map.	2
2.	Glacier Creek sample site map.	5
3.	Lower Glacier Creek, looking upstream	6
4.	Middle Glacier Creek and Christmas Creek confluence	7
5.	Lower Glacier Creek chlorophyll a densities.	14
6.	Lower Glacier Creek mean proportions of chlorophylls a, b, and c.	14
7.	Lower Glacier Creek benthic macroinvertebrate densities.	15
8.	Lower Glacier Creek mean benthic macroinvertebrate community compositions.	15
9.	Lower Glacier Creek whole body Dolly Varden char element concentrations	16
10.	Lower Glacier Creek sediment element concentrations	17
11.	Middle Glacier Creek chlorophyll a densities.	
12.	Middle Glacier Creek mean proportions of chlorophylls a, b, and c.	
13.	Middle Glacier Creek benthic macroinvertebrate densities.	19
14.	Middle Glacier Creek mean benthic macroinvertebrate community compositions.	19
15.	Middle Glacier Creek whole body Dolly Varden char element concentrations	20
16.	Middle Glacier Creek sediment element concentrations.	21
17.	Glacier Creek chlorophyll a densities	22
18.	Glacier Creek mean benthic macroinvertebrate densities.	22
19.	Glacier Creek benthic macroinvertebrate taxa richness	22
20.	Glacier Creek whole body Dolly Varden char element concentrations, 2016–2019.	23
21.	Glacier Creek sediment element concentrations, 2016–2019.	25

LIST OF APPENDICES

APPENDIX A: WATER QUALITY DATA

- A.1. Lower Glacier Creek water quality, 2016–2019.
- A.2. Middle Glacier Creek water quality, 2016–2019.

APPENDIX B: CHLOROPHYLL DATA

- B.1. Lower Glacier Creek chlorophylls *a*, *b*, and *c* densities, 2016–2019.
- B.2. Middle Glacier Creek chlorophylls *a*, *b*, and *c* densities, 2016–2019.

APPENDIX C: BENTHIC MACROINVERTEBRATE DATA

- C.1. Lower Glacier Creek benthic macroinvertebrate sample data, 2019.
- C.2. Lower Glacier Creek benthic macroinvertebrate data summaries, 2016–2019.
- C.3. Middle Glacier Creek benthic macroinvertebrate sample data, 2019.
- C.4. Middle Glacier Creek benthic macroinvertebrate data summaries, 2016–2019.

APPENDIX D: RESIDENT FISH DATA AND LABORATORY REPORT

- D.1. Lower Glacier Creek whole body Dolly Varden char element concentrations, 2016–2019.
- D.2. Middle Glacier Creek whole body Dolly Varden char element concentrations, 2016–2019.
- D.3. 2019 Glacier Creek whole body Dolly Varden char laboratory report.

APPENDIX E: SEDIMENT DATA AND LABORATORY REPORT

- E.1. Lower Glacier Creek sediment compositions, 2016–2019.
- E.2. Lower Glacier Creek sediment element concentrations, 2016–2019.
- E.3. Middle Glacier Creek sediment compositions, 2016–2019.
- E.4. Middle Glacier Creek sediment element concentrations, 2016–2019.
- E.5. 2019 Glacier Creek sediment laboratory report.

ACKNOWLEDGEMENTS

Constantine North, Inc. provided financial support for this project. Environmental Manager Allegra Cairns and Camp Manager Darsie Culbeck provided logistical support, and Ms. Cairns provided Glacier Creek water quality and discharge data and reviewed the draft report.

Many Habitat Section staff contributed to this project. Southeast Regional Supervisor Kate Kanouse collaborated on study design and assisted with sampling. Habitat Biologist Greg Albrecht assisted with sampling, processed periphyton samples, and provided quality control of benthic macroinvertebrate identification. Habitat Biologists Evan Fritz and Jesse Lindgren verified data entry. Habitat Section Operations Manager Dr. Al Ott, Ms. Kanouse and Habitat Biologist William Kane reviewed and edited the report. Matthew Kern of Alder Grove Farm identified the benthic macroinvertebrates.

Thank you all for your contribution.

EXECUTIVE SUMMARY

Constantine North, Inc. (CNI) began exploratory drilling at the Palmer Exploration Project in 2006 and has identified barite, copper, gold, silver, and zinc deposits within the volcanogenic massive sulfide deposit that may support a hard rock mine. CNI contracted with the Alaska Department of Fish and Game (ADF&G) Habitat Section to study aquatic resources in Glacier Creek, a glacial water body draining the area. With CNI, Habitat Section biologists developed a plan to study periphyton, benthic macroinvertebrates, fish, and sediment at two sites in Glacier Creek in spring 2016–2019 to document baseline aquatic productivity and sediment conditions.

We sampled the lower and middle reaches of Glacier Creek on June 6 and 7, 2019. Mean chlorophyll *a* density was less than 0.5 mg/m^2 at both sites, the lowest observed. The 2019 mean benthic macroinvertebrate density was lower than previous years at Middle Glacier Creek and the second lowest observed at Lower Glacier Creek. The macroinvertebrate communities were again dominated by Diptera: Chironomidae insects; generally, Chironomidae insects are fast colonizers, easily adapt to changing habitats, and can exercise more than one feeding strategy (Entrekin et al. 2007).

We captured 10 Dolly Varden char *Salvelinus malma* in Lower Glacier Creek and 15 Dolly Varden char in Middle Glacier Creek. All fish were in good condition, and we did not capture other fish species. Most median whole body Dolly Varden char concentrations of analyzed elements were greater among the Lower Glacier Creek samples, while arsenic and silver concentrations were often not detected at both sites. Most concentrations were within the ranges observed in whole body Dolly Varden char samples collected from reference and exploration sites elsewhere in Alaska (Legere and Timothy 2016).

We sampled fine sediment at each site for aluminum, arsenic, cadmium, copper, iron, lead, mercury, selenium, silver, and zinc and found the range of element concentrations generally similar among sites. The baseline cadmium, copper, and zinc concentrations were near or above the freshwater sediment guidelines suggested by Buchman (2008); while we find the sediment guidelines useful for evaluating the data, we also recognize organisms can respond differently in nature.

INTRODUCTION

The Palmer Exploration Project is located in the Porcupine Mining District about 55 km north of Haines by air in the southeastern extent of the Saint Elias Mountains near the U.S./Canada border (Figure 1). At the site, placer gold mining in Glacier Creek and its tributaries occurred during the 20th century, and in 1969 local prospector Merrill Palmer discovered base-metal sulfides and barite that initiated exploration drill programs by several different companies in the following years, including CNI beginning in 2006 (CNI 2015). The project is located on the same volcanogenic massive sulfide belt as the Greens Creek Mine^a, and CNI has identified barite, copper, gold, silver, and zinc as potential mineable resources (CNI 2015). From 2014–2018, CNI constructed a 6.73 km single lane gravel road to support mineral exploration on the mountainside in the Glacier Creek valley.

^a Owned and operated by Hecla Greens Creek Mining Company on Admiralty Island in Southeast Alaska.

Figure 1.-Palmer Exploration Project area map.

Tetra Tech (2013) and ADF&G biologists have documented^b Dolly Varden char in Glacier Creek and three tributaries. Since 2016, CNI contracted with the ADF&G Habitat Section to conduct baseline studies in Glacier Creek. Following review of CNI's water quality sample data, Habitat biologists developed a study plan to investigate and document aquatic resources in Glacier Creek, similar to aquatic sampling programs at the Greens Creek Mine (Kane and Legere 2019) and Kensington Gold Mine (Timothy and Kanouse 2014), underground hard rock mines in Southeast Alaska. The study plan includes sampling periphyton, benthic macroinvertebrates, and fish, aquatic resources influenced by water and sediment quality through natural processes to provide baseline information on aquatic productivity in Glacier Creek. We conducted these studies in spring 2016–2019; reports summarizing sampling results from previous years are in Kanouse and Legere (2016) and Legere and Kanouse (2017–2018).

PURPOSE

The purpose of this investigation and technical report is to document the baseline condition, abundance, and composition of biological communities and sediments in Glacier Creek.

AQUATIC STUDIES

We completed the following studies in Glacier Creek:

- chlorophyll density and composition;
- benthic macroinvertebrate density and community composition;
- Dolly Varden char condition and whole body element concentrations; and
- sediment composition and element concentrations.

STUDY AREA

Glacier Creek is about 7 km long, drains a 39 km² watershed between its headwaters at the Saksaia Glacier and confluence with the Klehini River, and contributes about 5% of the total Klehini River drainage area measured from the U.S. Geological Survey gage at the Klehini River bridge—about 20 km downstream of the prospect.^c

Continuous discharge data do not exist for Glacier Creek. Based on the relative size of the Glacier Creek and Klehini River drainage areas, Integral Consulting, Inc.^d estimated mean Glacier Creek discharge between May and September at 150 ft³/s, less than the discharges measured in June 2015, August 2015, June 2016, and September 2017 which ranged 146–272 ft³/s; CNI staff measured streamflow in Lower Glacier Creek on August 18, 2018 and September 19, 2018, and

^b Matthew Kern, Habitat Biologist, to Jackie Timothy, Southeast Regional Supervisor, ADF&G Division of Habitat. Memorandum: Glacier Creek investigation trip report; dated 6/26/2014. Unpublished document, can be obtained from the Southeast Regional Supervisor, ADF&G Habitat Section, 802 3rd St, Douglas, AK.

^c Marcia Greenblatt and Alice Conovitz, Integral Consulting, to Darwin Green, Constantine North. Memorandum: Klehini River and Glacier Creek hydrologic data summary; dated 2/24/2016. Unpublished document, can be obtained from Constantine North, Inc., 800 W. Pender St. Ste. 320, Vancouver, BC, Canada.

^d Marcia Greenblatt and Alice Conovitz, Integral Consulting, to Darwin Green and Allegra Cairns, Constantine North. Memorandum: Klehini River and Glacier Creek hydrologic data summary–fall 2016 update; dated 12/19/2016. Unpublished document, can be obtained from Constantine North, Inc., 800 W. Pender St. Ste. 320, Vancouver, BC, Canada.

estimated discharge was 155 ft³/s and 57 ft³/s (A. Cairns, Environmental Manager, Constantine North Inc., Vancouver, personal communication).^e

CNI's 2008–2014, 2017–2018, and 2019 Glacier Creek year-round basic water quality data documents total suspended solids ranging 9–2,470 mg/L, turbidity ranging 18–2,760 nephelometric turbidity units (NTU), and pH ranging 6.59–8.33 (DOI 2016; A. Cairns, Environmental Manager, Constantine North Inc., Vancouver, personal communication).

The lower 1 km of Glacier Creek (Stream No. 115-32-10250-2077-3151) provides habitat for coho salmon *Oncorhynchus kisutch*, cutthroat trout *O. clarkii*, and Dolly Varden char (Johnson and Blossom 2019); we have captured Dolly Varden char while opportunistically sampling fish use in 2016–2019, and in October 2019, we documented one pair of coho salmon in Lower Glacier Creek.^{f,g,h} In 2017, we captured Dolly Varden char 0.6 km upstream of the Christmas Creek confluence, a nonglacial tributary located 4.5 km upstream of the Glacier Creek confluence with the Klehini River; previously, Tetra Tech (2013) and ADF&G documented the upper extent of Dolly Varden char below the Christmas Creek confluence. In 2018, we sampled fish use near the upper extent of Glacier Creek and did not find fish.ⁱ

We sampled two locations in Glacier Creek: Lower Glacier Creek and Middle Glacier Creek (Figure 2).

^e CNI did not measure discharge in Glacier Creek in 2019.

^f Dylan Krull, Habitat Biologist, to Jackie Timothy, Southeast Regional Supervisor, ADF&G Division of Habitat. Memorandum: 2018 Palmer Project Glacier Creek coho surveys; dated 12/7/2018. Unpublished document, can be obtained from the Southeast Regional Supervisor, ADF&G Habitat Section, 802 3rd St, Douglas, AK.

^g Dylan Krull, Habitat Biologist, to Kate Kanouse, Southeast Regional Supervisor, ADF&G Habitat Section. Memorandum: 2019 Palmer Project biomonitoring; dated 9/19/2019. Unpublished document, can be obtained from the Southeast Regional Supervisor, ADF&G Habitat Section, 802 3rd St, Douglas, AK.

^h Jesse Lindgren, Habitat Biologist, to Kate Kanouse, Southeast Regional Supervisor, ADF&G Habitat Section. Memorandum: 2019 Palmer Project Glacier Creek coho surveys; dated 12/19/2019. Unpublished document, can be obtained from the Southeast Regional Supervisor, ADF&G Habitat Section, 802 3rd St, Douglas, AK.

ⁱ Dylan Krull, Habitat Biologist, to Jackie Timothy, Southeast Regional Supervisor, ADF&G Division of Habitat. Memorandum: Waterfall and Hangover Creeks fish investigations; dated 10/22/2018. Unpublished document, can be obtained from the Southeast Regional Supervisor, ADF&G Habitat Section, 802 3rd St, Douglas, AK.

Figure 2.–Glacier Creek sample site map.

Lower Glacier Creek

The Lower Glacier Creek sample site is located at the former Glacier Creek bridge near 230 m elevation, about 1.5 km upstream of the Klehini River (Table 1; Figure 3). We accessed the site from the old bridge crossing at the end of Porcupine Road.

Lower Glacier Creek is a medium glacial outwash channel (Paustian 2010). Streambed gradient ranges 1–5% and the substrate is composed of cobble, gravel, sand, and silt. In 2019, we sampled a 233 m reach, a larger reach than in 2018 due to high water level and fewer suitable sampling areas available; we collected periphyton, benthic macroinvertebrates, and sediment samples in channel braids and along the main channel margin upstream of the old crossing, and fish throughout the sample reach. Unlike 2018, we did not observe young-of-year Dolly Varden char while electrofishing.

Comparing stream characteristics of the Lower Glacier Creek sample site 2016–2019, we observed braided channels above the old bridge crossing, and the main channel shifted towards river left since sampling last year.

Table 1.–2019 Lower Glacier Creek sample				
site location data.				
	Latitude	Longitude		
Upper extent	59.41666	-136.30307		
Lower extent	59.41808	-136.29977		

Note: WGS84 datum.

Figure 3.-Lower Glacier Creek, looking upstream.

Middle Glacier Creek

The Middle Glacier Creek sample site is located near 350 m elevation, about 4.5 km upstream of the Klehini River (Table 2; Figure 4). We accessed the site by helicopter.

Middle Glacier Creek is characterized as a medium glacial outwash channel (Paustian 2010). Streambed gradient ranges 4–8% and the substrate is composed of cobble, gravel, sand, and silt. In 2019, we sampled a 267 m reach at the Christmas Creek confluence, a larger reach than in 2018 due to high water level and fewer suitable sampling areas available; we collected periphyton, benthic macroinvertebrates, and sediment samples in channel braids and along the main channel margin, and fish throughout the sample reach. Unlike 2018, we did not observe young-of-year Dolly Varden char while electrofishing.

Comparing stream characteristics of the Middle Glacier Creek sample site 2016–2019, we observed different main channel courses and channel braids each year. In 2019, the main channel shifted river left since sampling last year, which resulted in Christmas Creek flowing within the Glacier Creek floodplain and parallel to the main channel for about 50 m before joining Glacier Creek.

Table 2.–2019 Middle Glacier Creek sample site location data.

	Latitude	Longitude
Upper extent	59.40045	-136.34505
Lower extent	59.40253	-136.34011

Note: WGS84 datum.

Figure 4.-Middle Glacier Creek and Christmas Creek confluence (center).

METHODS

We annually review data sets to ensure accuracy and consistency with methods modifications, and report corrections and updates in the document and appendices. The most recent technical report presents the current data sets and should be used to analyze data from previous years.

WATER QUALITY

We collected basic water quality data with a YSI Pro 2030, a Hach 2100P Portable Turbidimeter, and calibrated the YSI and the Hach instruments per the manufacturer's instructions before sampling. We provide the 2016–2019 data by site in Appendix A.

PERIPHYTON: CHLOROPHYLL DENSITY AND COMPOSITION

Periphyton is composed of primary producing organisms, such as algae, cyanobacteria, and heterotrophic microbes, and detritus attached to the submerged surfaces of aquatic ecosystems. Algal density and community structure are influenced by water and sediment quality through physical, chemical, and biological factors, and disturbances that change throughout the year (Barbour et al. 1999).

We sampled periphyton in Lower Glacier Creek and Middle Glacier Creek to estimate algal density and community composition at each site, using concentrations of chlorophylls a, b, and c. Chlorophyll a (Chl-a) pigment is produced by algae and provides an estimate of active algal biomass (density), while concentrations of chlorophyll b (Chl-b) and chlorophyll c (Chl-c) pigments estimate the composition of algal organisms present, such as green algae that produce Chl-b and diatoms and brown algae that produce Chl-c. We use the chlorophyll data to document baseline primary productivity.

Sample Collection and Analysis

We collected 10 smooth, flat, undisturbed, and perennially wetted rocks from submerged cobble in riffle habitats in less than 0.45 m water depth at each sample site and submerged the rocks with the sample area facing up. We held a 5×5 cm square of high-density foam on the sample area and scrubbed around the foam with a toothbrush to remove algae and other organisms outside the sample area, then rinsed the rock by dipping it in the stream while holding the foam in place. We also rinsed the toothbrush in the stream.

We placed a 47 mm diameter Type A/E 1 μ m glass fiber filter into a Nalgene® filter holder attached to a vacuum pump with a gauge, then removed the foam square and scrubbed the underside of the foam and the sample area with the toothbrush into the filter holder. We used stream water in a wash bottle to rinse the loosened periphyton from the foam, rock, toothbrush, and the inside of the filter holder onto the filter. We scrubbed the sample area a second time and repeated the rinse cycle. We pumped most of the water through the filter, maintaining pressure less than 34 kPa, and added a few drops^j of saturated magnesium carbonate solution to the filter^k before pumping the sample dry. We removed the glass fiber filter, folded it in half with the sample on the inside, and wrapped it in a white coffee filter to absorb additional water. We placed the samples in a sealed, labeled plastic bag with desiccant and stored the samples in a light-proof

^j This measurement is not exact as the amount of water and magnesium carbonate used to create a saturated solution varies and does not affect sample integrity. We used supernatant solution to avoid magnesium carbonate solids.

^k To prevent acidification and conversion of chlorophyll to phaeophytin.

cooler containing frozen icepacks during transportation, in a camp freezer while onsite, and in a -20°C ADF&G Douglas laboratory freezer until processing.

We followed U.S. Environmental Protection Agency (USEPA 1997) protocol for chlorophyll extraction and measurement, determining instrument and estimated detection limits, and data analysis.¹ We removed the samples from the freezer, cut them into small pieces, and placed the filter pieces for each sample into individual 15 mL screw cap centrifuge tubes containing 10 mL of 90% acetone. We capped the centrifuge tubes and shook each tube vigorously to submerge the filter pieces, placed them in a rack, covered them with aluminum foil, and stored them in a refrigerator overnight to extract the chlorophyll.^m

The following day, we centrifuged the samples for 20 min at 363 relative centrifugal force, individually decanted the supernatant into a cuvette, and measured each sample absorbance at wavelengths 664 nm, 647 nm, 630 nm, and 750 nm using a Shimadzu UV-1800 spectrophotometer. Prior to measuring samples, we inserted two cuvettes with 90% acetone to correct for the absorbance of the solvent at each wavelength. We treated each sample with 80 μ L of 0.1 N hydrochloric acid to convert the chlorophyll to phaeophytin, waited 90 seconds, and measured absorbance at wavelengths 665 nm and 750 nm.

We used trichromatic equations to estimate Chl-*a*, Chl-*b*, and Chl-*c* concentrations, and corrected for turbidity using the 750 nm absorbance value (APHA 2012, USEPA 1997). We corrected Chl-*a* concentrations when phaeophytin was detected. When Chl-*a* was not detected in a sample, we report the concentration at the spectrophotometer estimated detection limit and do not report values for Chl-*b* or Chl-*c*. The 2019 estimated detection limit for Chl-*a* concentration was 0.10 mg/m².

Data Presentation

For each site and by year, we present mean Chl-*a*, Chl-*b*, and Chl-*c* densities in a table, Chl-*a* densities in a figure, and mean proportions of Chl-*a*, Chl-*b*, and Chl-*c* in a figure. We compare mean Chl-*a* density among sites in *Comparison Among Sites*, and provide the 2016–2019 data in Appendix B.

BENTHIC MACROINVERTEBRATE DENSITY AND COMMUNITY COMPOSITION

Benthic macroinvertebrates (BMI) classified in the orders Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies), collectively known as EPT taxa, have complex and short life cycles and many genera are sensitive to changes in water and sediment quality (Barbour et al. 1999). These organisms are secondary producers, feed upon periphyton and other macroinvertebrates, and provide a food source for fish. We sampled BMIs in Lower Glacier Creek and Middle Glacier Creek to estimate density and community composition at each site to document baseline conditions.

Sample Collection and Analysis

We opportunistically collected 6 BMI samples from each site using a Surber stream bottom sampler in riffles and runs with gravel and cobble substrate and different flow velocities—habitats

¹ Except, we stored the samples longer than 3.5 weeks; we cut the sample filters to reduce acetone exposure for laboratory staff, rather than homogenize them; and we centrifuged the samples at 363 relative centrifugal force rather than 500 relative centrifugal force.

^m We allowed samples to steep at least 12 h, not more than 24 h.

that support greater BMI densities and taxonomic richness (Barbour et al. 1999). We do not sample other habitat types (e.g. pools) to reduce variability of the data.

The Surber stream bottom sampler has a 0.093 m² sample area and material is captured in a 200 mL cod end, both constructed with 0.3 mm mesh net. After securing the frame on the substrate, we scrubbed rocks within the sample area with a brush and disturbed gravels, sand, and silt to about 10 cm depth to dislodge macroinvertebrates into the net. We rinsed the net in the stream to ensure all organisms floated into the cod end, transferred each sample from the cod end to a labeled 500 mL plastic bottle, preserved the samples in 75.5% ethanol in the field,ⁿ and added 95% ethanol at a ratio of three parts ethanol to one part sample upon returning to the ADF&G Douglas laboratory. We discarded samples when sediment overfilled the cod end.

Contractor Matt Kern of Alder Grove Farm used an elutriator system and 0.5 mm and 0.3 mm sieves to sort all macroinvertebrates from debris,^{o,p} and identified organisms to the lowest practical taxonomic level^q using Merritt and Cummins (1996) and Stewart and Oswood (2006). Habitat biologists provided quality control by verifying identification of 2 samples.

We calculated BMI density (per m^2) for each sample by dividing the number of macroinvertebrates by 0.093 m², the Surber sampling area. We estimated mean BMI density for each site by calculating the mean density among the 6 samples. We report taxa richness as the number of taxonomic groups identified to the lowest practical level and exclude terrestrial^r organisms from all calculations.

Data Presentation

For each site and by year, we present a table summarizing mean BMI density, total taxa, total EPT taxa, % EPT insects, and % Chironomidae insects, and illustrate BMI densities and community composition in figures. We compare the BMI density and taxa richness data among sites in *Comparisons Among Sites*, and provide the raw data for each 2019 sample and summarize the 2016–2019 data for each site in Appendix C.

Resident Fish Condition

Age, sex, season, maturation, diet, gut contents, fat reserve, and muscular development affect fish condition. We used the length and weight of fish captured in Lower Glacier Creek and Middle Glacier Creek to estimate resident Dolly Varden char condition.

ⁿ In 2018 and 2019, we were unable to transport 95% ethanol from Juneau to Haines by air, so we purchased 75.5% Everclear in Haines for field use.

^o Gordon Willson-Naranjo and Greg Albrecht, Habitat Biologists, to Jackie Timothy, Southeast Regional Supervisor, ADF&G Division of Habitat. Memorandum: Benthic macroinvertebrate elutriation trials amendment; dated 12/17/2013. Unpublished document can be obtained from the Southeast Regional Supervisor, ADF&G Habitat Section, 802 3rd St, Douglas, AK.

^p Katrina Lee, Administrative Assistant, to Jackie Timothy, Southeast Regional Supervisor, ADF&G Division of Habitat. Memorandum: Benthic macroinvertebrate sample enumeration procedures; dated 6/28/2016. Unpublished document can be obtained from the Southeast Regional Supervisor, ADF&G Habitat Section, 802 3rd St, Douglas, AK.

^q Insects of the orders Ephemeroptera, Plecoptera, Trichoptera, and Diptera to genus, except nonbiting midges to family Chironomidae, and all others to class or order. We do not report damaged and degraded organisms we cannot identify.

^r Including adult terrestrial insects of the orders Ephemeroptera, Plecoptera, Trichoptera, and Diptera.

Sample Collection and Analysis

We measured FL and weight of resident Dolly Varden char, recording FL to the nearest 1 mm and weight to the nearest 0.1 g. We used the FL and weight data to calculate Fulton's condition factor (K) for individual fish samples using the equation given in Anderson and Neumann (1996), where the fish weight (W) is divided by the cubed length (L), and the product multiplied by 100,000:

$$K = \frac{W}{L^3} \times 100,000$$

Data Presentation

We present the mean fish condition factor of Dolly Varden char for each site, compare mean fish condition among sites in *Comparison Among Sites*, and provide the raw data in Appendix D.

Resident Fish Element Concentrations

Element bioavailability and bioaccumulation depends on physical and chemical factors and interactions among biological communities (Tchounwou et al. 2012). Similar to other studies in Alaska (Legere and Timothy 2016), we sampled resident Dolly Varden char in Lower Glacier Creek and Middle Glacier Creek and measured whole body concentrations of silver (Ag), arsenic (As), cadmium (Cd), copper (Cu), lead (Pb), mercury (Hg), selenium (Se), and zinc (Zn) to document baseline concentrations and variability. We selected these elements based on CNI's Glacier Creek water sample data and potential target elements identified in the ore body.

Sample Collection and Analysis

We captured fish using a Smithroot LR-24 backpack electrofisher and retained 10 resident Dolly Varden char samples.^{s,t} We attempted to only retain fish measuring 90–130 mm FL as other Southeast Alaska Dolly Varden char sampling programs require (Timothy and Kanouse 2014, Legere and Timothy 2016, Kane and Legere 2019), though we retained all fish captured regardless of size due to few fish present, which also determined the sample reach size each year. A 90 mm fish provides the minimum weight requirement for laboratory testing, while a 130 mm fish is 2–3 years old and young enough to reasonably conclude it is resident. We retained fish as they were captured, some outside the size criteria, assuming all fish were resident—about 60 km upriver from Chilkat Inlet. We processed samples as a composite of 2 fish if we were uncertain whether 1 fish would meet the minimum weight requirement for laboratory testing.

We wore latex gloves when handling fish and placed each fish in an individually labeled plastic bag, then measured FL. We placed samples from each site in a larger plastic bag labeled with the sample location. We stored the samples in a cooler with frozen icepacks during transport, in a camp freezer while onsite, and in a -20°C freezer in the ADF&G Douglas laboratory. Upon returning to the lab, we measured fish weight in the sample bag and corrected for the bag weight.

We shipped the samples to ALS Environmental in Kelso, WA in a cooler with frozen icepacks via overnight freight and maintained written chain of custody documentation. ALS Environmental measured total concentrations of Ag, As, Cd, Cu, Hg, Pb, Se, and Zn in each sample on a dry-weight basis, following USEPA (2002) method 1631E for Hg, and USEPA (1994) method 200.8^u

^s In 2016 and 2019, we also used baited minnow traps to capture fish in Lower Glacier Creek.

^t In 2017 and 2018, we were only able to retain 6 samples from Middle Glacier Creek due to low fish abundance.

^u In 2017, the same lab used EPA method 6020A (USEPA 1998).

for the other elements. The laboratory provided Tier IV quality control information including results for sample duplicates, matrix spikes, standard reference materials, and blanks.

Data Presentation

For each site and by year, we present Dolly Varden char whole body element concentrations in a figure. We compare the element concentrations data among sites in *Comparisons Among Sites* and provide a table with the raw data, presenting the mean value for duplicate sample results, and the laboratory report in Appendix C.

In 2018, the lab reported greater Ag and As method reporting limits than previous years, largely due to underweight samples (K. Clarkson, Senior Project Manager, ALS Environmental, Kelso, personal communication). Therefore, to avoid misrepresenting sample results below method reporting limits as whole body element concentrations data, we illustrate element concentrations undetected at the method reporting limit as an empty circle ($^{\circ}$), and measured element concentrations as a solid circle ($^{\bullet}$).

SEDIMENT ELEMENT CONCENTRATIONS

Sediment element concentrations are influenced by a variety of factors, such as geochemical composition and weathering within the watershed, sediment grain size, organic content, and development (Tchounwou et al. 2012). Subsequently, sediment element concentrations influence benthic aquatic productivity. We sampled Lower Glacier Creek and Middle Glacier Creek fine sediments for total organic carbon, acid volatile sulfide, and total concentrations of Ag, aluminum (Al), As, Cd, Cu, iron (Fe), Hg, Pb, Se, and Zn to document baseline conditions. We selected these elements based on CNI's Glacier Creek water sample data and potential target elements identified in the ore body.

Sample Collection and Analysis

Wearing latex gloves, we opportunistically collected one sample each from sand/silt bars and retained a total of five replicate samples in glass jars for element analyses and plastic bags for particle size analyses. We stored the samples in a camp refrigerator while onsite, and on June 11, 2019, CNI staff transported the sediment samples in coolers with ice packs to ALS Environmental in Whitehorse, BC.

ALS Environmental measured total organic carbon, acid volatile sulfide, and total Ag, Al, As, Cd, Cu, Fe, Hg, Pb, Se, and Zn concentrations on a dry-weight basis using Canadian methods listed in Table 3.^v The laboratory provided quality control results for laboratory controls and blanks.

^v The 2016 Glacier Creek sediment samples were processed by an ALS Environmental lab in Kelso, WA. In 2017–2019, CNI sent the sediment samples to a different ALS lab; though methods used by each lab were different, the results are comparable. The parameters analyzed were different between labs; we present and compare data between years where applicable.

Test Description	Analyte	Method
Particle size distribution	Particle size determination	CSSS (1993) 47.2
Total inorganic carbon in soil	Total inorganic carbon	CSSS (2008) P216-217
Total organic carbon calculation	Total organic carbon	CSSS (2008) 21.2
Total Carbon by combustion method	Total carbon	CSSS (2008) 21.2
Mercury in soil by CVAFS	Hg	EPA 200.2 / 1631E (mod)
Inorganic carbon as CaCO3 equivalent	Inorganic carbon	Calculation
Metals in soil by CRC ICPMS	Ag, Al, As, Cd, Cu, Fe, Pb, Se, and Zn	EPA 200.2/6020A (mod)
Sulfide, acid volatile	Acid volatile sulfides	APHA 4500S2J

Table 3.–2019 sediment tests, analytes, and methods.

Data Presentation

For each site and by year, we present sediment element concentrations data in a figure and report mean values when sample duplicate data are available. Consistent with the whole body Dolly Varden char element concentration data presentations, we illustrate sediment element concentrations undetected as an empty circle ($^{\circ}$) at the method reporting limit and measured element concentrations as a solid circle ($^{\circ}$).

We compare the data with the threshold effects concentrations (TEC) and the probable effects concentrations (PEC) for inorganics in freshwater sediment guidelines developed by the National Oceanic and Atmospheric Administration (Buchman 2008). The guidelines are based on results of controlled laboratory bioassays, where element concentrations below the TECs rarely affect aquatic life survival and growth, and element concentrations above the PECs can affect aquatic life survival and growth.

We compare the sediment element concentrations data among sites in *Comparisons Among Sites*. Appendix E contains tables with the composition and raw element data, and the 2019 laboratory report.

RESULTS

LOWER GLACIER CREEK

We sampled Lower Glacier Creek on June 6, 2019, and measured basic water quality at 1305 hours (Table 4). Ms. Cairns measured 6.76 pH at the site on June 8, 2019.

Table 4Lower Glacier Creek water quality data.				
Sample	Temperature	Dissolved	Conductivity	Turbidity
Date	(°C)	Oxygen (mg/L)	(µS/cm)	(NTU)
06/06/19	6.6	12.4	133.6	11

Periphyton: Chlorophyll Density and Composition

The 2019 Lower Glacier Creek mean Chl-*a* density was 0.43 mg/m², less than the 2016–2018 mean densities (Table 5; Figure 5). As in previous years, the samples contained about 85% Chl-*a* and 15% Chl-*c*, and 2 samples contained Chl-*b* (Figure 6).

Table 5.–Lower Glacier Creek mean chlorophylls a, b,

and c densities.			
	Chl-a	Chl-b	Chl-c
Sample Date	(mg/m^2)	(mg/m^2)	(mg/m^2)
06/07/16	2.27	0.00	0.35
06/08/17	1.73	0.00	0.26
05/30/18	1.25	0.02	0.24
06/06/19	0.43	0.01	0.04

Figure 5.–Lower Glacier Creek chlorophyll *a* densities.

Note: Minimum, mean, and maximum values shown.

Benthic Macroinvertebrate Density and Community Composition

Table 6.-Lower Glacier Creek benthic macroinvertebrate data summaries.

Among the 2019 Lower Glacier Creek BMI samples, we identified 12 taxa and estimated mean density at 473 BMI/m², of which 30% were EPT insects (Table 6; Figures 7, 8). The dominant taxon was Diptera: Chironomidae, representing 67% of the samples, similar to 2016 and 2017 when samples contained a greater proportion of Diptera: Chironomidae insects.

	06/07/16	06/08/17	05/30/18	06/06/19
Mean BMI density (per m^2)	995	2,136	217	473
Total BMI taxa	17	30	16	12
Number of EPT taxa	9	13	10	5
Proportion of EPT insects	10%	17%	69%	30%
Proportion of Chironomidae insects	85%	78%	26%	67%

Figure 7.–Lower Glacier Creek benthic macroinvertebrate densities.

Figure 8.–Lower Glacier Creek mean benthic macroinvertebrate community compositions.

Resident Fish Condition and Element Concentrations

Note: Minimum, mean, and maximum values shown.

Of the 10 individual whole body Dolly Varden char (97–155 mm) samples we retained from Lower Glacier Creek in 2019, mean fish condition was 1.2. We did not capture other fish species while sampling. The 2019 whole body Dolly Varden char element concentrations generally were similar to concentrations observed in 2016–2018 (Figure 9).

Sediment Composition and Element Concentrations

The 2019 Lower Glacier Creek sediment samples included particle sizes less than 2 mm. Total organic carbon concentrations were less than 0.32%, and acid volatile sulfide was not detected. The predominant elements were Fe and Al, and the 2019 element concentrations generally were similar to the 2016–2018 results.^w

We evaluated the 2019 sediment sample element concentration data against the guidelines for freshwater sediments published in Buchman (2008), and similar to the 2016–2018 results we found Cd, Cu, and Zn concentrations near or above the TEC values, and As, Hg, and Pb concentrations below the TEC values (Figure 10).^x

^w Element concentration results from the first Middle Glacier Creek sample were unusually elevated; Ms. Cairns requested the lab repeat the analyses and the second results were similar to concentrations previously observed. Due to the discrepancy, we present the duplicate sample results and not the mean.

^x Element concentrations below the TEC value rarely affect aquatic life survival and growth (Buchman 2008).

Figure 10.-Lower Glacier Creek sediment element concentrations.

Note: Element concentrations undetected (o) are presented at the method reporting limit. The dashed line represents the TEC and the solid line represents the PEC for freshwater sediments (Buchman 2008); guidelines are not published for Ag, Al, Fe, or Se.

MIDDLE GLACIER CREEK

We sampled Middle Glacier Creek on June 7, 2019, and measured basic water quality at 1100 hours (Table 7).

Sample	Temperature	Dissolved	Conductivity	Turbidity
Date	(°C)	Oxygen (mg/L)	(µS/cm)	(NTU)
06/07/19	4.0	18.0	126	94

Table 7.-Middle Glacier Creek water quality data.

Periphyton: Chlorophyll Density and Composition

The 2019 Middle Glacier Creek mean Chl-*a* density was 0.33 mg/m^2 , lower than the 2016–2018 samples (Table 8; Figure 11). As in previous years, the samples contained about 85% Chl-*a* and 15% Chl-*c*, and 2 samples contained Chl-*b* (Figure 12).

v, and c defisities.			
	Chl-a	Chl-b	Chl-c
Sample Date	(mg/m^2)	(mg/m^2)	(mg/m^2)
06/08/16	1.50	0.00	0.25
06/09/17	0.81	0.00	0.10
05/31/18	1.76	0.00	0.29
06/07/19	0.33	0.01	0.04

Figure 11.–Middle Glacier Creek chlorophyll *a* densities.

Note: Minimum, mean, and maximum values shown.

Benthic Macroinvertebrate Density and Community Composition

Among the 2019 Middle Glacier Creek BMI samples, we identified 11 taxa and estimate mean density at 215 BMI/m², of which 28% were EPT insects (Table 9; Figures 13, 14). The dominant taxon was Diptera: Chironomidae, representing 68% of the samples, lower than previous years.

	06/08/16	06/09/17	05/31/18	06/07/19
Mean BMI density (per m ²)	2,299	593	504	215
Total BMI taxa	22	14	12	11
Number of EPT taxa	12	6	5	8
Proportion of EPT insects	13%	12%	9%	28%
Proportion of Chironomidae insects	85%	82%	87%	68%

Table 9.-Middle Glacier Creek benthic macroinvertebrate data summaries.

Figure 13.–Middle Glacier Creek benthic macroinvertebrate densities.

Note: Minimum, mean, and maximum values shown.

Resident Fish Condition and Element Concentrations

Of the 5 individual whole body Dolly Varden char (87–185 mm) samples we retained from Middle Glacier Creek in 2019, mean fish condition was 1.3.^y We did not capture other fish species while sampling. The 2019 whole body Dolly Varden char element concentrations generally were similar to concentrations observed in 2016–2018, except one Ag concentration that was greater (Figure 15).

^y Not including 10 Dolly Varden char processed as 5 composite samples.

Figure 15.–Middle Glacier Creek whole body Dolly Varden char element concentrations. *Note:* Element concentrations undetected (o) are presented at the method reporting limit.

Sediment Composition and Element Concentrations

The 2019 Middle Glacier Creek sediment samples included particle sizes less than 9.5 mm. Total organic carbon concentrations were less than 0.58%, and acid volatile sulfide was not detected. The predominant elements were Fe and Al, and the 2019 element concentrations generally were similar to the 2016–2018 results, except the Cd concentrations and one Al concentration and one Se concentration were greater.

We evaluated the 2019 sediment sample element concentration data against the guidelines for freshwater sediments published in Buchman (2008), and similar to the 2016–2018 results we found Cd, Cu, and Zn concentrations near or above the TEC values, and As, Hg, and Pb concentrations below the TEC values (Figure 16).^z

^z Element concentrations below the TEC value rarely affect aquatic life survival and growth (Buchman 2008).

Figure 16.-Middle Glacier Creek sediment element concentrations.

Note: Element concentrations undetected (o) are presented at the method reporting limit. The dashed line represents the TEC and the solid line represents the PEC for freshwater sediments (Buchman 2008); guidelines are not published for Ag, Al, Fe, or Se.

COMPARISON AMONG SITES

Periphyton: Chlorophyll Density and Composition

The 2019 Lower Glacier Creek mean Chl-*a* density was similar to the 2019 Middle Glacier Creek mean density, each lower than previous years (Figure 17). Most periphyton samples contained about 85% Chl-*a* and 15% Chl-*c* at both sites all years.

Figure 17.–Glacier Creek chlorophyll a densities.

Benthic Macroinvertebrate Density and Community Composition

In 2019, we documented lower mean BMI density and taxa richness at the Lower and Middle Glacier Creek sample sites (Figures 18, 19). Mean BMI density and taxa richness followed similar trends at each site 2016–2019, but not among sites. Diptera: Chironomidae insects were the dominant taxon at both sites in 2019, as in most previous years.

Figure 18.–Glacier Creek mean benthic macroinvertebrate densities.

Figure 19.–Glacier Creek benthic macroinvertebrate taxa richness.

Resident Fish Condition and Element Concentrations

Mean fish condition among the 2019 Lower and Middle Glacier Creek Dolly Varden char samples was 1.2 and 1.3, similar to the 2016–2018 results and other Dolly Varden char condition data collected in Southeast Alaska (Kane and Legere 2019).

When we combined the 2016–2019 Dolly Varden char element concentration data by site, median element concentrations were greater among the Lower Glacier Creek samples, except median Ag and As concentrations were similar as those elements are often not detected (Figure 20). All concentrations were within the ranges observed in whole body Dolly Varden char samples collected from reference and exploration sites elsewhere in Alaska (Legere and Timothy 2016).^{aa}

Figure 20.–Glacier Creek whole body Dolly Varden char element concentrations, 2016–2019. *Note:* Median (•), minimum, and maximum concentrations presented; element concentrations not detected are included at the method reporting limit.

^{aa} Except Ag concentration in 1 sample from Middle Glacier Creek was the greatest observed.

Sediment Composition and Element Concentrations

The 2016–2019 Lower and Middle Glacier Creek sediment samples were largely composed of sand and silt, and total organic carbon and acid volatile sulfide were low or not detected.

We evaluated the element concentration data against the guidelines for freshwater sediments published in Buchman (2008), and similar to the 2016–2018 results found Cd, Cu, and Zn concentrations near or above the TEC values, and As, Hg, and Pb concentrations below the TEC values at both sites (Figure 21). Guidelines are not published for Ag, Al, Fe, or Se.

Figure 21.-Glacier Creek sediment element concentrations, 2016–2019.

Note: Median (\blacklozenge), minimum, and maximum concentrations presented; element concentrations not detected are included at the at the method reporting limit.

Note: The dashed line represents the TEC and the solid line represents the PEC for freshwater sediments (Buchman 2008); guidelines are not published for Ag, Al, Fe, or Se.

REFERENCES CITED

- Albrecht, G. 2019. Aquatic studies at Kensington Gold Mine, 2018. Alaska Department of Fish and Game. Technical Report No. 19-06, Douglas, AK.
- APHA (American Public Health Association). 2012. Standard Methods for the examination of water and wastewater. Section 1020.H.2. 22nd Edition. American Public Health Association, Washington DC.
- Anderson, R. O. and R. M. Neumann. 1996. Length, weight, and associated structural indices. [*In*] B. R. Murphy and D. W. Willis, editors. Fisheries Techniques. 2nd edition. American Fisheries Society, Bethesda, MD.
- Barbour, M. T., J. Gerritsen, B. D. Snyder, and J. B. Stribling. 1999. Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish, 2nd edition. EPA 841-B-99-002. U. S. Environmental Protection Agency, Office of Water, Washington, D.C.
- Buchman, M. F. 2008. NOAA screening quick reference tables, National Oceanic and Atmospheric Administration, Office of Response and Restoration Division, Report 08-1, Seattle, WA.
- CNI. 2015. Palmer Exploration Project plan of operations. Prepared for the Bureau of Land Management, Alaska Department of Environmental Conservation, and Alaska Department of Natural Resources, Vancouver, BC.
- DOI (U.S. Department of the Interior). 2016. Environmental Assessment for the Palmer Exploration Project. Case File AA-094088, U.S. Department of the Interior, Bureau of Land Management, Glennallen Field Office, Glennallen, AK.
- Entrekin, S. A., J. B. Wallace, and S. L. Eggert. 2007. The response of Chironomidae (Diptera) to a long-term exclusion of terrestrial organic matter. Hydrobiologia 575(1):401-413.
- Johnson, J. and B. Blossom. 2019. Catalog of waters important for spawning, rearing, or migration of anadromous fishes – Southeastern Region. Effective June 1, 2019. Alaska Department of Fish and Game, Special Publication No. 19-04, Anchorage, AK.
- Kane, W. J. and N. M. Legere. 2019. Aquatic biomonitoring at Greens Creek Mine, 2018. Alaska Department of Fish and Game, Technical Report No. 19-07, Douglas, AK.
- Kanouse, K. M., and N. M. Legere. 2016. Glacier Creek aquatic studies, 2016. Alaska Department of Fish and Game, Technical Report No. 16-10, Douglas, AK.
- Legere, N. M. and K. M. Kanouse. 2017. Glacier Creek aquatic studies, 2017. Alaska Department of Fish and Game, Technical Report No. 17-11, Douglas, AK.
- Legere, N. M. and K. M. Kanouse. 2018. Glacier Creek aquatic studies, 2018. Alaska Department of Fish and Game, Technical Report No. 18-09, Douglas, AK.
- Legere, N. M. and J. Timothy. 2016. Tulsequah Chief acid mine drainage and Dolly Varden char metals concentrations. Alaska Department of Fish and Game, Technical Report No. 16-06, Douglas, AK.
- Merritt, R. W. and K. W. Cummins, editors. 1996. An introduction to the aquatic insects of North America. 3rd edition. Kendall/Hunt Publishing Co., Dubuque, IA.
- Paustian, S. 2010. Channel type user guide revision 2010. U.S. Department of Agriculture, Forest Service, R-10-TP-26.
- Stewart, K. W. and M. W. Oswood. 2006. The stoneflies (Plecoptera) of Alaska and Western Canada. The Caddis Press, Columbus, OH.
- Tetra Tech. 2013. Palmer VMS Project preliminary aquatic investigation. Prepared for Constantine North, Inc., Anchorage, AK.
- Timothy, J. and K. M. Kanouse. 2014. Aquatic studies at Kensington Gold Mine, 2013. Alaska Department of Fish and Game, Technical Report No. 14-01, Douglas, AK.
- Tchounwou, P. B., C. G. Yedjou, A. K. Patlolla, D. J. Sutton. 2012. Heavy metal toxicity and the environment. Pages 133-164 [*In*] Experimentia Supplementum: Molecular, Clinical and Environmental Toxicology: Volume 3: Environmental Toxicology. Springer Basel.

REFERENCES CITED, CONTINUED

- USEPA. 1997. Method 446.0: In vitro determination of chlorophylls a, b, c₁ + c₂ and pheopigments in marine and freshwater algae by visible spectrophotometry (Revision 1.2). Adapted by Elizabeth J. Arar, U. S. Environmental Protection Agency, National Exposure Research Laboratory, Office of Research of Development, Cincinnati, OH.
- USEPA. 1998. Method 6020A (SW-846) Revision 1: Inductively Coupled Plasma-Mass Spectrometry. U.S. Environmental Protection Agency, Washington, D.C.
- USEPA. 2002. Method 1631 Revision E: Mercury in Water by Oxidation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectrometry. U. S. Environmental Protection Agency, Office of Water, Washington, D.C.
APPENDIX A: WATER QUALITY DATA

			· ·		
Sample	Temperature	Dissolved	Conductivity	Turbidity	
Date	(°C)	Oxygen (mg/L)	(µS/cm)	(NTU)	pН
06/07/16	3.3	12.6	115	126	6 ^a
06/08/17	6.5	13.6	129	306	8.32
05/30/18	5.8	10.8	161	17	8.15 ^b
06/06/19	6.6	12.4	133.6	11	6.76 ^c

Appendix A.1.–Lower Glacier Creek water quality data, 2016–2019.

We used a colorpHast pH indicator strip with 0.5 unit sensitivity. a

Taken by Ms. Cairns on 6/2/2018. Taken by Ms. Cairns on 6/8/2019. b

c

Sample	Temperature	Dissolved	Conductivity	Turbidity	
Date	(°C)	Oxygen (mg/L)	(µS/cm)	(NTU)	pН
06/08/16	3.1	14.1	129	57	6 ^a
06/09/17	3.1	16.7	113	> 1000	8.38
05/31/18	4.1	11.3	182	16	ND
06/07/19	4.0	18.0	126	94	ND

Appendix A.2.–Middle Glacier Creek water quality data, 2016–2019.

а We used a colorpHast pH indicator strip with 0.5 unit sensitivity.

APPENDIX B: CHLOROPHYLL DATA

Appendix B.1.–Lower Gl	acier Creek chlorophy	lls a , b , and c densities	, 2016–2019.

	06/07/16				(06/08/17			(05/30/18			06/06/19			
mg/m ²	Chl-a	Chl-b	Chl-c	-	Chl-a	Chl-b	Chl-c		Chl-a	Chl-b	Chl-c		Chl-a	Chl-b	Chl-c	
	3.35	0.00	0.47	-	1.50	0.00	0.17		0.21	0.00	0.08	-	0.43	0.00	0.03	
	3.31	0.00	0.51		1.28	0.00	0.25		1.23	0.00	0.20		0.10	ND	ND	
	2.56	0.00	0.45		2.89	0.00	0.30		3.31	0.00	0.51		0.53	0.00	0.00	
	1.28	0.00	0.29		1.82	0.00	0.20		0.53	0.00	0.08		0.14	0.00	0.00	
	3.10	0.00	0.38		1.92	0.00	0.25		0.53	0.00	0.07		0.22	0.05	0.00	
	1.97	0.00	0.29		3.31	0.00	0.46		0.96	0.00	0.22		0.10	ND	ND	
	0.53	0.00	0.11		1.92	0.00	0.24		3.10	0.00	0.53		0.11	0.01	0.05	
	2.03	0.00	0.30		0.19	ND	ND		1.28	0.00	0.24		1.92	0.00	0.18	
	3.52	0.00	0.63		1.39	0.00	0.21		0.43	0.15	0.27		0.64	0.00	0.01	
	1.01	0.00	0.09		1.09	0.00	0.22		0.96	0.00	0.15		0.10	ND	ND	
Mean	2.27	0.00	0.35	-	1.73	0.00	0.26		1.25	0.02	0.24	-	0.43	0.01	0.04	
Minimum	0.53	0.00	0.09		0.19	0.00	0.17		0.21	0.00	0.07		0.10	0.00	0.00	
Maximum	3.52	0.00	0.63		3.31	0.00	0.46		3.31	0.15	0.53		1.92	0.05	0.18	
37.7	N 1 1 1	· .4				1 1	12 27 1	1	1 11 .	1 1						

Note: Bold value is the spectrophotometer estimated detection limit, chlorophyll a not detected.

Appendix B.2.–Middle Glacier Creek chlorophylls *a*, *b*, and *c* densities, 2016–2019.

06/08/16					(06/09/17		05/31/18				_	06/07/19			
mg/m ²	Chl-a	Chl-b	Chl-c	C	hl-a	Chl-b	Chl-c		Chl-a	Chl-b	Chl-c		Chl-a	Chl-b	Chl-c	
	1.82	0.00	0.30		0.96	0.00	0.15		1.50	0.00	0.20	_	0.83	0.00	0.05	
	4.38	0.00	0.75		0.75	0.00	0.15		1.92	0.00	0.27		0.18	0.00	0.04	
	0.96	0.00	0.10		1.38	0.00	0.08		2.24	0.00	0.41		0.55	0.00	0.02	
	1.60	0.00	0.26		1.56	0.00	0.22		2.78	0.00	0.44		0.10	ND	ND	
	0.19	ND	ND		0.43	0.00	0.00		3.10	0.00	0.51		0.21	0.00	0.02	
	1.17	0.00	0.13		0.75	0.00	0.05		0.96	0.00	0.14		0.14	0.01	0.05	
	0.96	0.00	0.15		0.50	0.00	0.03		0.78	0.00	0.16		0.18	0.06	0.11	
	1.82	0.00	0.27		1.17	0.00	0.23		1.60	0.00	0.25		0.21	0.00	0.00	
	0.28	0.00	0.00		0.21	0.02	0.10		1.82	0.00	0.35		0.53	0.00	0.02	
	1.82	0.00	0.27		0.43	0.00	0.02		0.85	0.00	0.20		0.32	0.00	0.09	
Mean	1.50	0.00	0.25		0.81	0.00	0.10	-	1.76	0.00	0.29	-	0.33	0.01	0.04	
Minimum	0.19	0.00	0.00		0.21	0.00	0.00		0.78	0.00	0.14		0.10	0.00	0.00	
Maximum	4.38	0.00	0.75		1.56	0.02	0.23		3.10	0.00	0.51		0.83	0.06	0.11	

Note: Bold value is the spectrophotometer estimated detection limit, chlorophyll a not detected.

APPENDIX C: BENTHIC MACROINVERTEBRATE DATA

				Sample Number								
Class or Subclass	Order	Family	Genus	1	2	3	4	5	6	Total		
Insecta	Ephemeroptera	Baetidae	Baetis	10	15	12	7	8	4	56		
		Heptageniidae	Rhithrogena	2	2	3	2	0	0	9		
	Plecoptera	Chloroperlidae	Suwallia	3	2	1	0	0	1	7		
		Nemouridae	Nemoura	1	1	1	1	1	0	5		
	Trichoptera	Rhyacophilidae	Rhyacophila	0	0	0	0	1	0	1		
	Diptera	Chironomidae	unidentified	44	29	13	41	19	31	177		
		Tipulidae	Hesperoconopa	1	0	0	0	0	0	1		
	Coleoptera	Elmidae	unidentified	0	0	0	0	1	0	1		
		Scirtidae	unidentified	0	0	0	0	0	1	1		
		unidentified	unidentified	4	0	0	0	0	0	4		
Arachnida	unidentified	unidentified	unidentified	0	0	0	1	0	0	1		
Entognatha	Collembola	unidentified	unidentified	0	0	1	0	0	0	1		
			Total	65	49	31	52	30	37	264		

Appendix C.1.–Lower Glacier Creek benthic macroinvertebrate sample data, 2019.

	06/07/16	06/08/17	05/30/18	06/06/19
Total BMI taxa	17	30	16	12
Number of EPT taxa	9	13	10	5
Total counts				
Ephemeroptera	44	158	61	65
Plecoptera	13	41	22	12
Trichoptera	1	3	1	1
Aquatic Diptera	478	955	33	178
Other organisms	19	35	4	8
% Ephemeroptera	8%	13%	50%	25%
% Plecoptera	2%	3%	18%	5%
% Trichoptera	0.2%	0.3%	0.8%	0.4%
% Aquatic Diptera	86%	80%	27%	67%
% Other organisms	3%	3%	3%	3%
% EPT	10%	17%	69%	30%
% Chironomidae	85%	78%	26%	67%
Total aquatic invertebrates	555	1,192	121	264
Total terrestrial invertebrates	17	18	13	17
Total invertebrates	572	1,210	134	281
% Sample aquatic	97.0%	98.5%	90.3%	94.0%
% Sample terrestrial	3.0%	1.5%	0.0%	6.0%
Total sample area (m ²)	0.558	0.558	0.558	0.558
Mean BMI density (per m^2)	995	2,136	217	473
±1 SD	373	1,015	151	148

Appendix C.2.–Lower Glacier Creek benthic macroinvertebrate data summaries, 2016–2019.

				Sample Number						
Class	Order	Family	Genus	1	2	3	4	5	6	Total
Insecta	Ephemeroptera	Baetidae	Baetis	0	0	0	0	6	2	8
		Heptageniidae	Epeorus	0	0	0	0	1	1	2
		Heptageniidae	Rhithrogena	0	0	0	0	5	7	12
	Plecoptera	Chloroperlidae	Suwallia	0	0	0	0	1	2	3
		Nemouridae	Nemoura	0	0	0	1	3	1	5
		Nemouridae	Zapada	0	0	0	0	1	1	2
	Trichoptera	Hydropsychidae	Arctopsyche	0	0	0	0	1	0	1
		Rhyacophilidae	Rhyacophila	0	0	0	0	1	0	1
	Diptera	Chironomidae	unidentified	2	8	4	7	38	23	82
		Empididae	Clinocera	0	0	0	0	2	1	3
	Hemiptera	unidentified	0	0	1	0	0	0	1	
			Total	2	8	5	8	59	38	120

Appendix C.3.–Middle Glacier Creek benthic macroinvertebrate sample data, 2019.

	06/08/16	06/09/17	05/31/18	06/07/19
Total BMI taxa	22	14	12	11
Number of EPT taxa	12	6	5	8
Total counts				
Ephemeroptera	119	25	18	22
Plecoptera	45	14	7	10
Trichoptera	4	1	0	2
Aquatic Diptera	1,107	276	254	85
Other organisms	8	15	2	1
% Ephemeroptera	9%	8%	6%	18%
% Plecoptera	4%	4%	2%	8%
% Trichoptera	0.3%	0.3%	0.0%	1.7%
% Aquatic Diptera	86%	83%	90%	71%
% Other organisms	1%	5%	0.7%	0.8%
% EPT	13%	12%	9%	28%
% Chironomidae	85%	82%	87%	68%
Total aquatic invertebrates	1,283	331	281	120
Total terrestrial invertebrates	19	7	1	4
Total invertebrates	1,302	338	282	124
% Sample aquatic	98.5%	97.9%	99.6%	96.8%
% Sample terrestrial	1.5%	2.1%	0.4%	3.2%
Total sample area (m ²)	0.558	0.558	0.558	0.558
Mean BMI density (per m^2)	2,299	593	504	215
±1 SD	976	392	249	249

Appendix C.4.–Middle Glacier Creek benthic macroinvertebrate data summaries, 2016–2019.

APPENDIX D: RESIDENT FISH DATA AND LABORATORY REPORT

Sample	Length	Weight	Condition	Ag	As	Cd	Cu	Hg	Pb	Se	Zn
Date	(mm)	(g)	(<i>K</i>)	(mg/kg)							
06/07/16	108	12.7	1.0	< 0.019	< 0.48	0.429	3.55	0.0466	0.076	7.23	153
06/07/16	68	4.8	1.5	< 0.020	< 0.50	0.501	3.75	0.0330	0.182	7.60	173
06/07/16	112	17.7	1.3	0.025	< 0.48	1.310	3.63	0.0567	0.230	5.48	145
06/07/16	105	15.9	1.4	< 0.019	< 0.48	0.585	3.23	0.0509	0.078	7.56	150
06/07/16	113	14.3	1.0	< 0.020	0.50	0.420	3.42	0.0427	0.177	6.21	154
06/07/16	94	10.8	1.3	< 0.019	0.52	0.441	4.35	0.0381	0.195	7.83	167
06/07/16	109	14.6	1.1	0.026	< 0.50	1.250	5.20	0.0683	0.362	6.46	238
06/07/16	97	11.2	1.2	< 0.019	< 0.49	0.641	3.71	0.0401	0.172	6.11	154
06/08/16	93	9.5	1.2	< 0.020	< 0.49	0.960	3.32	0.0349	0.091	7.04	141
06/08/16	73	4.7	1.2	0.025	0.54	0.730	4.67	0.0353	0.360	6.31	168
06/08/17	133	29.1	1.2	0.023	< 0.50	0.727	4.47	0.0599	0.109	6.00	184
06/08/17	113	15.7	1.1	< 0.020	< 0.50	0.426	3.69	0.0505	0.027	7.01	148
06/08/17	105	12.6	1.1	< 0.020	< 0.50	0.601	3.23	0.0523	0.038	7.16	134
06/08/17	90	9.2	1.3	0.038	< 0.50	1.230	3.24	0.0473	0.088	8.33	123
06/08/17	106	12.8	1.1	< 0.020	< 0.50	0.606	4.06	0.0532	0.104	9.09	153
06/08/17	175	60.5	1.1	< 0.020	< 0.50	0.355	4.71	0.0924	0.119	6.90	162
06/08/17	75	5.7	1.4	< 0.020	< 0.50	0.429	4.77	0.0438	0.202	7.86	157
06/08/17	110	17.3	1.3	0.025	< 0.50	0.736	4.35	0.0446	0.074	9.03	126
06/08/17	59, 118 ^a	20.2	ND	< 0.020	< 0.50	0.472	4.20	0.0456	0.119	7.30	160
06/08/17	102, 70 ^a	15.6	ND	< 0.020	< 0.50	0.865	4.55	0.0642	0.196	7.62	130
05/30/18	112	12.3	0.9	< 0.020	< 0.50	0.183	3.26	0.0511	0.042	5.14	114
05/30/18	66, 65 ^a	4.7	ND	< 0.034	< 0.84	0.458	5.30	0.0467	0.098	5.90	142
05/30/18	109	15.1	1.2	< 0.020	< 0.50	0.257	4.34	0.0592	0.080	6.70	121
05/30/18	103	11.6	1.1	< 0.020	< 0.50	0.272	4.05	0.0426	0.108	7.04	132
05/30/18	78, 65 ^a	7.0	ND	< 0.020	< 0.50	0.545	5.03	0.0589	0.136	6.19	182
05/30/18	97	7.8	0.9	< 0.020	< 0.50	0.558	5.04	0.0529	0.165	6.25	160
05/30/18	61, 63 ^a	4.1	ND	< 0.15	<3.7	0.710	5.29	0.0511	0.170	7.30	158
05/30/18	92	6.5	0.8	< 0.020	< 0.50	0.512	5.74	0.0545	0.207	5.47	175
05/30/18	81	4.5	0.8	< 0.024	< 0.59	0.440	4.43	0.0496	0.080	6.50	150
05/30/18	106	12.2	1.0	< 0.020	< 0.50	0.284	4.91	0.0530	0.087	5.76	149

Appendix D.1.–Lower Glacier Creek whole body Dolly Varden char element concentrations, 2016–2019.

^a Composite sample of two fish.

Appendix D.1.–Continued.

Sample	Length	Weight	Condition	Ag	As	Cd	Cu	Hg	Pb	Se	Zn
Date	(mm)	(g)	<i>(K)</i>	(mg/kg)							
06/06/19	122	22.9	1.3	< 0.020	< 0.50	0.237	4.07	0.0546	0.110	5.83	158
06/06/19	124	22.7	1.2	< 0.019	< 0.48	0.349	3.63	0.0440	0.082	5.87	117
06/06/19	155	42.5	1.1	< 0.020	< 0.50	0.514	5.79	0.0510	0.180	6.27	207
06/06/19	97	12.3	1.3	< 0.020	< 0.50	0.372	5.58	0.0341	0.137	7.32	156
06/06/19	121	20.8	1.2	< 0.020	< 0.49	0.353	2.87	0.0496	0.144	5.82	116
06/06/19	106	15.0	1.3	< 0.019	< 0.47	0.259	4.42	0.0540	0.168	6.95	134
06/06/19	105	13.6	1.2	< 0.020	< 0.49	0.300	3.37	0.0368	0.109	5.95	115
06/06/19	117	19.7	1.2	< 0.020	< 0.50	0.665	4.86	0.0428	0.206	6.02	150
06/06/19	141	27.1	1.0	< 0.019	< 0.48	0.440	4.87	0.0457	0.158	6.68	148
06/06/19	126	25.5	1.3	< 0.020	< 0.50	0.442	5.18	0.0549	0.129	5.69	188

Sample	Length	Weight	Condition	Ag	As	Cd	Cu	Hg	Pb	Se	Zn
Date	(mm)	(g)	(<i>K</i>)	(mg/kg)							
06/08/16	150	36.0	1.1	0.031	< 0.48	0.605	3.37	0.0429	0.069	5.66	143
06/08/16	108	15.9	1.3	< 0.020	< 0.50	0.327	4.33	0.0337	0.183	6.91	147
06/08/16	123	26.5	1.4	< 0.020	< 0.50	0.683	3.83	0.0301	0.717	5.64	117
06/08/16	73	5.2	1.3	< 0.020	< 0.49	0.288	4.99	0.0260	0.128	3.94	128
06/08/16	180	66.7	1.1	< 0.020	< 0.50	0.329	3.11	0.0376	0.061	5.17	132
06/08/16	77	6.0	1.3	< 0.020	< 0.50	0.215	3.53	0.0259	0.259	4.80	146
06/08/16	83	7.8	1.4	< 0.020	< 0.50	0.280	3.75	0.0247	0.182	6.05	132
06/08/16	146	31.5	1.0	< 0.020	< 0.50	0.521	2.50	0.0299	0.062	4.90	103
06/08/16	83	7.0	1.2	< 0.020	< 0.50	0.678	2.56	0.0328	0.046	4.66	139
06/08/16	70	5.0	1.5	0.682	< 0.50	0.257	2.63	0.0184	0.036	6.29	133
06/09/17	154	45.5	1.2	< 0.020	< 0.50	0.267	3.29	0.0364	0.036	5.14	116
06/09/17	130	24.3	1.1	< 0.020	< 0.50	0.333	3.23	0.0343	0.056	6.86	95
06/09/17	210	115.0	1.2	< 0.020	< 0.50	0.758	7.67	0.0701	0.031	6.34	161
06/09/17	141	34.7	1.2	< 0.020	< 0.50	0.291	3.33	0.0430	0.037	8.02	126
06/09/17	131	24.3	1.1	< 0.020	< 0.50	0.299	3.26	0.0385	0.100	6.10	128
06/09/17	90	7.4	1.0	< 0.020	< 0.50	0.343	2.40	0.0361	0.034	6.86	101
05/31/18	171	55.9	1.1	< 0.020	< 0.50	0.696	15.20	0.0641	0.080	6.56	176
05/31/18	138	28.3	1.1	< 0.020	< 0.50	0.541	6.22	0.0659	0.044	5.30	114
05/31/18	58, 57 ^a	4.2	ND	< 0.082	<2.0	0.357	4.25	0.0191	0.087	4.90	114
05/31/18	188	76.2	1.1	0.027	< 0.50	0.889	12.70	0.0487	0.143	6.22	140
05/31/18	175	58.1	1.1	< 0.020	< 0.50	0.612	5.47	0.0296	0.107	5.20	108
05/31/18	100	11.2	1.1	0.029	< 0.50	0.802	5.07	0.0676	0.122	6.72	146
06/07/19	65, 65 ^a	8.3	ND	< 0.020	< 0.50	0.501	3.89	0.0157	0.053	5.81	117
06/07/19	72, 70 ^a	10.2	ND	< 0.020	< 0.50	0.615	3.91	0.0241	0.073	5.30	101
06/07/19	141	36.9	1.3	< 0.019	< 0.48	0.354	3.16	0.0468	< 0.019	5.46	116
06/07/19	185	88.4	1.4	< 0.020	< 0.49	0.785	3.42	0.1060	0.050	5.16	161
06/07/19	67, 69 ^a	8.6	ND	< 0.020	< 0.50	0.438	3.55	0.0199	0.109	5.60	105
06/07/19	166	47.4	1.0	< 0.019	< 0.48	0.280	3.73	0.0528	0.091	5.47	115
06/07/19	87	8.7	1.3	< 0.019	< 0.48	0.231	2.39	0.0260	0.028	5.54	89.3
06/07/19	100	14.9	1.5	< 0.020	< 0.49	0.260	3.41	0.0356	0.163	5.43	99.8
06/07/19	75, 77 ^a	11.6	ND	0.984	< 0.48	0.337	3.94	0.0254	0.179	5.18	106
06/07/19	75, 75 ^a	8.4	ND	< 0.019	< 0.48	0.547	3.68	0.0331	0.120	5.25	88.6

Appendix D.2.-Middle Glacier Creek whole body Dolly Varden char element concentrations, 2016–2019.

^a Composite sample of two fish.

Appendix D.3.–2019 Glacier Creek whole body Dolly Varden char laboratory report.

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626 **T** : +1 360 577 7222 **F** : +1 360 636 1068 www.alsglobal.com

September 23, 2019

Analytical Report for Service Request No: K1907707

Dylan Krull Alaska Department of Fish and Game Division of Habitat 802 3rd Street P.O. Box 110024 Douglas, AK 99811-0024

RE: 2019 Palmer Project Biomonitoring

Dear Dylan,

Enclosed are the results of the sample(s) submitted to our laboratory August 21, 2019 For your reference, these analyses have been assigned our service request number **K1907707**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3356. You may also contact me via email at Kurt.Clarkson@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Kurt Clarkson Sr. Project Manager

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626 **T**: +1 360 577 7222 **F**: +1 360 636 1068 www.alsglobal.com

Table of Contents

Acronyms

Qualifiers

State Certifications, Accreditations, And Licenses

Case Narrative

Chain of Custody

Total Solids

Metals

Raw Data

Total Solids

Metals

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LOD	Limit of Detection
LOQ	Limit of Quantitation
LUFT	Leaking Underground Fuel Tank
M MCL	Modified Maximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH tr	Total Petroleum Hydrocarbons Trace level is the concentration of an analyte that is less than the PQL but greater than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Page 4 of 48

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
North Carolina DEQ	https://deq.nc.gov/about/divisions/water-resources/water-resources- data/water-sciences-home-page/laboratory-certification-branch/non-field-lab- certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator yAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Case Narrative

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 6 of 48

Client:	Alaska Department of Fish and Game
Project:	2019 Palmer Project Biomonitoring
Sample Matrix:	Animal Tissue

Service Request: K1907707 Date Received: 08/21/2019

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier level IV requested by the client.

Sample Receipt:

Twenty animal tissue samples were received for analysis at ALS Environmental on 08/21/2019. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

Metals:

Method 200.8, 09/16/2019: The Relative Percent Difference (RPD) for the replicate analysis of Copper in sample 2019LGCDV3 was outside the normal ALS control limits. The samples were homogenized, freeze dried, then ground prior to digestion, however this was not sufficient to achieve a completely uniform distribution of Copper in the tissue.

Kunt Clauson

Approved by

Date

09/23/2019

Chain of Custody

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 8 of 48

Attachment 1, page 1 of 1

rottopy

nonitoring h and Game

2019 Palmer Project Biomonitoring Alaska Department of Fish and Game Dylan Krull <u>dylan.krull@alaska.gov; (907) 465-6160</u> Whole body Dolly Varden char

Contact Information:

Sample Type: Analysis:

Project Name: Company Name: Project Manager: EPA 6020A total metals and EPA1631E Hg, dry weight basis, report percent solids

					Fork Length	Weight
Matrix	Sample Date	Sample Name	Sample ID	Analytes	(mm)	(g)
Whole Body	6/6/2019	Lower Glacier Creek DV Metals Fish #1	2019LGCDV1	Ag, As, Cd, Cu, Hg, Pb, Se, Zn	122	22.9
Whole Body	6/6/2019	Lower Glacier Creek DV Metals Fish #2	2019LGCDV2	Ag, As, Cd, Cu, Hg, Pb, Se, Zn	124	22.7
Whole Body	6/6/2019	Lower Glacier Creek DV Metals Fish #3	2019LGCDV3	Ag, As, Cd, Cu, Hg, Pb, Se, Zn	155	42.5
Whole Body	6/6/2019	Lower Glacier Creek DV Metals Fish #4	2019LGCDV4	Ag, As, Cd, Cu, Hg, Pb, Se, Zn	26	12.3
Whole Body	6/6/2019	Lower Glacier Creek DV Metals Fish #5	2019LGCDV5	Ag, As, Cd, Cu, Hg, Pb, Se, Zn	121	20.8
Whole Body	6/6/2019	Lower Glacier Creek DV Metals Fish #6	2019LGCDV6	Ag, As, Cd, Cu, Hg, Pb, Se, Zn	106	15.0
Whole Body	6/6/2019	Lower Glacier Creek DV Metals Fish #7	2019LGCDV7	Ag, As, Cd, Cu, Hg, Pb, Se, Zn	105	13.6
Whole Body	6/6/2019	Lower Glacier Creek DV Metals Fish #8	2019LGCDV8	Ag, As, Cd, Cu, Hg, Pb, Se, Zn	117	19.7
Whole Body	6/6/2019	Lower Glacier Creek DV Metals Fish #9	2019LGCDV9	Ag, As, Cd, Cu, Hg, Pb, Se, Zn	141	27.1
Whole Body	6/6/2019	Lower Glacier Creek DV Metals Fish #10	2019LGCDV10	Ag, As, Cd, Cu, Hg, Pb, Se, Zn	126	25.5
Whole Body	6/7/2019	Middle Glacier Creek DV Metals Fish #1	2019MGCDV1	Ag, As, Cd, Cu, Hg, Pb, Se, Zn	$65, 65^{a}$	8.3
Whole Body	6/7/2019	Middle Glacier Creek DV Metals Fish #2	2019MGCDV2	Ag, As, Cd, Cu, Hg, Pb, Se, Zn	$72, 70^{a}$	10.2
Whole Body	6/7/2019	Middle Glacier Creek DV Metals Fish #3	2019MGCDV3	Ag, As, Cd, Cu, Hg, Pb, Se, Zn	141	36.9
Whole Body	6/7/2019	Middle Glacier Creek DV Metals Fish #4	2019MGCDV4	Ag, As, Cd, Cu, Hg, Pb, Se, Zn	185	88.4
Whole Body	6/7/2019	Middle Glacier Creek DV Metals Fish #5	2019MGCDV5	Ag, As, Cd, Cu, Hg, Pb, Se, Zn	$67, 69^{a}$	8.6
Whole Body	6/7/2019	Middle Glacier Creek DV Metals Fish #6	2019MGCDV6	Ag, As, Cd, Cu, Hg, Pb, Se, Zn	166	47.4
Whole Body	6/7/2019	Middle Glacier Creek DV Metals Fish #7	2019MGCDV7	Ag, As, Cd, Cu, Hg, Pb, Se, Zn	87	8.7
Whole Body	6/7/2019	Middle Glacier Creek DV Metals Fish #8	2019MGCDV8	Ag, As, Cd, Cu, Hg, Pb, Se, Zn	100	14.9
Whole Body	6/7/2019	Middle Glacier Creek DV Metals Fish #9	2019MGCDV9	Ag, As, Cd, Cu, Hg, Pb, Se, Zn	75, 77 ^a	11.6
Whole Body	6/7/2019	Middle Glacier Creek DV Metals Fish #10	2019MGCDV10	Ag, As, Cd, Cu, Hg, Pb, Se, Zn	75, 75 ^a	8.4

^a Composite sample of two fish.

Stal/19 0940 CodyGraves ALS Heceiveel

C	CHAIN OF CU	STODY		SR#	rollophy
1317 South 13th Ave., Kelso, WA 98626	360.577.7222 800.695.722	22 360.636.1068 (fax)	PAGE	(OF 2	COC#
PROJECT NUMBER PAIMER PROJECT BIOMONITORING					
PROJECTANNAGER LANI			1 2 1 1 C.	1 EQC 203 [
COMPART DEPT. Of Tish + Game		WI JI JI JI JI V O V O V O V O V O V O V O V O V O V		D3 0 0 0 0 0 0 0 0	eueun:
Convergence 12 Sta St.	NTAL NTAL 82701 802	1918 1918 1918 1918 1900 1900 1900	1 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2		
EMALADIADI A 1-18 24 EMALADIERO KITAI (G) A LASKA. ADV			0 2) He 10, 17, 003	A(C S S S S S S S S S S S S S S S S S S	
PHONE 3 (907) 4 45- 40 60 FAX#	0 4.182 0 850 0 85		10 10 10 10 10 10 10 10 10 10 10 10 10 1	1 1 1 85 1 0 W	
samplers signature			06 X V OC V (0): V (0):		
SAMPLE I.D. DATE TIME LAB I.D. MATRIX	<i>≷]</i> / % ° ≦ % ± ੴ (č	5 X & A & C & E &	ମ ଓ /ଞିହ୍ନୀ ଛିଏ / ୧ /	₹ ă c [ă c]	/ / REMARKS
see attachment 1st / for 21		χ		א 	
what body hwenie fish					
individual Samous					
REPORT REQUIREMENTS	Circle which metals are to be a	inalyzed:			
Builting Banort: Mathod Ball T. Allace Calibor	Total Metals: AI (As) Sb	Ba Be B Ca Co Co	or ∕ou)Fe ¢eb) Mg Mn	Mo Ni K (Ag) Na A	Se) Sr TI Sn V (Zn)(Ha)
Blank, Surrogate, as diference Constraints	Dissofted Metals: AI As Sb	Ba Be B Ca CC	or Cu Fe Pb Mg Mn	Mo Ni K Ag Na	Se Sr Ji Sn V Zn Hg
required metals.com	*INDICATE STATE HYDI	ROCARBON PROCEDUR	RE: AK CA WI NO	RTHWEST OTHER:	(CIRCLE ONE)
V II. Report Dup., MS, MSD as TURNAROUND REQUIREMENT:	SPECIAL INSTRUCTIONS	//COMMENTS:			
111 CI DI ike Summary	please em	all report to	Dylan and	(Allegra	
(no raw data)	•)	2	
IV. Data Validation Report Provide FAX Results					
V. EUU Requested Report Date	Sample Shipment co	ntains USDA regulated	soil samples (check box	< if applicable)	
RELINQUISHED BY:	CEIVED BY:	RELINQUI	SHED BY:	Re	CEIVED BY:
Signature Date Date Signature	Date Time	Signature	Date/Time	Signature	Date/Time
Printed Name Firm Printed Name	Firm	Printed Name	Firm	Printed Name	Firm
	Page	10 of 48			Copyright 2012 by ALS Group

ALS	5)		<i>.</i> .						PC_K	C
lient A	X. Dept. o	f Gamel	F3h	Receipt and	Service	Request K	יר <i>ס</i> 19 רך	107		
Received:	8/21/19	Opened	: 8/21/	/ 9 By:	CG	Unload	ed: 8/21	19 B	y: <i>CG</i>	
. Samples	s were received s were received	via? USPS in: (circle)	Fed Ex Cooler	UPS Box E	DHL P nvelope	DX Cour Other	rier Han	d Delivered	NA	
. Were <u>c</u> i	ustody seals on o	coolers?	NA (ð n	If yes, how	many and w	here?	Right S	de	<u></u>
If prese	nt, were custody	, v seals intact?	Č	У м	If prese	nt, were they	signed and	dated?	Ý	N
Raw Cooler Temp	Corrected. F Cooler Temp Tem	Raw Correcte p Blank Temp Bla	d Corr. nk Factor	Thermomete ID	Cooler			Tracking Nun	iber	NA File
-0.7	-0.9		-0.2	225	•		7892	5455 1	561	
								······································		
									·····	
4. Packing	g material: Ins	erts Baggies	> Bubble W	rap <u>Gel Pack</u>	S Wet Ice	e Dry Ice	Sleeves _			
5. Were c	ustody papers p	roperly filled o	ut (ink, signe	d, etc.)?	o <i>z v</i>			1	NA (Y)	N
6. Were s	amples received	In good condi If applicable,	tion (tempera tissue sample	ture, unbroken) es were receive	? Indicate d: Froze	in the table b e n Partiall	elow. v Thawed	Thawed	NA (V)	M
7. Were al	ll sample labels	complete (i.e a	nalysis, prese	ervation, etc.)?		-	,		NA 💇	N
8. Did all	sample labels ar	d tags agree w	ith custody p	apers? Indicate	e major disc	repancies in t	the table on	page 2.	NA 🕎	N
9. Were a	ppropriate bottl	es/containers a	nd volumes r	eceived for the	tests indicat	ed?			NA Y	N
10. Were	the pH-preserve	d bottles (see S	MO GEN SOP) received at the	e appropriat	e pH? Indica	te in the tab	le below	NA Y	N
11. Were	VOA vials recei	ved without he	adspace? Ind	dicate in the tal	ole below.			6	NA Y	N
12. Was C	C12/Res negative	e?						C	NA Y	N
	Sémple ID on Bo	ttla		Sample ID on (dentified by:		
iiiii		440			.00			dentmed by.		
L								······		
	Sample ID	Bo	ttle Count ottle Type	Out of Head- Temp space B	roke pH	Reagent	Volume added	Reagent Lot Number	Initials	Time
								·······		<u> </u>

Notes, Discrepancies, & Resolutions:

Total Solids

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 12 of 48

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client:Alaska Department of Fish and GameProject:2019 Palmer Project BiomonitoringSample Matrix:Animal TissueAnalysis Method:Freeze DryPrep Method:None

Service Request: K1907707 Date Collected: 06/06/19 - 06/07/19 Date Received: 08/21/19

Units: Percent Basis: Wet

Total Solids

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Q
2019LGCDV1	K1907707-001	21.6	-	1	08/26/19 16:53	
2019LGCDV2	K1907707-002	24.3	-	1	08/26/19 16:53	
2019LGCDV3	K1907707-003	20.6	-	1	08/26/19 16:53	
2019LGCDV4	K1907707-004	22.1	-	1	08/26/19 16:53	
2019LGCDV5	K1907707-005	23.2	-	1	08/26/19 16:53	
2019LGCDV6	K1907707-006	22.8	-	1	08/26/19 16:53	
2019LGCDV7	K1907707-007	23.6	-	1	08/26/19 16:53	
2019LGCDV8	K1907707-008	23.2	-	1	08/26/19 16:53	
2019LGCDV9	K1907707-009	23.5	-	1	08/26/19 16:53	
2019LGCDV10	K1907707-010	21.4	-	1	08/26/19 16:53	
2019MGCDV1	K1907707-011	21.4	-	1	08/26/19 16:53	
2019MGCDV2	K1907707-012	21.1	-	1	08/26/19 16:53	
2019MGCDV3	K1907707-013	25.7	-	1	08/26/19 16:53	
2019MGCDV4	K1907707-014	22.8	-	1	08/26/19 16:53	
2019MGCDV5	K1907707-015	20.9	-	1	08/26/19 16:53	
2019MGCDV6	K1907707-016	24.4	-	1	08/26/19 16:53	
2019MGCDV7	K1907707-017	22.3	-	1	08/26/19 16:53	
2019MGCDV8	K1907707-018	24.7	-	1	08/26/19 16:53	
2019MGCDV9	K1907707-019	21.9	-	1	08/26/19 16:53	
2019MGCDV10	K1907707-020	22.7	-	1	08/26/19 16:53	

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 14 of 48

ALS Group USA, Corp. dba ALS Environmental Analytical Report

Client:	Alaska Department of Fish and Game
Project:	2019 Palmer Project Biomonitoring
Sample Matrix:	Animal tissue

 Service Request:
 K1907707

 Date Collected:
 06/06-07/19

 Date Received:
 08/21/19

Units: ng/g Basis: Dry

Mercury, Total

Prep Method:	METHOD
Analysis Method:	1631E
Test Notes:	

			Dilution	Date	Date		Result
Sample Name	Lab Code	MRL	Factor	Extracted	Analyzed	Result	Notes
2019LGCDV1	K1907707-001	9.9	10	09/05/19	09/18/19	54.6	
2019LGCDV2	K1907707-002	9.9	10	09/05/19	09/18/19	44.0	
2019LGCDV3	K1907707-003	9.9	10	09/05/19	09/18/19	51.0	
2019LGCDV4	K1907707-004	10.0	10	09/05/19	09/18/19	34.1	
2019LGCDV5	K1907707-005	9.7	10	09/05/19	09/18/19	49.6	
2019LGCDV6	K1907707-006	10.0	10	09/05/19	09/18/19	54.0	
2019LGCDV7	K1907707-007	9.9	10	09/05/19	09/18/19	36.8	
2019LGCDV8	K1907707-008	9.9	10	09/05/19	09/18/19	42.8	
2019LGCDV9	K1907707-009	9.9	10	09/05/19	09/18/19	45.7	
2019LGCDV10	K1907707-010	9.9	10	09/05/19	09/18/19	54.9	
2019MGCDV1	K1907707-011	1.0	1	09/05/19	09/18/19	15.7	
2019MGCDV2	K1907707-012	9.9	10	09/05/19	09/18/19	24.1	
2019MGCDV3	K1907707-013	9.7	10	09/05/19	09/18/19	46.8	
2019MGCDV4	K1907707-014	9.9	10	09/05/19	09/18/19	106	
2019MGCDV5	K1907707-015	9.7	10	09/05/19	09/18/19	19.9	
2019MGCDV6	K1907707-016	9.6	10	09/05/19	09/18/19	52.8	
2019MGCDV7	K1907707-017	9.9	10	09/05/19	09/18/19	26.0	
2019MGCDV8	K1907707-018	9.9	10	09/05/19	09/18/19	35.6	
2019MGCDV9	K1907707-019	9.7	10	09/05/19	09/18/19	25.4	
2019MGCDV10	K1907707-020	9.8	10	09/05/19	09/18/19	33.1	
Method Blank 1	K1907707-MB1	1.0	1	09/05/19	09/18/19	ND	
Method Blank 2	K1907707-MB2	1.0	1	09/05/19	09/18/19	ND	
Method Blank 3	K1907707-MB3	1.0	1	09/05/19	09/18/19	ND	

ALS Group USA, Corp. dba ALS Environmental QA/QC Report

Client: Project: Sample Matrix:	Alaska Departme 2019 Palmer Pro Animal tissue	ent of Fish ar ject Biomon	nd Game itoring							Serv Da Da Da Da	vice Request: te Collected: ate Received: te Extracted: te Analyzed:	K1907707 06/06/19 08/21/19 09/05/19 09/18/19	
			Matrix S	pike/D	Ouplicate Total 1	Matrix Sp Metals	ike Sum	nmary					
Sample Name: Lab Code: Test Notes:	2019LGCDV1 K1907707-001M	IS,	K1907	707-00)1DMS						Units: Basis:	ng/g Dry	
Analyte	Prep Method	Analysis Method	MRL	Spiko MS	e Level DMS	Sample Result	Spike MS	Result DMS	Pero MS	ent DMS	R e c o v e r y ALS Acceptance Limits	Relative Percent Difference	Result Notes
Mercury	METHOD	1631E	10.0	249	249	54.6	314	306	104	101	70-130	3	

ALS Group USA, Corp. dba ALS Environmental QA/QC Report

Client: Project: Sample Matrix:	Alaska Departme 2019 Palmer Proj Animal tissue	nt of Fish ar ect Biomoni	nd Game itoring							Serv Da Da Da Da	vice Request: te Collected: ate Received: te Extracted: te Analyzed:	K1907707 06/07/19 08/21/19 09/05/19 09/18/19	
]	Matrix S	pike/D	Ouplicate Total 1	Matrix Sp Metals	ike Sum	nmary					
Sample Name: Lab Code: Test Notes:	2019MGCDV4 K1907707-014M	S,	K1907	707-01	4DMS						Units: Basis:	ng/g Dry	
Analyte	Prep Method	Analysis Method	MRL	Spiko MS	e Level DMS	Sample Result	Spike MS	Result DMS	Pero MS	ent DMS	R e c o v e r y ALS Acceptance Limits	Relative Percent Difference	Result Notes
Mercury	METHOD	1631E	10.0	248	247	106	361	359	103	102	70-130	<1	
Client: Project: LCS Matrix:	Alaska Departmer 2019 Palmer Proje Water	nt of Fish and ect Biomonito	Game oring				Service Request: Date Collected: Date Received: Date Extracted:	K190770 NA NA NA	7				
------------------------------------	--	---------------------------------	--------------------	------------------------	--------------------	---------------------	--	---------------------------	-----------------				
		0	р	1.D		1.0	Date Analyzed:	09/18/19					
		Ungoing	; Precision at	nd Recover Total Me	y (OPR) S etals	ample Sum	mary						
Sample Name:	Ongoing Precision	and Recove	ry (Initial)				Units:	ng/g					
							Basis:	NA					
Test Notes:													
							ALS Percent Recovery						
Analyte		Prep Method	Analysis Method	True Value	Result	Percent Recovery	Acceptance Limits		Result Notes				

5.00

5.19

104

70-130

METHOD

1631E

Mercury

Client: Project: LCS Matrix:	Alaska Departmer 2019 Palmer Proje Water	nt of Fish and ect Biomonite	Game oring				Service Request: Date Collected: Date Received: Date Extracted:	K190770 NA NA NA	7
		Ongoing	Dragision or	d Dagavar		ampla Sum	Date Analyzed:	09/18/19	
		Ongoing	Precision an	Total Me	tals	ample Sum	mary		
Sample Name:	Ongoing Precision	n and Recover	ry (Final)				Units:	ng/g	
Test Notes:							Basis:	NA	
		_		_			ALS Percent Recovery		
Analyte		Prep Method	Analysis Method	True Value	Result	Percent Recovery	Acceptance Limits]	Result Notes

5.00

4.97

99

70-130

METHOD

1631E

Mercury

Client: Project: LCS Matrix:	Alaska Departr 2019 Palmer Pi Animal tissue	nent of Fish and roject Biomonit	d Game coring				Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed:	K1907707 NA NA 09/05/19 09/18/19
			Quality Cor	ntrol Samp	le (QCS) S	ummary	Dute I maiy 2001	0,10,19
				Total M	[etals	,		
Sample Name:	Quality Contro	l Sample					Units:	ng/g
Lab Code:							Basis:	Dry
Test Notes:	Tort-3 Solids =	99.1%						
Source:	TORT-3						ALS Percent Recovery	
		Prep	Analysis	True		Percent	Acceptance	Result
Analyte		Method	Method	Value	Result	Recovery	Limits	Notes
Mercury		METHOD	1631E	292	273	93	70-130	

Analytical Report

Client:	Alaska Department of Fish and Game	Service Request: K1907707
Project:	2019 Palmer Project Biomonitoring	Date Collected: 06/06/19
Sample Matrix:	Animal Tissue	Date Received: 08/21/19 09:40
Sample Name:	2019LGCDV1	Basis: Dry
Lab Code:	K1907707-001	

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	ND U	mg/Kg	0.50	5	09/16/19 17:06	09/10/19	
Cadmium	200.8	0.237	mg/Kg	0.020	5	09/16/19 17:06	09/10/19	
Copper	200.8	4.07	mg/Kg	0.099	5	09/16/19 17:06	09/10/19	
Lead	200.8	0.110	mg/Kg	0.020	5	09/16/19 17:06	09/10/19	
Selenium	200.8	5.83	mg/Kg	0.99	5	09/16/19 17:06	09/10/19	
Silver	200.8	ND U	mg/Kg	0.020	5	09/16/19 17:06	09/10/19	
Zinc	200.8	158	mg/Kg	0.50	5	09/16/19 17:06	09/10/19	

Analytical Report

Client:	Alaska Department of Fish and Game	Service Request: K1907707
Project:	2019 Palmer Project Biomonitoring	Date Collected: 06/06/19
Sample Matrix:	Animal Tissue	Date Received: 08/21/19 09:40
Sample Name:	2019LGCDV2	Basis: Dry
Lab Code:	K1907707-002	

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	ND U	mg/Kg	0.48	5	09/16/19 17:08	09/10/19	
Cadmium	200.8	0.349	mg/Kg	0.019	5	09/16/19 17:08	09/10/19	
Copper	200.8	3.63	mg/Kg	0.096	5	09/16/19 17:08	09/10/19	
Lead	200.8	0.082	mg/Kg	0.019	5	09/16/19 17:08	09/10/19	
Selenium	200.8	5.87	mg/Kg	0.96	5	09/16/19 17:08	09/10/19	
Silver	200.8	ND U	mg/Kg	0.019	5	09/16/19 17:08	09/10/19	
Zinc	200.8	117	mg/Kg	0.48	5	09/16/19 17:08	09/10/19	

Analytical Report

Client:	Alaska Department of Fish and Game	Service Request: K1907707
Project:	2019 Palmer Project Biomonitoring	Date Collected: 06/06/19
Sample Matrix:	Animal Tissue	Date Received: 08/21/19 09:40
Sample Name:	2019LGCDV3	Basis: Dry
Lab Code:	K1907707-003	

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	ND U	mg/Kg	0.50	5	09/16/19 17:11	09/10/19	
Cadmium	200.8	0.508	mg/Kg	0.020	5	09/16/19 17:11	09/10/19	
Copper	200.8	5.06	mg/Kg	0.10	5	09/16/19 17:11	09/10/19	
Lead	200.8	0.171	mg/Kg	0.020	5	09/16/19 17:11	09/10/19	
Selenium	200.8	6.11	mg/Kg	1.0	5	09/16/19 17:11	09/10/19	
Silver	200.8	ND U	mg/Kg	0.020	5	09/16/19 17:11	09/10/19	
Zinc	200.8	202	mg/Kg	0.50	5	09/16/19 17:11	09/10/19	

Analytical Report

Client:	Alaska Department of Fish and Game	Service Request: K1907707
Project:	2019 Palmer Project Biomonitoring	Date Collected: 06/06/19
Sample Matrix:	Animal Tissue	Date Received: 08/21/19 09:40
Sample Name:	2019LGCDV4	Basis: Dry
Lab Code:	K1907707-004	

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	ND U	mg/Kg	0.50	5	09/16/19 17:23	09/10/19	
Cadmium	200.8	0.372	mg/Kg	0.020	5	09/16/19 17:23	09/10/19	
Copper	200.8	5.58	mg/Kg	0.099	5	09/16/19 17:23	09/10/19	
Lead	200.8	0.137	mg/Kg	0.020	5	09/16/19 17:23	09/10/19	
Selenium	200.8	7.32	mg/Kg	0.99	5	09/16/19 17:23	09/10/19	
Silver	200.8	ND U	mg/Kg	0.020	5	09/16/19 17:23	09/10/19	
Zinc	200.8	156	mg/Kg	0.50	5	09/16/19 17:23	09/10/19	

Analytical Report

Client:	Alaska Department of Fish and Game	Service Request: K1907707
Project:	2019 Palmer Project Biomonitoring	Date Collected: 06/06/19
Sample Matrix:	Animal Tissue	Date Received: 08/21/19 09:40
Sample Name:	2019LGCDV5	Basis: Dry
Lab Code:	K1907707-005	

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	ND U	mg/Kg	0.49	5	09/16/19 17:25	09/10/19	
Cadmium	200.8	0.353	mg/Kg	0.020	5	09/16/19 17:25	09/10/19	
Copper	200.8	2.87	mg/Kg	0.098	5	09/16/19 17:25	09/10/19	
Lead	200.8	0.144	mg/Kg	0.020	5	09/16/19 17:25	09/10/19	
Selenium	200.8	5.82	mg/Kg	0.98	5	09/16/19 17:25	09/10/19	
Silver	200.8	ND U	mg/Kg	0.020	5	09/16/19 17:25	09/10/19	
Zinc	200.8	116	mg/Kg	0.49	5	09/16/19 17:25	09/10/19	

Analytical Report

Client:	Alaska Department of Fish and Game	Service Request: K1907707
Project:	2019 Palmer Project Biomonitoring	Date Collected: 06/06/19
Sample Matrix:	Animal Tissue	Date Received: 08/21/19 09:40
Sample Name:	2019LGCDV6	Basis: Dry
Lab Code:	K1907707-006	

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	ND U	mg/Kg	0.47	5	09/16/19 17:27	09/10/19	
Cadmium	200.8	0.259	mg/Kg	0.019	5	09/16/19 17:27	09/10/19	
Copper	200.8	4.42	mg/Kg	0.093	5	09/16/19 17:27	09/10/19	
Lead	200.8	0.168	mg/Kg	0.019	5	09/16/19 17:27	09/10/19	
Selenium	200.8	6.95	mg/Kg	0.93	5	09/16/19 17:27	09/10/19	
Silver	200.8	ND U	mg/Kg	0.019	5	09/16/19 17:27	09/10/19	
Zinc	200.8	134	mg/Kg	0.47	5	09/16/19 17:27	09/10/19	

Analytical Report

Client:	Alaska Department of Fish and Game	Service Request: K1907707
Project:	2019 Palmer Project Biomonitoring	Date Collected: 06/06/19
Sample Matrix:	Animal Tissue	Date Received: 08/21/19 09:40
Sample Name:	2019LGCDV7	Basis: Dry
Lab Code:	K1907707-007	

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	ND U	mg/Kg	0.49	5	09/16/19 17:30	09/10/19	
Cadmium	200.8	0.300	mg/Kg	0.020	5	09/16/19 17:30	09/10/19	
Copper	200.8	3.37	mg/Kg	0.098	5	09/16/19 17:30	09/10/19	
Lead	200.8	0.109	mg/Kg	0.020	5	09/16/19 17:30	09/10/19	
Selenium	200.8	5.95	mg/Kg	0.98	5	09/16/19 17:30	09/10/19	
Silver	200.8	ND U	mg/Kg	0.020	5	09/16/19 17:30	09/10/19	
Zinc	200.8	115	mg/Kg	0.49	5	09/16/19 17:30	09/10/19	

Analytical Report

Client:	Alaska Department of Fish and Game	Service Request: K1907707
Project:	2019 Palmer Project Biomonitoring	Date Collected: 06/06/19
Sample Matrix:	Animal Tissue	Date Received: 08/21/19 09:40
Sample Name:	2019LGCDV8	Basis: Dry
Lab Code:	K1907707-008	

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	ND U	mg/Kg	0.50	5	09/16/19 17:32	09/10/19	
Cadmium	200.8	0.665	mg/Kg	0.020	5	09/16/19 17:32	09/10/19	
Copper	200.8	4.86	mg/Kg	0.099	5	09/16/19 17:32	09/10/19	
Lead	200.8	0.206	mg/Kg	0.020	5	09/16/19 17:32	09/10/19	
Selenium	200.8	6.02	mg/Kg	0.99	5	09/16/19 17:32	09/10/19	
Silver	200.8	ND U	mg/Kg	0.020	5	09/16/19 17:32	09/10/19	
Zinc	200.8	150	mg/Kg	0.50	5	09/16/19 17:32	09/10/19	

Analytical Report

Client:	Alaska Department of Fish and Game	Service Request: K1907707
Project:	2019 Palmer Project Biomonitoring	Date Collected: 06/06/19
Sample Matrix:	Animal Tissue	Date Received: 08/21/19 09:40
Sample Name:	2019LGCDV9	Basis: Dry
Lab Code:	K1907707-009	

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	ND U	mg/Kg	0.48	5	09/16/19 17:35	09/10/19	
Cadmium	200.8	0.440	mg/Kg	0.019	5	09/16/19 17:35	09/10/19	
Copper	200.8	4.87	mg/Kg	0.095	5	09/16/19 17:35	09/10/19	
Lead	200.8	0.158	mg/Kg	0.019	5	09/16/19 17:35	09/10/19	
Selenium	200.8	6.68	mg/Kg	0.95	5	09/16/19 17:35	09/10/19	
Silver	200.8	ND U	mg/Kg	0.019	5	09/16/19 17:35	09/10/19	
Zinc	200.8	148	mg/Kg	0.48	5	09/16/19 17:35	09/10/19	

Analytical Report

Client:	Alaska Department of Fish and Game	Service Request: K1907707
Project:	2019 Palmer Project Biomonitoring	Date Collected: 06/06/19
Sample Matrix:	Animal Tissue	Date Received: 08/21/19 09:40
Sample Name:	2019LGCDV10	Basis: Dry
Lab Code:	K1907707-010	

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	ND U	mg/Kg	0.50	5	09/16/19 17:37	09/10/19	
Cadmium	200.8	0.442	mg/Kg	0.020	5	09/16/19 17:37	09/10/19	
Copper	200.8	5.18	mg/Kg	0.099	5	09/16/19 17:37	09/10/19	
Lead	200.8	0.129	mg/Kg	0.020	5	09/16/19 17:37	09/10/19	
Selenium	200.8	5.69	mg/Kg	0.99	5	09/16/19 17:37	09/10/19	
Silver	200.8	ND U	mg/Kg	0.020	5	09/16/19 17:37	09/10/19	
Zinc	200.8	188	mg/Kg	0.50	5	09/16/19 17:37	09/10/19	

Analytical Report

Client:	Alaska Department of Fish and Game	Service Request: K1907707
Project:	2019 Palmer Project Biomonitoring	Date Collected: 06/07/19
Sample Matrix:	Animal Tissue	Date Received: 08/21/19 09:40
Sample Name:	2019MGCDV1	Basis: Dry
Lab Code:	K1907707-011	

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	ND U	mg/Kg	0.50	5	09/16/19 17:39	09/10/19	
Cadmium	200.8	0.501	mg/Kg	0.020	5	09/16/19 17:39	09/10/19	
Copper	200.8	3.89	mg/Kg	0.10	5	09/16/19 17:39	09/10/19	
Lead	200.8	0.053	mg/Kg	0.020	5	09/16/19 17:39	09/10/19	
Selenium	200.8	5.81	mg/Kg	1.0	5	09/16/19 17:39	09/10/19	
Silver	200.8	ND U	mg/Kg	0.020	5	09/16/19 17:39	09/10/19	
Zinc	200.8	117	mg/Kg	0.50	5	09/16/19 17:39	09/10/19	

Analytical Report

Client:	Alaska Department of Fish and Game	Service Request: K1907707
Project:	2019 Palmer Project Biomonitoring	Date Collected: 06/07/19
Sample Matrix:	Animal Tissue	Date Received: 08/21/19 09:40
Sample Name:	2019MGCDV2	Basis: Dry
Lab Code:	K1907707-012	

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	ND U	mg/Kg	0.50	5	09/16/19 17:42	09/10/19	
Cadmium	200.8	0.615	mg/Kg	0.020	5	09/16/19 17:42	09/10/19	
Copper	200.8	3.91	mg/Kg	0.10	5	09/16/19 17:42	09/10/19	
Lead	200.8	0.073	mg/Kg	0.020	5	09/16/19 17:42	09/10/19	
Selenium	200.8	5.3	mg/Kg	1.0	5	09/16/19 17:42	09/10/19	
Silver	200.8	ND U	mg/Kg	0.020	5	09/16/19 17:42	09/10/19	
Zinc	200.8	101	mg/Kg	0.50	5	09/16/19 17:42	09/10/19	

Analytical Report

Client:	Alaska Department of Fish and Game	Service Request: K1907707
Project:	2019 Palmer Project Biomonitoring	Date Collected: 06/07/19
Sample Matrix:	Animal Tissue	Date Received: 08/21/19 09:40
Sample Name:	2019MGCDV3	Basis: Dry
Lab Code:	K1907707-013	

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	ND U	mg/Kg	0.48	5	09/16/19 17:49	09/10/19	
Cadmium	200.8	0.354	mg/Kg	0.019	5	09/16/19 17:49	09/10/19	
Copper	200.8	3.16	mg/Kg	0.096	5	09/16/19 17:49	09/10/19	
Lead	200.8	ND U	mg/Kg	0.019	5	09/16/19 17:49	09/10/19	
Selenium	200.8	5.46	mg/Kg	0.96	5	09/16/19 17:49	09/10/19	
Silver	200.8	ND U	mg/Kg	0.019	5	09/16/19 17:49	09/10/19	
Zinc	200.8	116	mg/Kg	0.48	5	09/16/19 17:49	09/10/19	

Analytical Report

Client:	Alaska Department of Fish and Game	Service Request: K1907707
Project:	2019 Palmer Project Biomonitoring	Date Collected: 06/07/19
Sample Matrix:	Animal Tissue	Date Received: 08/21/19 09:40
Sample Name:	2019MGCDV4	Basis: Dry
Lab Code:	K1907707-014	

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	ND U	mg/Kg	0.48	5	09/16/19 17:51	09/10/19	
Cadmium	200.8	0.786	mg/Kg	0.019	5	09/16/19 17:51	09/10/19	
Copper	200.8	3.34	mg/Kg	0.097	5	09/16/19 17:51	09/10/19	
Lead	200.8	0.050	mg/Kg	0.019	5	09/16/19 17:51	09/10/19	
Selenium	200.8	5.14	mg/Kg	0.97	5	09/16/19 17:51	09/10/19	
Silver	200.8	ND U	mg/Kg	0.019	5	09/16/19 17:51	09/10/19	
Zinc	200.8	159	mg/Kg	0.48	5	09/16/19 17:51	09/10/19	

Analytical Report

Client:	Alaska Department of Fish and Game	Service Request: K1907707
Project:	2019 Palmer Project Biomonitoring	Date Collected: 06/07/19
Sample Matrix:	Animal Tissue	Date Received: 08/21/19 09:40
Sample Name:	2019MGCDV5	Basis: Dry
Lab Code:	K1907707-015	

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	ND U	mg/Kg	0.50	5	09/16/19 17:59	09/10/19	
Cadmium	200.8	0.438	mg/Kg	0.020	5	09/16/19 17:59	09/10/19	
Copper	200.8	3.55	mg/Kg	0.10	5	09/16/19 17:59	09/10/19	
Lead	200.8	0.109	mg/Kg	0.020	5	09/16/19 17:59	09/10/19	
Selenium	200.8	5.6	mg/Kg	1.0	5	09/16/19 17:59	09/10/19	
Silver	200.8	ND U	mg/Kg	0.020	5	09/16/19 17:59	09/10/19	
Zinc	200.8	105	mg/Kg	0.50	5	09/16/19 17:59	09/10/19	

Analytical Report

Client:	Alaska Department of Fish and Game	Service Request: K1907707
Project:	2019 Palmer Project Biomonitoring	Date Collected: 06/07/19
Sample Matrix:	Animal Tissue	Date Received: 08/21/19 09:40
Sample Name:	2019MGCDV6	Basis: Dry
Lab Code:	K1907707-016	

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	ND U	mg/Kg	0.48	5	09/16/19 18:01	09/10/19	
Cadmium	200.8	0.280	mg/Kg	0.019	5	09/16/19 18:01	09/10/19	
Copper	200.8	3.73	mg/Kg	0.097	5	09/16/19 18:01	09/10/19	
Lead	200.8	0.091	mg/Kg	0.019	5	09/16/19 18:01	09/10/19	
Selenium	200.8	5.47	mg/Kg	0.97	5	09/16/19 18:01	09/10/19	
Silver	200.8	ND U	mg/Kg	0.019	5	09/16/19 18:01	09/10/19	
Zinc	200.8	115	mg/Kg	0.48	5	09/16/19 18:01	09/10/19	

Analytical Report

Client:	Alaska Department of Fish and Game	Service Request: K1907707
Project:	2019 Palmer Project Biomonitoring	Date Collected: 06/07/19
Sample Matrix:	Animal Tissue	Date Received: 08/21/19 09:40
Sample Name:	2019MGCDV7	Basis: Dry
Lab Code:	K1907707-017	

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	ND U	mg/Kg	0.48	5	09/16/19 18:03	09/10/19	
Cadmium	200.8	0.231	mg/Kg	0.019	5	09/16/19 18:03	09/10/19	
Copper	200.8	2.39	mg/Kg	0.097	5	09/16/19 18:03	09/10/19	
Lead	200.8	0.028	mg/Kg	0.019	5	09/16/19 18:03	09/10/19	
Selenium	200.8	5.54	mg/Kg	0.97	5	09/16/19 18:03	09/10/19	
Silver	200.8	ND U	mg/Kg	0.019	5	09/16/19 18:03	09/10/19	
Zinc	200.8	89.3	mg/Kg	0.48	5	09/16/19 18:03	09/10/19	

Analytical Report

Client:	Alaska Department of Fish and Game	Service Request: K1907707
Project:	2019 Palmer Project Biomonitoring	Date Collected: 06/07/19
Sample Matrix:	Animal Tissue	Date Received: 08/21/19 09:40
Sample Name:	2019MGCDV8	Basis: Dry
Lab Code:	K1907707-018	

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	ND U	mg/Kg	0.49	5	09/16/19 18:06	09/10/19	
Cadmium	200.8	0.260	mg/Kg	0.020	5	09/16/19 18:06	09/10/19	
Copper	200.8	3.41	mg/Kg	0.098	5	09/16/19 18:06	09/10/19	
Lead	200.8	0.163	mg/Kg	0.020	5	09/16/19 18:06	09/10/19	
Selenium	200.8	5.43	mg/Kg	0.98	5	09/16/19 18:06	09/10/19	
Silver	200.8	ND U	mg/Kg	0.020	5	09/16/19 18:06	09/10/19	
Zinc	200.8	99.8	mg/Kg	0.49	5	09/16/19 18:06	09/10/19	

Analytical Report

Client:	Alaska Department of Fish and Game	Service Request: K1907707
Project:	2019 Palmer Project Biomonitoring	Date Collected: 06/07/19
Sample Matrix:	Animal Tissue	Date Received: 08/21/19 09:40
Sample Name:	2019MGCDV9	Basis: Dry
Lab Code:	K1907707-019	

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	ND U	mg/Kg	0.48	5	09/16/19 18:08	09/10/19	
Cadmium	200.8	0.337	mg/Kg	0.019	5	09/16/19 18:08	09/10/19	
Copper	200.8	3.94	mg/Kg	0.096	5	09/16/19 18:08	09/10/19	
Lead	200.8	0.179	mg/Kg	0.019	5	09/16/19 18:08	09/10/19	
Selenium	200.8	5.18	mg/Kg	0.96	5	09/16/19 18:08	09/10/19	
Silver	200.8	0.984	mg/Kg	0.019	5	09/16/19 18:08	09/10/19	
Zinc	200.8	106	mg/Kg	0.48	5	09/16/19 18:08	09/10/19	

Analytical Report

Client:	Alaska Department of Fish and Game	Service Request: K1907707
Project:	2019 Palmer Project Biomonitoring	Date Collected: 06/07/19
Sample Matrix:	Animal Tissue	Date Received: 08/21/19 09:40
Sample Name:	2019MGCDV10	Basis: Dry
Lab Code:	K1907707-020	

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	ND U	mg/Kg	0.48	5	09/16/19 18:10	09/10/19	
Cadmium	200.8	0.547	mg/Kg	0.019	5	09/16/19 18:10	09/10/19	
Copper	200.8	3.68	mg/Kg	0.096	5	09/16/19 18:10	09/10/19	
Lead	200.8	0.120	mg/Kg	0.019	5	09/16/19 18:10	09/10/19	
Selenium	200.8	5.25	mg/Kg	0.96	5	09/16/19 18:10	09/10/19	
Silver	200.8	ND U	mg/Kg	0.019	5	09/16/19 18:10	09/10/19	
Zinc	200.8	88.6	mg/Kg	0.48	5	09/16/19 18:10	09/10/19	

Analytical Report

Client:	Alaska Department of Fish and Game	Service Request: K1907707
Project:	2019 Palmer Project Biomonitoring	Date Collected: NA
Sample Matrix:	Animal Tissue	Date Received: NA
Sample Name:	Method Blank	Basis: Dry
Lab Code:	KQ1912737-01	

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	ND U	mg/Kg	0.5	5	09/16/19 16:56	09/10/19	
Cadmium	200.8	ND U	mg/Kg	0.020	5	09/16/19 16:56	09/10/19	
Copper	200.8	ND U	mg/Kg	0.10	5	09/16/19 16:56	09/10/19	
Lead	200.8	ND U	mg/Kg	0.020	5	09/16/19 16:56	09/10/19	
Selenium	200.8	ND U	mg/Kg	1.0	5	09/16/19 16:56	09/10/19	
Silver	200.8	ND U	mg/Kg	0.020	5	09/16/19 16:56	09/10/19	
Zinc	200.8	ND U	mg/Kg	0.5	5	09/16/19 16:56	09/10/19	

QA/QC Report

Client:	Alaska Department of Fish and Game	Service Request:	K1907707
Project	2019 Palmer Project Biomonitoring	Date Collected:	06/06/19
Sample Matrix:	Animal Tissue	Date Received:	08/21/19
		Date Analyzed:	09/16/19

Replicate Sample Summary Total Metals

Sample Name: Lab Code:	2019LGCDV3 K1907707-003					Units: mg/l Basis: Drv	Kg
Analyte Name	Analysis Method	MRL	Sample Result	Duplicate Sample KQ1912737-05 Result	Average	RPD	RPD Limit
Arsenic	200.8	0.5	ND U	ND U	ND	-	20
Cadmium	200.8	0.019	0.508	0.519	0.514	2	20
Copper	200.8	0.10	5.06	6.51	5.79	25 *	20
Lead	200.8	0.019	0.171	0.188	0.180	9	20
Selenium	200.8	1.0	6.11	6.43	6.27	5	20
Silver	200.8	0.019	ND U	ND U	ND	-	20
Zinc	200.8	0.5	202	211	207	4	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:	Alaska Department of Fish and Game	Service Request: F	K1907707
Project	2019 Palmer Project Biomonitoring	Date Collected: 0	06/07/19
Sample Matrix:	Animal Tissue	Date Received: 0	08/21/19
		Date Analyzed: (09/16/19

Replicate Sample Summary Total Metals

Sample Name: Lab Code:	2019MGCDV4 K1907707-014					Units: mg/ Basis: Dry	Kg
Analyte Name	Analysis Method	MRL	Sample Result	Duplicate Sample KQ1912737-07 Result	Average	RPD	RPD Limit
Arsenic	200.8	0.5	ND U	ND U	ND	-	20
Cadmium	200.8	0.020	0.786	0.783	0.785	<1	20
Copper	200.8	0.10	3.34	3.49	3.42	4	20
Lead	200.8	0.020	0.050	0.049	0.050	2	20
Selenium	200.8	1.0	5.14	5.17	5.16	<1	20
Silver	200.8	0.020	ND U	ND U	ND	-	20
Zinc	200.8	0.5	159	162	161	2	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:	Alaska Department of Fish and Game	Service Request:	K1907707
Project:	2019 Palmer Project Biomonitoring	Date Collected:	06/06/19
Sample Matrix:	Animal Tissue	Date Received:	08/21/19
		Date Analyzed:	09/16/19
		Date Extracted:	09/10/19
	Matrix Spike Summary		
	Total Metals		
Sample Name:	2019LGCDV3	Units:	mg/Kg
Lab Code:	K1907707-003	Basis:	Dry
Analysis Method:	200.8		
Prep Method:	PSEP Metals		

Matrix Spike KQ1912737-06

Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Arsenic	ND U	15.8	15.8	100	70-130
Cadmium	0.508	5.10	4.75	97	70-130
Copper	5.06	26.5	23.7	90	70-130
Lead	0.171	44.5	47.5	93	70-130
Selenium	6.11	23.0	15.8	107	70-130
Silver	ND U	4.63	4.75	98	70-130
Zinc	202	252	47.5	105 #	70-130

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:	Alaska Department of Fish and Game	Service Request:	K1907707
Project:	2019 Palmer Project Biomonitoring	Date Collected:	06/07/19
Sample Matrix:	Animal Tissue	Date Received:	08/21/19
		Date Analyzed:	09/16/19
		Date Extracted:	09/10/19
	Matrix Spike Summary		
	Total Metals		
Sample Name:	2019MGCDV4	Units:	mg/Kg
Lab Code:	K1907707-014	Basis:	Dry
Analysis Method:	200.8		
Prep Method:	PSEP Metals		

Matrix Spike KQ1912737-08

Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Arsenic	ND U	16.1	16.5	98	70-130
Cadmium	0.786	5.54	4.95	96	70-130
Copper	3.34	25.7	24.8	90	70-130
Lead	0.050	45.7	49.5	92	70-130
Selenium	5.14	22.9	16.5	108	70-130
Silver	ND U	4.78	4.95	97	70-130
Zinc	159	203	49.5	91	70-130

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:	Alaska Department of Fish and Game
Project:	2019 Palmer Project Biomonitoring
Sample Matrix:	Animal Tissue

Service Request: K1907707 Date Analyzed: 09/16/19

Lab Control Sample Summary Total Metals

Units:mg/Kg Basis:Dry

Lab Control Sample KQ1912737-02

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Arsenic	200.8	15.7	16.7	94	85-115
Cadmium	200.8	4.75	5.00	95	85-115
Copper	200.8	22.9	25.0	92	85-115
Lead	200.8	47.6	50.0	95	85-115
Selenium	200.8	17.1	16.7	103	85-115
Silver	200.8	4.91	5.00	98	85-115
Zinc	200.8	45.2	50.0	90	85-115

Client:	Alaska Department of Fish and Game	Service Request:	K1907707
Project:	2019 Palmer Project Biomonitoring	Date Collected:	NA
LCS Matrix:	Tissue	Date Received:	NA
		Date Extracted:	09/10/19

Date Analyzed: 09/16/19

Standard Reference Material Summary Total Metals

Sample Name:	Standard Reference Material
Lab Code:	KQ1912737-03
Test Notes:	Dorm-4 Solids = 93.8%

Units: mg/Kg (ppm) Basis: Dry

N.R.C.C. Dorm-4

Source:

Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Control Limits	Result Notes
Arsenic	PSEP Tissue	200.8	6.87	6.59	96	5.14 - 8.77	
Cadmium	PSEP Tissue	200.8	0.299	0.314	105	0.225 - 0.380	
Copper	PSEP Tissue	200.8	15.7	14.9	95	12.2 - 19.4	
Lead	PSEP Tissue	200.8	0.40	0.42	104	0.274 - 0.559	
Selenium	PSEP Tissue	200.8	3.45	3.94	114	2.44 - 4.62	
Silver	PSEP Tissue	200.8	0.0252	0.0286	113	0.0162 - 0.0362	
Zinc	PSEP Tissue	200.8	51.6	49.4	96	39.0 - 65.3	

Client:	Alaska Department of Fish and Game	Service Request:	K1907707
Project:	2019 Palmer Project Biomonitoring	Date Collected:	NA
LCS Matrix:	Tissue	Date Received:	NA
		Date Extracted:	09/10/19

Date Analyzed: 09/16/19

Standard Reference Material Summary Total Metals

Total	Metals

Sample Name:	Standard Reference Material
Lab Code:	KQ1912737-04
Test Notes:	Tort-3 Solids = 97.4%

Units: mg/Kg (ppm) Basis: Dry

Source: N.R.C.C. Tort-3

Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Control Limits	Result Notes
Arsenic	PSEP Tissue	200.8	59.5	60.9	102	44.6-76.0	
Cadmium	PSEP Tissue	200.8	42.3	39.3	93	32.4-52.9	
Copper	PSEP Tissue	200.8	497	451	91	380-623	
Lead	PSEP Tissue	200.8	0.225	0.200	89	0.166-0.292	
Selenium	PSEP Tissue	200.8	10.9	10.8	99	7.9-14.3	
Zinc	PSEP Tissue	200.8	136	122	90	104-170	

APPENDIX E: SEDIMENT DATA AND LABORATORY REPORT

		Particle S					
							Acid
				% Course		% Total	Volatile
Sample				Material	% Total	Organic	Sulfides
Date	% Clay	% Silt	% Sand	(> 2 mm)	Solids	Carbon	(mg/kg)
06/07/16	4.0	29.2	66.8	0.0	78.6	0.274	ND
06/09/17	2.0	26.7	71.1	0.3	82.3	< 0.16	< 0.20
06/09/17	1.6	39.3	59.0	0.1	73.3	< 0.17	< 0.20
06/09/17	0.7	18.4	81.0	0.0	73.9	0.20	< 0.20
06/09/17	1.3	27.8	70.3	0.6	77.8	0.25	< 0.20
06/09/17	0.4	3.2	95.6	0.6	76.3	< 0.16	< 0.20
05/30/18	1.2	14.0	84.7	0.1	74.7	0.25	< 0.20
05/30/18	1.9	44.3	50.1	3.7	77.7	0.29	0.63
05/30/18	2.0	41.8	56.2	0.0	78.0	< 0.27	< 0.20
05/30/18	1.1	9.6	85.0	4.3	79.1	< 0.20	< 0.20
05/30/18	1.4	16.1	81.9	4.3	78.6	< 0.20	< 0.20
06/06/19	0.29	10.14	89.3	0.0	83.10	0.29	< 0.20
06/07/19	0.25	6.83	92.6	0.0	78.20	0.25	< 0.20
06/08/19	0.250	8.49	91.2	0.0	74.60	0.250	< 0.20
06/09/19	0.310	17.90	81.4	0.0	75.70	0.310	< 0.20
06/10/19	0.320	8.51	91.0	0.0	80.10	0.320	< 0.20

Appendix E.1.–Lower Glacier Creek sediment compositions, 2016–2019.

Appendix E.2.–Lower Glacier Creek sediment element concentrations, 2016–2019.

Sample				Concen	tration (mg	g/kg dry we	eight)			
Date	Ag	Al	As	Cd	Cu	Fe	Hg	Pb	Se	Zn
06/07/16	0.19	9,460	4.98	1.17	51.1	35,700	< 0.020	9.06	1.69	193
06/09/17	0.14	15,500	3.91	0.510	37.0	47,300	0.0120	7.90	1.22	133
06/09/17	0.25	16,300	5.68	0.910	58.5	57,800	0.0194	20.6	1.35	202
06/09/17	0.26	14,700	5.49	1.01	53.6	51,100	0.0204	8.49	1.67	186
06/09/17	0.21	14,900	4.66	0.821	60.1	53,600	0.0144	20.1	1.39	173
06/09/17	0.17	13,300	3.94	0.818	48.9	51,400	0.0135	7.03	1.54	186
05/30/18	0.19	18,300	4.65	1.02	49.3	50,400	0.0125	9.84	1.44	185
05/30/18	0.14	16,600	4.08	0.880	44.4	42,600	0.0079	5.88	1.07	150
05/30/18	0.17	14,900	3.60	0.858	44.1	43,600	0.0119	6.58	1.31	160
05/30/18	0.16	15,400	4.27	0.835	41.6	45,100	0.0142	8.11	1.12	168
05/30/18	0.15	15,500	3.46	0.639	40.7	44,900	0.0092	7.53	1.00	141
06/06/19	0.17	17,300	4.32	0.95	50.4	48400	0.0172	10.9	1.28	189
06/06/19	0.17	16,800	6.70	0.950	62.4	51400	0.0131	6.23	1.43	173
06/06/19	0.13	17,400	5.15	0.937	39.3	46900	0.0174	7.50	1.18	179
06/06/19	0.15	16,200	3.68	0.934	45.3	45400	0.0156	5.23	1.06	166
06/06/19	0.14	15,700	4.72	0.771	45.2	44900	0.0111	4.99	1.03	146

-		Particle S					
							Acid
				% Course		% Total	Volatile
Sample				Material	% Total	Organic	Sulfides
Date	% Clay	% Silt	% Sand	(> 2 mm)	Solids	Carbon	(mg/kg)
06/08/16	4.1	31.2	64.8	0.0	80.5	0.491	ND
06/09/17	0.7	11.1	84.0	4.3	82.5	< 0.16	< 0.20
06/09/17	0.6	16.1	80.8	2.5	80.3	< 0.17	< 0.20
06/09/17	1.2	28.4	70.4	0.1	76.1	< 0.19	0.30
06/09/17	2.3	48.5	49.2	0.0	74.8	0.27	< 0.20
06/09/17	2.6	45.5	51.9	0.0	74.7	< 0.19	< 0.20
05/31/18	1.6	33.8	63.5	1.2	83.8	< 0.28	0.40
05/31/18	1.7	26.5	71.5	0.4	80.1	< 0.29	< 0.20
05/31/18	1.2	10.7	74.6	13.5	77.7	< 0.25	< 0.20
05/31/18	1.6	25.9	71.9	0.6	75.0	< 0.27	< 0.20
05/31/18	1.6	15.7	80.8	1.9	71.4	0.37	< 0.20
06/06/19	0.49	10.58	84.2	4.68	83.4	0.44	< 0.20
06/06/19	1.51	21.39	77.1	0.00	84.1	0.30	< 0.20
06/06/19	0.52	9.97	89.5	0.00	82.9	0.37	< 0.20
06/06/19	1.14	25.86	73.0	0.00	78.6	0.58	< 0.20
06/06/19	0.56	13.64	85.8	0.00	76.2	0.56	< 0.20

Appendix E.3.–Middle Glacier Creek sediment compositions, 2016–2019.

Appendix E.4.–Middle Glacier Creek sediment element concentrations, 2016–2019.

Sample				Concent	tration (mg	/kg dry we	eight)			
Date	Ag	Al	As	Cd	Cu	Fe	Hg	Pb	Se	Zn
06/08/16	0.16	7,650	4.33	0.871	55.8	32,400	< 0.020	12.0	1.14	170
06/09/17	0.14	15,700	3.68	0.758	48.1	49,400	0.0094	8.67	0.90	190
06/09/17	0.15	13,800	4.76	0.902	45.5	53,400	0.0179	14.8	0.93	203
06/09/17	0.33	14,700	4.88	1.11	75.6	54,500	0.0161	12.5	2.05	189
06/09/17	0.18	16,000	4.47	1.14	55.7	47,500	0.0210	12.3	1.30	205
06/09/17	0.21	15,600	4.73	1.07	62.1	50,800	0.0181	11.9	1.42	199
05/31/18	0.18	18,000	4.17	0.564	47.4	49,000	0.0072	6.89	1.25	122
05/31/18	0.22	16,900	3.95	1.03	49.6	45,400	0.0260	5.48	1.67	167
05/31/18	0.18	20,200	2.80	0.675	49.1	49,200	0.0079	5.49	1.03	139
05/31/18	0.15	18,900	2.48	0.645	45.6	42,500	0.0093	5.24	0.71	129
05/31/18	0.17	16,900	3.74	1.02	52.8	43,000	0.0118	5.99	1.34	160
06/07/19	0.19	14,800	3.20	1.38	41.6	43,000	0.0133	3.76	1.83	189
06/07/19	0.19	16,600	4.97	1.07	53.5	53,600	0.0140	7.40	1.54	174
06/07/19	0.21	16,800	3.74	1.33	54.2	49,800	0.0128	5.45	1.43	230
06/07/19	0.53	16,700	4.19	2.22	47.6	47,500	0.015	10.4	1.55	181
06/07/19	0.27	17,000	6.14	1.67	54.6	47,000	0.015	7.45	2.56	204
Appendix E.5.–2019 Glacier Creek sediment laboratory report.

Constantine North Inc. ATTN: Allegra Cairns Suite 320 - 800 West Pender St. Vancouver BC V6C 2V6 Date Received:11-JUN-19Report Date:08-IUL-19 10:29 (MT)Version:FINAL REV. 2

Client Phone: 604-329-5982

Certificate of Analysis

Lab Work Order #: L2289361 Project P.O. #: NOT SUBMITTED Job Reference: C of C Numbers: 17-661811 Legal Site Desc:

Comments: ADDITIONAL 27-JUN-19 13:27

Carla Fuginski Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🐊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L2289361 CONTD.... PAGE 2 of 11 08-JUL-19 10:29 (MT) Version: FINAL REV. 2

		Sample ID Description Sampled Date Sampled Time Client ID	L2289361-1 Soil 06-JUN-19 14:00 2019LGCS1	L2289361-2 Soil 06-JUN-19 14:00 2019LGCS2	L2289361-3 Soil 06-JUN-19 14:00 2019LGCS3	L2289361-4 Soil 06-JUN-19 14:00 2019LGCS4	L2289361-5 Soil 07-JUN-19 10:00 2019LGCS5
Grouping	Analyte						
MISC.							
Miscellaneous	Special Request		See Attached				

L2289361 CONTD.... PAGE 3 of 11 08-JUL-19 10:29 (MT) Version: FINAL REV. 2

		Sample ID Description Sampled Date Sampled Time Client ID	L2289361-6 Soil 07-JUN-19 10:00 2019MGCS1	L2289361-7 Soil 07-JUN-19 10:00 2019MGCS2	L2289361-8 Soil 07-JUN-19 10:00 2019MGCS3	L2289361-9 Soil 07-JUN-19 10:00 2019MGCS4	L2289361-10 Soil 07-JUN-19 10:00 2019MGCS5
Grouping	Analyte						
MISC.							
Miscellaneous	Special Request		See Attached				

L2289361 CONTD.... PAGE 4 of 11 08-JUL-19 10:29 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2289361-1 Soil 06-JUN-19 14:00 2019LGCS1	L2289361-2 Soil 06-JUN-19 14:00 2019LGCS2	L2289361-3 Soil 06-JUN-19 14:00 2019LGCS3	L2289361-4 Soil 06-JUN-19 14:00 2019LGCS4	L2289361-5 Soil 07-JUN-19 10:00 2019LGCS5
Grouping	Analyte					
SOIL						
Physical Tests	Loss on Ignition @ 550 C (%)	1	1	1	1	1
	Moisture (%)	16.9	21.8	25.4	24.3	19.9
	pH (1:2 soil:water) (pH)	8.62	8.85	8.77	8.68	8.77
Organic / Inorganic Carbon	Total Organic Carbon (%)	0.29	0.25	0.25	0.31	0.32
Inorganic Parameters	Acid Volatile Sulphides (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
Metals	Aluminum (Al) (mg/kg)	17300	16800	17400	16200	15700
	Antimony (Sb) (mg/kg)	0.47	0.48	0.81	0.41	0.37
	Arsenic (As) (mg/kg)	4.32	6.70	5.15	3.68	4.72
	Barium (Ba) (mg/kg)	126	132	102	97.0	104
	Beryllium (Be) (mg/kg)	0.20	0.22	0.19	0.17	0.17
	Bismuth (Bi) (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Boron (B) (mg/kg)	<5.0	<5.0	<5.0	<5.0	<5.0
	Cadmium (Cd) (mg/kg)	0.950	0.950	0.937	0.934	0.771
	Calcium (Ca) (mg/kg)	30500	30400	31300	29400	29700
	Chromium (Cr) (mg/kg)	29.8	32.1	31.0	28.2	26.6
	Cobalt (Co) (mg/kg)	24.0	24.0	19.7	21.0	20.4
	Copper (Cu) (mg/kg)	50.4	62.4	39.3	45.3	45.2
	Iron (Fe) (mg/kg)	48400	51400	46900	45400	44900
	Lead (Pb) (mg/kg)	10.9	6.23	7.50	5.23	4.99
	Lithium (Li) (mg/kg)	7.1	7.2	7.5	6.7	6.0
	Magnesium (Mg) (mg/kg)	13500	13600	14800	13300	13500
	Manganese (Mn) (mg/kg)	839	872	913	834	832
	Mercury (Hg) (mg/kg)	0.0172	0.0131	0.0174	0.0156	0.0111
	Molybdenum (Mo) (mg/kg)	1.98	2.37	2.43	2.08	2.08
	Nickel (Ni) (mg/kg)	22.8	24.0	23.4	22.1	20.9
	Phosphorus (P) (mg/kg)	988	1110	1040	999	1030
	Potassium (K) (mg/kg)	1190	1210	1320	1150	1150
	Selenium (Se) (mg/kg)	1.28	1.43	1.18	1.06	1.03
	Silver (Ag) (mg/kg)	0.17	0.17	0.13	0.15	0.14
	Sodium (Na) (mg/kg)	147	164	125	122	132
	Strontium (Sr) (mg/kg)	73.5	72.2	75.1	68.0	68.0
	Sulfur (S) (mg/kg)	4100	3600	1900	2900	2400
	Thallium (TI) (mg/kg)	0.076	0.076	0.081	0.076	0.066
	Tin (Sn) (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	l Itanium (Ti) (mg/kg)	1660	1560	1180	970	1200
	Tungsten (W) (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50

L2289361 CONTD.... PAGE 5 of 11 08-JUL-19 10:29 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2289361-6 Soil 07-JUN-19 10:00 2019MGCS1	L2289361-7 Soil 07-JUN-19 10:00 2019MGCS2	L2289361-8 Soil 07-JUN-19 10:00 2019MGCS3	L2289361-9 Soil 07-JUN-19 10:00 2019MGCS4	L2289361-10 Soil 07-JUN-19 10:00 2019MGCS5
Grouping	Analyte					
SOIL						
Physical Tests	Loss on Ignition @ 550 C (%)	1	1	1	2	2
	Moisture (%)	16.6	15.9	17.1	21.4	23.8
	pH (1:2 soil:water) (pH)	8.89	8.95	8.28	8.53	8.76
Organic / Inorganic Carbon	Total Organic Carbon (%)	0.44	0.30	0.37	0.58	0.56
Inorganic Parameters	Acid Volatile Sulphides (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
Metals	Aluminum (Al) (mg/kg)	132000	16600	16800	16700	17000
	Antimony (Sb) (mg/kg)	0.42	0.44	0.42	0.52	0.78
	Arsenic (As) (mg/kg)	32.5	4.97	3.74	4.19	6.14
	Barium (Ba) (mg/kg)	558	143	133	157	149
	Beryllium (Be) (mg/kg)	1.36	0.19	0.20	0.18	0.20
	Bismuth (Bi) (mg/kg)	0.70	<0.20	<0.20	<0.20	<0.20
	Boron (B) (mg/kg)	<5.0	<5.0	<5.0	<5.0	<5.0
	Cadmium (Cd) (mg/kg)	11.0	1.07	1.33	2.22	1.67
	Calcium (Ca) (mg/kg)	329000	34600	31600	30200	26400
	Chromium (Cr) (mg/kg)	252	33.3	33.2	32.6	45.3
	Cobalt (Co) (mg/kg)	226	26.7	22.7	21.4	21.2
	Copper (Cu) (mg/kg)	472	53.5	54.2	47.6	54.6
	Iron (Fe) (mg/kg)	379000	53600	49800	47500	47000
	Lead (Pb) (mg/kg)	60.3	7.40	5.45	10.4	7.45
	Lithium (Li) (mg/kg)	50.8	6.0	6.3	6.6	7.9
	Magnesium (Mg) (mg/kg)	106000	13300	13700	13400	13700
	Manganese (Mn) (mg/kg)	7390	881	843	901	875
	Mercury (Hg) (mg/kg)	0.104	0.0140	0.0128	0.0150	0.0150
	Molybdenum (Mo) (mg/kg)	33.2	2.34	2.69	3.11	4.69
		226	26.1	24.9	27.1	37.2
	Phosphorus (P) (mg/kg)	10000	1060	972	1010	987
	Potassium (K) (mg/kg)	11500	1260	1210	1220	1040
	Selenium (Se) (mg/kg)	15.2	1.54	1.43	1.55	2.56
	Silver (Ag) (mg/kg)	1.69	0.19	0.21	0.53	0.27
	Sodium (Na) (mg/kg)	804	175	147	147	139
	Strontium (Sr) (mg/kg)	765	82.5	79.1	76.6	71.5
	Sunur (S) (mg/kg)	30500	4700	3600	2400	2600
		0.608	0.081	0.075	0.081	0.095
	Titopium (Ti) (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Tungsten (W) (mg/kg)	2580 <0.50	1570 <0.50	1560 <0.50	1500 <0.50	1210 <0.50
		-0.00	-0.00	\$0.00	×0.00	-0.00

L2289361 CONTD.... PAGE 6 of 11 08-JUL-19 10:29 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2289361-11 Soil 07-JUN-19 10:00 2019MGCS1-DUP		
Grouping	Analyte			
SOIL				
Physical Tests	Loss on Ignition @ 550 C (%)			
	Moisture (%)			
	pH (1:2 soil:water) (pH)	8.86		
Organic / Inorganic Carbon	Total Organic Carbon (%)			
Inorganic Parameters	Acid Volatile Sulphides (mg/kg)			
Metals	Aluminum (AI) (mg/kg)	14800		
	Antimony (Sb) (mg/kg)	0.37		
	Arsenic (As) (mg/kg)	3.20		
	Barium (Ba) (mg/kg)	112		
	Beryllium (Be) (mg/kg)	0.18		
	Bismuth (Bi) (mg/kg)	<0.20		
	Boron (B) (mg/kg)	<5.0		
	Cadmium (Cd) (mg/kg)	1.38		
	Calcium (Ca) (mg/kg)	30900		
	Chromium (Cr) (mg/kg)	30.7		
	Cobalt (Co) (mg/kg)	19.3		
	Copper (Cu) (mg/kg)	41.6		
	Iron (Fe) (mg/kg)	43000		
	Lead (Pb) (mg/kg)	3.76		
	Lithium (Li) (mg/kg)	7.2		
	Magnesium (Mg) (mg/kg)	12100		
	Manganese (Mn) (mg/kg)	778		
	Mercury (Hg) (mg/kg)	0.0133		
	Molybdenum (Mo) (mg/kg)	3.13		
	Nickel (Ni) (mg/kg)	29.5		
	Priosphorus (P) (mg/kg)	944		
	Polassium (K) (mg/kg)	1060		
	Selenium (Se) (mg/kg)	1.83		
	Sodium (Na) (mg/kg)	0.19		
	Strontium (Sr) (mg/kg)	101		
	Sulfur (S) (mg/kg)	85.8		
	Thallium (TI) (mg/kg)	2600		
	Tin (Sn) (mg/kg)	0.074		
	Titanium (Ti) (mg/kg)	<2.0		
	Tunasten (W) (ma/ka)	1180		
		<0.50		

L2289361 CONTD.... PAGE 7 of 11 08-JUL-19 10:29 (MT) Version: FINAL REV. 2

		Sample ID Description Sampled Date Sampled Time Client ID	L2289361-1 Soil 06-JUN-19 14:00 2019LGCS1	L2289361-2 Soil 06-JUN-19 14:00 2019LGCS2	L2289361-3 Soil 06-JUN-19 14:00 2019LGCS3	L2289361-4 Soil 06-JUN-19 14:00 2019LGCS4	L2289361-5 Soil 07-JUN-19 10:00 2019LGCS5
Grouping	Analyte						
SOIL							
Metals	Uranium (U) (mg/kg)		0.338	0.312	0.301	0.327	0.286
	Vanadium (V) (mg/kg)		112	112	106	97.3	101
	Zinc (Zn) (mg/kg)		189	173	179	166	146
	Zirconium (Zr) (mg/kg)		1.7	1.6	1.2	1.1	1.3

L2289361 CONTD.... PAGE 8 of 11 08-JUL-19 10:29 (MT) Version: FINAL REV. 2

		Sample ID Description Sampled Date Sampled Time Client ID	L2289361-6 Soil 07-JUN-19 10:00 2019MGCS1	L2289361-7 Soil 07-JUN-19 10:00 2019MGCS2	L2289361-8 Soil 07-JUN-19 10:00 2019MGCS3	L2289361-9 Soil 07-JUN-19 10:00 2019MGCS4	L2289361-10 Soil 07-JUN-19 10:00 2019MGCS5
Grouping	Analyte						
SOIL							
Metals	Uranium (U) (mg/kg)		3.09	0.336	0.380	0.357	0.489
	Vanadium (V) (mg/kg)		837	121	113	102	98.0
	Zinc (Zn) (mg/kg)		1590	174	230	181	204
	Zirconium (Zr) (mg/kg)		<4.0	1.4	1.5	1.7	1.3

L2289361 CONTD.... PAGE 9 of 11 08-JUL-19 10:29 (MT) Version: FINAL REV. 2

		Sample ID Description Sampled Date Sampled Time Client ID	L2289361-11 Soil 07-JUN-19 10:00 2019MGCS1-DUP		
Grouping	Analyte				
SOIL					
Metals	Uranium (U) (mg/kg)		0.403		
	Vanadium (V) (mg/kg)		99.1		
	Zinc (Zn) (mg/kg)		183		
	Zirconium (Zr) (mg/kg)		<1.0		

Reference Information

L2289361 CONTD.... PAGE 10 of 11 08-JUL-19 10:29 (MT) Version: FINAL REV. 2

QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)
Method Blank	Arsenic (As)	В	L2289361-1, -10, -2, -3, -4, -5, -6, -7, -8, -9
Duplicate	Cadmium (Cd)	DUP-H	L2289361-1, -10, -2, -3, -4, -5, -6, -7, -8, -9
Duplicate	Lead (Pb)	DUP-H	L2289361-11
Duplicate	Zinc (Zn)	DUP-H	L2289361-1, -10, -2, -3, -4, -5, -6, -7, -8, -9
Laboratory Control Sample	Antimony (Sb)	MES	L2289361-1, -10, -2, -3, -4, -5, -6, -7, -8, -9

Qualifiers for Individual Parameters Listed:

Qualifier	Description
В	Method Blank exceeds ALS DQO. Associated sample results which are < Limit of Reporting or > 5 times blank level are considered reliable.
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).
DUP-H	Duplicate results outside ALS DQO, due to sample heterogeneity.
MES	Data Quality Objective was marginally exceeded (by < 10% absolute) for < 10% of analytes in a Multi-Element Scan / Multi-Parameter Scan (considered acceptable as per OMOE & CCME).

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
C-TIC-PCT-SK	Soil	Total Inorganic Carbon in Soil	CSSS (2008) P216-217
A known quantity of acetic against a standard curve re	acid is consur lating pH to w	med by reaction with carbonates in the soil. The pH of t veight of carbonate.	he resulting solution is measured and compared
C-TOC-CALC-SK	Soil	Total Organic Carbon Calculation	CSSS (2008) 21.2
Total Organic Carbon (TOC	c) is calculate	d by the difference between total carbon (TC) and total	inorganic carbon. (TIC)
C-TOT-LECO-SK	Soil	Total Carbon by combustion method	CSSS (2008) 21.2
The sample is ignited in a c	ombustion ar	nalyzer where carbon in the reduced CO2 gas is determ	nined using a thermal conductivity detector.
HG-200.2-CVAF-VA	Soil	Mercury in Soil by CVAAS	EPA 200.2/1631E (mod)
Soil samples are digested v acid leachable metals diges	with hot nitric stion method.	and hydrochloric acids, followed by CVAAS analysis. 1	This method is fully compliant with the BC SALM strong
IC-CACO3-CALC-SK	Soil	Inorganic Carbon as CaCO3 Equivalent	Calculation
LOI-550-SK	Soil	Loss on Ignition @ 550 C	CSSS (1993) p.461-462
The sample is air dried at 4 105C overnight, then ignite	0C overnight, d at 550C for	, then ground to < 2mm in particle size using a flail grin 16-20 hours. Loss on ignition at 550C is reported on a	der. A portion of the dried and ground sample is dried at dry sample basis.
Loss on Ignition at 550C ca	in be used as	an estimation of Organic Matter (CSSS 2008)	
MET-200.2-CCMS-VA	Soil	Metals in Soil by CRC ICPMS	EPA 200.2/6020A (mod)
Soil/sediment is dried, disa nitric and hydrochloric acids	ggregated, an s. Instrumenta	nd sieved (2 mm). Strong Acid Leachable Metals in the al analysis is by Collision / Reaction Cell ICPMS.	<2mm fraction are solubilized by heated digestion with
Limitations: This method is partially recovered (matrix o Volatile forms of sulfur (e.g	intended to l dependent), ir . sulfide, H2S	iberate environmentally available metals. Silicate minencluding AI, Ba, Be, Cr, S, Sr, Ti, TI, V, W, and Zr. Eler) may be excluded if lost during sampling, storage, or d	rals are not solubilized. Some metals may be only nental Sulfur may be poorly recovered by this method. ligestion.
MOISTURE-VA	Soil	Moisture content	CCME PHC in Soil - Tier 1 (mod)
This analysis is carried out	gravimetricall	ly by drying the sample at 105 C for a minimum of two l	nours.
PH-1:2-VA	Soil	pH in Soil (1:2 Soil:Water Extraction)	BC WLAP METHOD: PH, ELECTROMETRIC, SOIL
This analysis is carried out Section B Physical, Inorgar sieved (No. 10 / 2mm) sam standard pH probe.	in accordance nic and Misc. ple with deior	e with procedures described in "pH, Electrometric in So Constituents, BC Environmental Laboratory Manual. T nized/distilled water at a 1:2 ratio of sediment to water.	il and Sediment - Prescriptive Method", Rev. 2005, he procedure involves mixing the dried (at <60⊡C) and The pH of the solution is then measured using a
SPECIAL REQUEST-SK	Misc.	Special Request Sask Lab	SEE SUBLET LAB RESULTS
SULPHIDE-WT	Soil	Sulphide, Acid Volatile	APHA 4500S2J
This analysis is carried out	in accordance	e with the method described in APHA 4500 S2-J. Hvdro	ochloric acid is added to sediment samples within a

This analysis is carried out in accordance with the method described in APHA 4500 S2-J. Hydrochloric acid is added to sediment samples within a purge and trap system. The evolved hydrogen sulphide (H2S) is carried into a basic solution by inert gas. The acid volatile sulfide is then determined colourimetrically.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

Reference Information

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
SK	ALS ENVIRONMENTAL - SASKATOON, SASKATCHEWAN, CANADA
WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA
VA	ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

17-661811

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

819-58th Street, Saskatoon, SK S7K 6X5

Particle Size Distribution

Range (mm)	Wt. (%)
> 19	0.00
19 - 9.5	0.00
9.5 - 4.75	0.00
4.75 - 2	0.00
2 - 0.85	4.84
0.85 - 0.425	19.85
0.425 - 0.25	27.08
0.25 - 0.106	33.15
0.106 - 0.075	4.40

Range (mm)	Wt. (%)
0.075 - 0.074	0.14
0.074 - 0.005	10.00
0.005 - 0.001	0.34
<0.001	0.20

819-58th Street, Saskatoon, SK S7K 6X5

Particle Size Distribution

Range (mm)	Wt. (%)
> 19	0.00
19 - 9.5	0.00
9.5 - 4.75	0.00
4.75 - 2	0.00
2 - 0.85	8.11
0.85 - 0.425	19.20
0.425 - 0.25	22.26
0.25 - 0.106	30.22
0.106 - 0.075	6.01

Range (mm)	Wt. (%)
0.075 - 0.074	0.19
0.074 - 0.005	13.45
0.005 - 0.001	0.33
<0.001	0.23

819-58th Street, Saskatoon, SK S7K 6X5

Particle Size Distribution

Range (mm)	Wt. (%)
> 19	0.00
19 - 9.5	0.00
9.5 - 4.75	0.00
4.75 - 2	0.00
2 - 0.85	8.47
0.85 - 0.425	26.35
0.425 - 0.25	30.37
0.25 - 0.106	24.11
0.106 - 0.075	3.33

Range (mm)	Wt. (%)
0.075 - 0.074	0.11
0.074 - 0.005	6.72
0.005 - 0.001	0.26
<0.001	0.28

819-58th Street, Saskatoon, SK S7K 6X5

Particle Size Distribution

Range (mm)	Wt. (%)
> 19	0.00
19 - 9.5	0.00
9.5 - 4.75	0.00
4.75 - 2	0.00
2 - 0.85	5.25
0.85 - 0.425	20.19
0.425 - 0.25	30.67
0.25 - 0.106	30.94
0.106 - 0.075	4.11

Range (mm)	Wt. (%)
0.075 - 0.074	0.13
0.074 - 0.005	8.36
0.005 - 0.001	0.22
<0.001	0.13

819-58th Street, Saskatoon, SK S7K 6X5

Particle Size Distribution

Range (mm)	Wt. (%)
> 19	0.00
19 - 9.5	0.00
9.5 - 4.75	0.00
4.75 - 2	0.00
2 - 0.85	1.17
0.85 - 0.425	12.48
0.425 - 0.25	22.96
0.25 - 0.106	37.21
0.106 - 0.075	7.53

Range (mm)	Wt. (%)
0.075 - 0.074	0.24
0.074 - 0.005	17.66
0.005 - 0.001	0.52
<0.001	0.23

819-58th Street, Saskatoon, SK S7K 6X5

Particle Size Distribution

Range (mm)	Wt. (%)
> 19	0.00
19 - 9.5	0.00
9.5 - 4.75	0.00
4.75 - 2	0.00
2 - 0.85	17.32
0.85 - 0.425	28.65
0.425 - 0.25	22.51
0.25 - 0.106	19.10
0.106 - 0.075	3.37

Range (mm)	Wt. (%)
0.075 - 0.074	0.11
0.074 - 0.005	8.40
0.005 - 0.001	0.27
<0.001	0.26

819-58th Street, Saskatoon, SK S7K 6X5

Particle Size Distribution

Range (mm)	Wt. (%)
> 19	0.00
19 - 9.5	0.00
9.5 - 4.75	0.39
4.75 - 2	4.29
2 - 0.85	21.34
0.85 - 0.425	24.46
0.425 - 0.25	17.45
0.25 - 0.106	17.01
0.106 - 0.075	3.97

Range (mm)	Wt. (%)
0.075 - 0.074	0.13
0.074 - 0.005	10.45
0.005 - 0.001	0.28
<0.001	0.21

819-58th Street, Saskatoon, SK S7K 6X5

Particle Size Distribution

Range (mm)	Wt. (%)
> 19	0.00
19 - 9.5	0.00
9.5 - 4.75	0.00
4.75 - 2	0.00
2 - 0.85	2.72
0.85 - 0.425	11.18
0.425 - 0.25	16.88
0.25 - 0.106	37.60
0.106 - 0.075	8.71

Range (mm)	Wt. (%)
0.075 - 0.074	0.28
0.074 - 0.005	21.11
0.005 - 0.001	0.87
<0.001	0.64

819-58th Street, Saskatoon, SK S7K 6X5

Particle Size Distribution

Range (mm)	Wt. (%)
> 19	0.00
19 - 9.5	0.00
9.5 - 4.75	0.00
4.75 - 2	0.00
2 - 0.85	10.85
0.85 - 0.425	24.53
0.425 - 0.25	24.46
0.25 - 0.106	24.73
0.106 - 0.075	4.94

Range (mm)	Wt. (%)
0.075 - 0.074	0.16
0.074 - 0.005	9.81
0.005 - 0.001	0.32
<0.001	0.20

819-58th Street, Saskatoon, SK S7K 6X5

Particle Size Distribution

Range (mm)	Wt. (%)
> 19	0.00
19 - 9.5	0.00
9.5 - 4.75	0.00
4.75 - 2	0.00
2 - 0.85	4.70
0.85 - 0.425	15.95
0.425 - 0.25	16.62
0.25 - 0.106	26.89
0.106 - 0.075	8.84

Range (mm)	Wt. (%)
0.075 - 0.074	0.29
0.074 - 0.005	25.57
0.005 - 0.001	0.89
<0.001	0.25

1000

.

Mulife Faper Co. 604 851-3900

• •

-.... - - -