Glacier Creek Aquatic Studies, 2021

by

Dylan Krull

December 2021

Alaska Department of Fish and Game

Habitat Section

Symbols and Abbreviations

The following symbols and abbreviations, and others approved for the Système International d'Unités (SI), are used without definition in reports by Habitat Section and the Divisions of Sport Fish and Commercial Fisheries. All others, including deviations from definitions listed below, are noted in the text at first mention, as well as in the titles or footnotes of tables, and in figures or figure captions.

Weights and measures (metric)		General		Measures (fisheries)	
centimeter	cm	Alaska Administrative		fork length	FL
deciliter	dL	Code	AAC	mideye-to-fork	MEF
gram	g	all commonly accepted		mideye-to-tail fork	METF
hectare	ha	abbreviations	e.g., Mr., Mrs.,	standard length	SL
kilogram	kg		AM, PM, etc.	total length	TL
kilometer	km	all commonly accepted			
liter	L	professional titles	e.g., Dr., Ph.D.,	Mathematics, statistics	
meter	m		R.N., etc.	all standard mathematical	
milliliter	mL	at	@	signs, symbols and	
millimeter	mm	compass directions:		abbreviations	
nanometer	nm	east	E	alternate hypothesis	H _A
		north	N	base of natural logarithm	е
Weights and measures (English)		south	S	catch per unit effort	CPUE
cubic feet per second	ft ³ /s	west	W	coefficient of variation	CV
foot	ft	copyright	©	common test statistics	(F, t, χ^2 , etc.)
gallon	gal	corporate suffixes:		confidence interval	CI
inch	in	Company	Co.	correlation coefficient	
mile	mi	Corporation	Corp.	(multiple)	R
nautical mile	nmi	Incorporated	Inc.	correlation coefficient	
ounce	oz	Limited	Ltd.	(simple)	r
pound	lb	District of Columbia	D.C.	covariance	cov
quart	qt	et alii (and others)	et al.	degree (angular)	0
yard	yd	et cetera (and so forth)	etc.	degrees of freedom	df
		exempli gratia		expected value	Ε
Time and temperature		(for example)	e.g.	greater than	>
day	d	Federal Information		greater than or equal to	≥
degrees Celsius	°C	Code	FIC	harvest per unit effort	HPUE
degrees Fahrenheit	°F	id est (that is)	i.e.	less than	<
degrees kelvin	Κ	latitude or longitude	lat. or long.	less than or equal to	\leq
hour	h	monetary symbols		logarithm (natural)	ln
minute	min	(U.S.)	\$,¢	logarithm (base 10)	log
second	s	months (tables and		logarithm (specify base)	log _{2,} etc.
		figures): first three		minute (angular)	,
Physics and chemistry		letters	Jan,,Dec	not detected	Ν
all atomic symbols		registered trademark	®	no data	ND
alternating current	AC	trademark	тм	not significant	NS
ampere	А	United States		null hypothesis	Ho
calorie	cal	(adjective)	U.S.	percent	%
direct current	DC	United States of		probability	Р
hertz	Hz	America (noun)	USA	probability of a type I error	
horsepower	hp	U.S.C.	United States	(rejection of the null	
hydrogen ion activity	pН		Code	hypothesis when true)	α
(negative log of)		U.S. state	use two-letter	probability of a type II error	
parts per million	ppm		abbreviations (e.g., AK, WA)	(acceptance of the null	
parts per thousand	ppt,		(c.g., AK, WA)	hypothesis when false)	β
	‰			second (angular)	"
volts	V			standard deviation	SD
watts	W			standard error	SE
				variance	
				population	Var
				sample	var

TECHNICAL REPORT NO. 21-08

GLACIER CREEK AQUATIC STUDIES, 2021

By

Dylan Krull

Alaska Department of Fish and Game Habitat Section, Region I 802 3rd Street, Douglas, Alaska 99824

December 2021

This investigation was fully financed by Constantine North, Inc.

Cover: A helicopter exits the site after dropping off crew on the other side of Lower Glacier Creek on June 16, 2021, photo courtesy of William Kane.

Technical Reports are available through the Alaska State Library, Alaska Resources Library and Information Services (ARLIS) and on the Internet: <u>http://www.adfg.alaska.gov/index.cfm?adfg=habitat_publications.main</u>. This publication has undergone editorial and peer review.

Note: Product names or specific company names used in this publication are included for completeness but do not constitute product endorsement. The Alaska Department of Fish and Game, in accordance with State of Alaska ethics laws, does not favor one group over another through endorsement or recommendation.

Alaska Department of Fish and Game, Habitat Section 802 3rd Street, Douglas, Alaska, 99824, USA

This document should be cited as: Krull, D. 2021. Glacier Creek aquatic studies, 2021. Alaska Department of Fish and Game, Technical Report No. 21-08, Douglas, AK.

The Alaska Department of Fish and Game (ADF&G) administers all programs and activities free from discrimination based on race, color, national origin, age, sex, religion, marital status, pregnancy, parenthood, or disability. The department administers all programs and activities in compliance with Title VI of the Civil Rights Act of 1964, Section 504 of the Rehabilitation Act of 1973, Title II of the Americans with Disabilities Act (ADA) of 1990, the Age Discrimination Act of 1975, and Title IX of the Education Amendments of 1972.

If you believe you have been discriminated against in any program, activity, or facility please write: ADF&G ADA Coordinator, P.O. Box 115526, Juneau, AK 99811-5526 U.S. Fish and Wildlife Service, 4401 N. Fairfax Drive, MS 2042, Arlington, VA 22203 Office of Equal Opportunity, U.S. Department of the Interior, 1849 C Street NW MS 5230, Washington DC 20240

The department's ADA Coordinator can be reached via phone at the following numbers: (VOICE) 907-465-6077, (Statewide Telecommunication Device for the Deaf) 1-800-478-3648, (Juneau TDD) 907-465-3646, or (FAX) 907-465-6078

For information on alternative formats and questions on this publication, please contact: ADF&G Habitat Section, 802 3rd Street, Douglas, Alaska 99824 (907) 465-4105

TABLE OF CONTENTS

Page

i
i
i
i
1
1
3 3
3
6 7 8
8
8
9
0
1
2
4
4
8
2
6

LIST OF TABLES

Table

Page

1.	2021 Lower Glacier Creek sample site location data.	6
	2021 Middle Glacier Creek sample site location data.	
	2021 sediment tests, analytes, and methods.	
	Lower Glacier Creek water quality data	
5.	Lower Glacier Creek mean chlorophylls a, b, and c densities.	14
6.	Lower Glacier Creek benthic macroinvertebrate data summaries	15
7.	Middle Glacier Creek water quality data	18
8.	Middle Glacier Creek mean chlorophylls <i>a</i> , <i>b</i> , and <i>c</i> densities.	18
9.	Middle Glacier Creek benthic macroinvertebrate data summaries	19

LIST OF FIGURES

Figure

Page

1.	Palmer Exploration Project area map	2
2.	Glacier Creek sample site map	5
3.	Lower Glacier Creek, looking downstream from the top of the sampling reach.	6
4.	Middle Glacier Creek flowing along the river right bank intercepting Christmas Creek	7
5.	Lower Glacier Creek chlorophyll <i>a</i> densities	14
6.	Lower Glacier Creek mean proportions of chlorophylls <i>a</i> , <i>b</i> , and <i>c</i>	
7.	Lower Glacier Creek benthic macroinvertebrate densities.	15
8.	Lower Glacier Creek mean benthic macroinvertebrate community compositions.	15
9.	Lower Glacier Creek whole body Dolly Varden char element concentrations.	16
10.	Lower Glacier Creek sediment element concentrations	17
11.	Middle Glacier Creek chlorophyll a densities	
12.	Middle Glacier Creek mean proportions of chlorophylls a, b, and c.	
13.	Middle Glacier Creek benthic macroinvertebrate densities.	19
14.	Middle Glacier Creek mean benthic macroinvertebrate community compositions.	19
15.	Middle Glacier Creek whole body Dolly Varden char element concentrations	20
16.	Middle Glacier Creek sediment element concentrations	
17.	Glacier Creek chlorophyll <i>a</i> densities	22
18.	Glacier Creek mean benthic macroinvertebrate densities.	23
19.	Glacier Creek benthic macroinvertebrate taxa richness.	23
20.	Glacier Creek whole body Dolly Varden char element concentrations, 2016-2021	24
21.	Glacier Creek sediment element concentrations, 2016–2021.	

LIST OF APPENDICES

APPENDIX A: WATER QUALITY DATA

- A.1. Lower Glacier Creek water quality, 2016–2021.
- A.2. Middle Glacier Creek water quality, 2016–2021.

APPENDIX B: CHLOROPHYLL DATA

- B.1. Lower Glacier Creek chlorophylls *a*, *b*, and *c* densities, 2016–2021.
- B.2. Middle Glacier Creek chlorophylls *a*, *b*, and *c* densities, 2016–2021.

APPENDIX C: BENTHIC MACROINVERTEBRATE DATA

- C.1. Lower Glacier Creek benthic macroinvertebrate sample data, 2021.
- C.2. Lower Glacier Creek benthic macroinvertebrate data summaries, 2016–2021.
- C.3. Middle Glacier Creek benthic macroinvertebrate sample data, 2021.
- C.4. Middle Glacier Creek benthic macroinvertebrate data summaries, 2016–2021.

APPENDIX D: RESIDENT FISH DATA AND LABORATORY REPORT

- D.1. Lower Glacier Creek whole body Dolly Varden char element concentrations, 2016–2021.
- D.2. Middle Glacier Creek whole body Dolly Varden char element concentrations, 2016–2021.
- D.3. 2021 Glacier Creek whole body Dolly Varden char laboratory report.

APPENDIX E: SEDIMENT DATA AND LABORATORY REPORT

- E.1. Lower Glacier Creek sediment compositions, 2016–2021.
- E.2. Lower Glacier Creek sediment element concentrations, 2016–2021.
- E.3. Middle Glacier Creek sediment compositions, 2016–2021.
- E.4. Middle Glacier Creek sediment element concentrations, 2016–2021.
- E.5. 2021 Glacier Creek sediment laboratory report.

ACKNOWLEDGEMENTS

Constantine North, Inc. provided financial support for this project. Camp Manager Darsie Culbeck provided logistical support and Environmental Manager Allegra Cairns provided Glacier Creek water quality and discharge data and reviewed the draft report.

Alaska Department of Fish and Game Habitat Section Southeast Regional Supervisor Kate Kanouse collaborated on study design. Habitat Biologist William Kane assisted with sampling and processed periphyton samples. Habitat Biologist Greg Albrecht identified benthic macroinvertebrates. Habitat Biologist Kelsey Dean and Fish and Wildlife Technician Ben Landes assisted with processing the benthic macroinvertebrate samples, and Habitat Biologist Evan Fritz verified data entry. Habitat Section Operations Manager Dr. Al Ott, Kate Kanouse, and William Kane reviewed and edited the report. Thank you all for your contribution.

EXECUTIVE SUMMARY

Constantine North, Inc. (CNI) began exploratory drilling at the Palmer Exploration Project in 2006 and has identified barite, copper, gold, silver, and zinc deposits within the volcanogenic massive sulfide deposit that may support a hard rock mine. CNI contracted with the Alaska Department of Fish and Game (ADF&G) Habitat Section to study aquatic resources in Glacier Creek, a glacial water body draining the area. With CNI, Habitat Section biologists developed a plan to study periphyton, benthic macroinvertebrates, fish, and sediment at two sites in Glacier Creek, and sampled the sites in spring 2016–2021 documenting baseline aquatic productivity and sediment conditions.

We sampled the lower and middle reaches of Glacier Creek on June 15 and 16, 2021, 1–2 weeks later than previous years due to late snow melt. Mean chlorophyll *a* density was 0.77 mg/m^2 at Lower Glacier Creek, within the range observed since 2016, and 2.03 mg/m² at Middle Glacier Creek, the greatest observed. The 2021 mean benthic macroinvertebrate density at each site was within the ranges observed since 2016, and similar to the 2019 sample results. The macroinvertebrate communities were again dominated by Diptera: Chironomidae insects; generally, Chironomidae insects are fast colonizers, easily adapt to changing habitats, and can exercise more than one feeding strategy (Entrekin et al. 2007).

We captured 10 Dolly Varden char *Salvelinus malma* in Lower Glacier Creek and 5 Dolly Varden char in Middle Glacier Creek; these samples were analyzed for whole body concentrations of arsenic, cadmium, copper, lead, mercury, silver, selenium, and zinc. All fish were in good condition, and we captured one 260 mm adult cutthroat trout *Oncorhynchus clarkii* in Lower Glacier Creek for the first time during biomonitoring. Most median Dolly Varden char element concentrations were greater among the Lower Glacier Creek samples, while arsenic and silver concentrations were often not detected at both sites. Most concentrations were within the ranges observed in whole body Dolly Varden char samples collected from reference and exploration sites elsewhere in Alaska (Legere and Timothy 2016).

We sampled fine sediment at each site for aluminum, arsenic, cadmium, copper, iron, lead, mercury, selenium, silver, and zinc and found median element concentrations generally similar among sites. The baseline cadmium, copper, and zinc concentrations were near or above the freshwater sediment guidelines suggested by Buchman (2008); while we find the sediment guidelines useful for evaluating the data, we also recognize organisms can respond differently in nature.

INTRODUCTION

The Palmer Exploration Project is located in the Porcupine Mining District about 55 km north of Haines by air in the southeastern extent of the Saint Elias Mountains near the U.S./Canada border (Figure 1). At the site, placer gold mining in Glacier Creek and its tributaries occurred during the 20th century; in 1969, local prospector Merrill Palmer discovered base-metal sulfides and barite that initiated exploration drill programs by several different companies in the following years, including CNI beginning in 2006 (CNI 2015).

The Palmer Prospect consists of two primary deposits: the Palmer Deposit on the south wall of the mountainside on the west side of the valley and the AG Deposit at the head of the valley under the Saksaia Glacier. The project is located on the same volcanogenic massive sulfide belt as Greens Creek Mine on Admiralty Island, about 100 air miles south. CNI has identified barite, copper,

gold, silver, and zinc as potential mineable resources (CNI 2015). From 2014–2018, CNI constructed a 6.73 km single lane gravel road to support mineral exploration on the mountainside in the Glacier Creek valley. In 2021, CNI continued exploration activities.

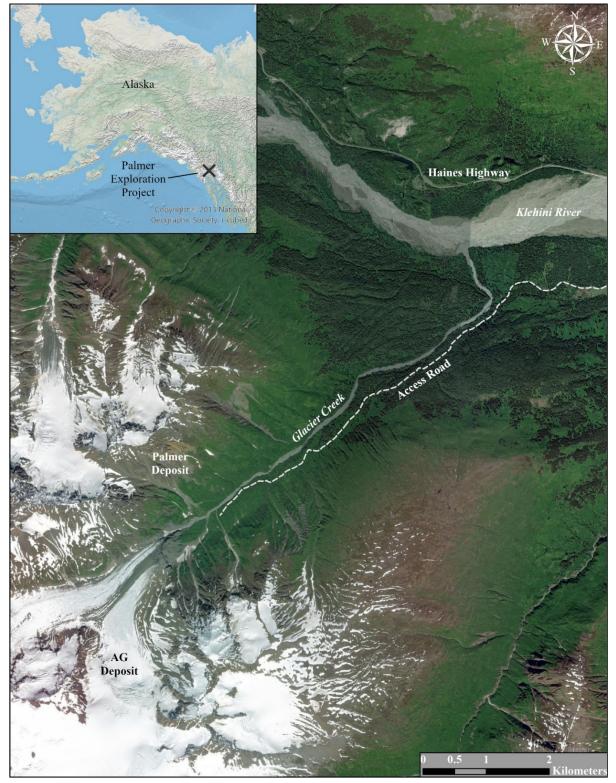


Figure 1.–Palmer Exploration Project area map.

Tetra Tech (2013) and ADF&G biologists have documented^a Dolly Varden char in Glacier Creek and three tributaries. Since 2016, CNI contracted with the ADF&G Habitat Section to conduct baseline studies in Glacier Creek. Following review of CNI's water quality sample data, Habitat biologists developed a study plan to investigate and document aquatic resources in Glacier Creek, similar to aquatic sampling programs at the Greens Creek Mine (Kane 2021) and Kensington Gold Mine (Timothy and Kanouse 2014), underground hard rock mines in Southeast Alaska. The study plan includes sampling periphyton, benthic macroinvertebrates, and fish—aquatic resources influenced by water and sediment quality through natural processes—to provide baseline information on aquatic productivity in Glacier Creek. We conducted these studies in spring 2016– 2021; sampling results from previous years are presented in Kanouse and Legere (2016), Legere and Kanouse (2017–2018), and Krull (2019–2020).

PURPOSE

The purpose of this investigation and technical report is to document the baseline condition, abundance, and composition of biological communities and sediments in Glacier Creek.

AQUATIC STUDIES

We completed the following studies at two sample sites in Glacier Creek:

- Chlorophyll density and composition;
- Benthic macroinvertebrate density and community composition;
- Dolly Varden char condition and whole body element concentrations; and
- Sediment composition and element concentrations.

STUDY AREA

Glacier Creek is about 7 km long, drains a 39 km² watershed between its headwaters at the Saksaia Glacier and confluence with the Klehini River, and contributes about 5% of the total Klehini River drainage area measured from the former U.S. Geological Survey gage at the Klehini River bridge–about 20 km downstream of the prospect.^b

Continuous discharge data do not exist for Glacier Creek. Based on the relative size of the Glacier Creek and Klehini River drainage areas, Integral Consulting, Inc.^e estimated mean Glacier Creek discharge between May and September at 150 ft³/s. Field staff measured discharge opportunistically from 2015–2018 between June and September ranging 57–272 ft³/s, with the lowest discharge measured during September. During winter, spring, and fall of 2019 and 2020, CNI staff measured discharge about 2 km upstream of the Middle Glacier Creek sampling site

^a Matthew Kern, Habitat Biologist, to Jackie Timothy, Southeast Regional Supervisor, ADF&G Division of Habitat. Memorandum: Glacier Creek investigation trip report; dated 6/26/2014. Unpublished document, can be obtained from the Southeast Regional Supervisor, ADF&G Habitat Section, 802 3rd St, Douglas, AK.

^b Marcia Greenblatt and Alice Conovitz, Integral Consulting, to Darwin Green, Constantine North. Memorandum: Klehini River and Glacier Creek hydrologic data summary; dated 2/24/2016. Unpublished document, can be obtained from Constantine North, Inc., 800 W. Pender St. Ste. 320, Vancouver, BC, Canada.

^c Marcia Greenblatt and Alice Conovitz, Integral Consulting, to Darwin Green and Allegra Cairns, Constantine North. Memorandum: Klehini River and Glacier Creek hydrologic data summary–fall 2016 update; dated 12/19/2016. Unpublished document, can be obtained from Constantine North, Inc., 800 W. Pender St. Ste. 320, Vancouver, BC, Canada.

which ranged 3.36–71.66 ft³/s (A. Cairns, Environmental Manager, Constantine North Inc., Vancouver, personal communication).

CNI's 2008–2014, 2017–2021 Glacier Creek year-round basic water quality data documents total suspended solids ranging 3–2,470 mg/L, turbidity ranging 0.03–2,760 nephelometric turbidity units (NTU), and pH ranging 6.59–8.33 (DOI 2016; A. Cairns, Environmental Manager, Constantine North Inc., Vancouver, personal communication).

The lower 1 km of Glacier Creek (Stream No. 115-32-10250-2077-3151) provides habitat for coho salmon *O. kisutch*, cutthroat trout *O. clarkii*, and Dolly Varden char (Giefer and Blossom 2021). We captured Dolly Varden char while opportunistically sampling fish use 2016–2021; in October 2019, we documented one pair of adult coho salmon; in 2020 we captured one rainbow trout; and in 2021 we captured an adult cutthroat trout during aquatic biomonitoring and an adult coho salmon during the October survey.^{d,e,f,g,h,i} Further upstream in the drainage, we captured Dolly Varden char 0.6 km upstream of the Christmas Creek confluence, a nonglacial tributary located 4.5 km upstream of the Glacier Creek confluence with the Klehini River; previously, Tetra Tech (2013) and ADF&G documented the upper extent of Dolly Varden char below the Christmas Creek confluence. In 2018, we sampled fish use near the upper extent of Glacier Creek and did not find fish.^j

We sampled two locations in Glacier Creek: Lower Glacier Creek and Middle Glacier Creek (Figure 2).

^d Dylan Krull, Habitat Biologist, to Jackie Timothy, Southeast Regional Supervisor, ADF&G Division of Habitat. Memorandum: 2018 Palmer Project Glacier Creek coho surveys; dated 12/7/2018. Unpublished document, can be obtained from the Southeast Regional Supervisor, ADF&G Habitat Section, 802 3rd St, Douglas, AK.

^e Jesse Lindgren, Habitat Biologist, to Kate Kanouse, Southeast Regional Supervisor, ADF&G Habitat Section. Memorandum: 2019 Palmer Project Glacier Creek fish surveys; dated 12/19/2019. Unpublished document, can be obtained from the Southeast Regional Supervisor, ADF&G Habitat Section, 802 3rd St, Douglas, AK.

^f Dylan Krull, Habitat Biologist, to Kate Kanouse, Southeast Regional Supervisor, ADF&G Habitat Section. Memorandum: 2020 Palmer Project biomonitoring; dated 8/6/2020. Unpublished document, can be obtained from the Southeast Regional Supervisor, ADF&G Habitat Section, 802 3rd St, Douglas, AK.

^g Dylan Krull, Habitat Biologist, to Kate Kanouse, Southeast Regional Supervisor, ADF&G Habitat Section. Memorandum: 2020 Palmer Project Glacier Creek fish surveys; dated 11/24/2020. Unpublished document, can be obtained from the Southeast Regional Supervisor, ADF&G Habitat Section, 802 3rd St, Douglas, AK.

^h Dylan Krull, Habitat Biologist, to Kate Kanouse, Southeast Regional Supervisor, ADF&G Habitat Section. Memorandum: 2021 Palmer Project Glacier Creek Sampling; dated 11/3/2021. Unpublished document, can be obtained from the Southeast Regional Supervisor, ADF&G Habitat Section, 802 3rd St, Douglas, AK.

¹ Dylan Krull, Habitat Biologist, to Kate Kanouse, Southeast Regional Supervisor, ADF&G Habitat Section. Memorandum: 2021 Glacier Creek Fish Survey; dated 12/7/2021. Unpublished document, can be obtained from the Southeast Regional Supervisor, ADF&G Habitat Section, 802 3rd St, Douglas, AK.

^j Dylan Krull, Habitat Biologist, to Jackie Timothy, Southeast Regional Supervisor, ADF&G Division of Habitat. Memorandum: Waterfall and Hangover Creeks fish investigations; dated 10/22/2018. Unpublished document, can be obtained from the Southeast Regional Supervisor, ADF&G Habitat Section, 802 3rd St, Douglas, AK.

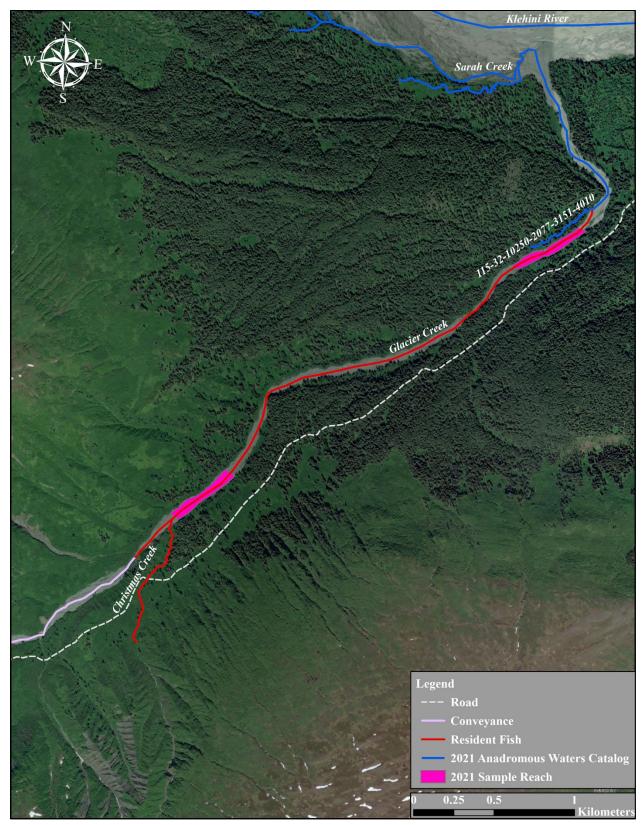
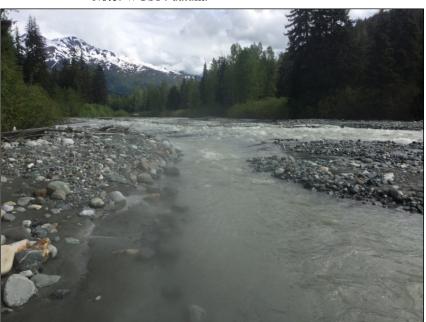


Figure 2.–Glacier Creek sample site map.

Lower Glacier Creek


The Lower Glacier Creek sample site is located at the former Glacier Creek bridge near 230 m elevation, about 1.5 km upstream of the Klehini River (Table 1; Figure 3). We accessed the site from the old bridge crossing at the end of Porcupine Road and received transport across the creek with a helicopter due to high flows.

Lower Glacier Creek is a medium glacial outwash channel, which exhibit high rates of aggradation and scour resulting in active channels that move throughout the floodplain (Paustian 2010). Streambed gradient ranges 1–5% and the substrate is composed of cobble, gravel, sand, and silt. In 2021, we sampled a 490 m reach, a larger reach than most sample years due to high water and fewer suitable fish sampling areas available; we collected periphyton, benthic macroinvertebrate, and sediment samples in channel braids and along the main channel margin upstream of the old crossing, and fish primarily above the old crossing with one captured below. We observed youngof-year Dolly Varden char (20–30 mm FL) while electrofishing, which suggests successful spawning occurred near the site last fall. We also captured one adult cutthroat trout (260 mm FL).

Comparing stream characteristics of the Lower Glacier Creek sample site 2016–2021, we observed different main channel courses and channel braids each year. In 2021, upstream of the old bridge, the main channel flowed down the river left side of the floodplain with a few established braids on river right side which converged at the old bridge abutment. Downstream of the abutment, the main channel flowed on the river right side of the floodplain, with a braid flowing along river left.

Table 1.–2021 Lower Glacier Creek sampl	e
site location.	

	- · ·	- · ·
	Latitude	Longitude
Upper extent	59.4156	-136.3076
Lower extent	59.4179	-136.3003

Note: WGS84 datum.

Figure 3.-Lower Glacier Creek, looking downstream from the top of the sampling reach.

Middle Glacier Creek

The Middle Glacier Creek sample site is located near 350 m elevation, about 4.5 km upstream of the Klehini River (Table 2; Figure 4). We accessed the site by hiking from the access road.

Middle Glacier Creek also is characterized as a medium glacial outwash channel (Paustian 2010). Streambed gradient ranges 4–8% and the substrate is composed of cobble, gravel, sand, and silt. In 2021, we sampled a 444 m reach from the Christmas Creek confluence downstream, similar in size to the 2020 sample year due to high water level and fewer suitable fish sampling areas available. We collected periphyton, benthic macroinvertebrate, and sediment samples in channel braids and along the main channel margin, and fish throughout the sample reach.

Comparing stream characteristics of the Middle Glacier Creek sample site 2016–2021, we observed different main channel courses and channel braids each year. In 2021, the main channel shifted to the river right since sampling last year, which intercepted Christmas Creek where it flows into the Glacier Creek floodplain. Streamflow was concentrated in a main channel that meandered from river right to left in the floodplain in the sample reach and we were unable to cross the river.

Table 2.–2021 Middle Glacier Creek sample

	site location.			
		Latitude	Longitude	
	Upper extent	59.4010	-136.3435	
	Lower extent	59.4036	-136.3379	
	Note: WGS84 dat	um.		
-		Carlo and and		a state of
			x set and	
		-		3
			29-1	A

Figure 4.–Middle Glacier Creek flowing along the river right bank intercepting Christmas Creek.

RECEIPTING IN THE RECEIPTING

And a second

METHODS

Data sets are reviewed annually to ensure accuracy and consistency with modifications to methods; corrections and updates are reported in the document and appendices. The most recent technical report presents the current data sets and should be used to analyze data from previous years.

WATER QUALITY

Basic water quality data were collected with a Hanna HI98194; the instrument was calibrated per the manufacturer's instructions prior to sampling. The Hach 2100P Portable Turbidimeter was malfunctioning in the field and we were unable to obtain turbidity measurements. Historical data are provided in Appendix A.

PERIPHYTON: CHLOROPHYLL DENSITY AND COMPOSITION

Periphyton is composed of primary producing organisms, such as algae, cyanobacteria, and heterotrophic microbes, and detritus attached to the submerged surfaces of aquatic ecosystems. Algal density and community structure are influenced by water and sediment characteristics through physical, chemical, and biological factors, and disturbances that change throughout the year (Barbour et al. 1999).

Periphyton is sampled in Lower and Middle Glacier Creek to estimate algal density and community composition at each site, using concentrations of chlorophylls a, b, and c. The concentration of chlorophyll a (Chl-a) pigment in periphyton samples provides an estimate of active algal biomass (density), while concentrations of chlorophyll b (Chl-b) and chlorophyll c (Chl-c) pigments estimate the composition of algal organisms present, such as green algae that produce Chl-b, and diatoms and brown algae that produce Chl-c. The chlorophyll data are used to document baseline primary productivity.

Sample Collection and Analysis

Sampling methods are adapted from Barbour et al. (1999). Ten smooth, flat, undisturbed, and perennially wetted rocks were collected from submerged cobble in riffle habitats in less than 0.45 m water depth at each sample site and submerged in the creek in the same orientation they were collected. To collect a sample from each rock, a 5×5 cm square of high-density foam was held on the sample area; the area around the foam was scrubbed with a toothbrush to remove algae and other organisms outside the sample area. The rock was rinsed by submerging it in the stream while holding the foam in place; the toothbrush also was rinsed in the stream.

A 47 mm diameter Type A/E 1 μ m glass fiber filter was placed into a Nalgene® filter receptacle attached to a vacuum pump with a gauge. The foam square was removed and the underside of the foam and the sample area were gently scrubbed in a circular pattern with the toothbrush into the filter receptacle. Stream water in a wash bottle was used to rinse loosened periphyton from the foam, rock, toothbrush, and the inside of the filter receptacle onto the filter. The sample area was scrubbed a second time and the rinse cycle was repeated. With most of the water pumped through the filter, maintaining pressure less than 34 kPa, a few drops^k of saturated magnesium carbonate solution was added to the filter¹ before the sample was pumped dry. The glass fiber filter was

^k This measurement is not exact as the amount of water and MgCO₃ used to create a saturated solution varies and does not affect sample integrity; supernatant solution was used to avoid MgCO₃ solids.

¹ To prevent acidification and conversion of chlorophyll to phaeophytin.

removed from the receptacle, folded in half with the sample inside, and wrapped in a white coffee filter for additional moisture absorption. The samples were placed in a sealed, labeled plastic bag with desiccant and stored in a light-proof cooler containing frozen icepacks during transportation; samples were stored in a -20°C freezer in the ADF&G Douglas laboratory until processing.

U.S. Environmental Protection Agency (EPA; 1997) protocol was followed for chlorophyll extraction and measurement, determining instrument and estimated detection limits, and data analysis.^m Samples were removed from the freezer, cut into small pieces, and placed into individual 15 mL screw cap centrifuge tubes containing 10 mL of 90% buffered acetone. The centrifuge tubes were capped and shaken to ensure complete submersion of the sample. Secured in a vial rack covered with aluminum foil, the samples were stored in a refrigerator for 12–24 hours to allow for saturation and chlorophyll extraction.

The samples were centrifuged for 20 min at 500 relative centrifugal force. Prior to sample measurement, two cuvettes containing 90% buffered acetone were placed into a Shimadzu UV-1800 spectrophotometer to calibrate absorbance of the solvent at wavelengths 664 nm, 647 nm, 630 nm, and 750 nm. Each sample supernatant was decanted into an individual cuvette and absorbance was measured at each wavelength. Each sample was treated with 80 μ L of 0.1 N hydrochloric acid for 90 seconds to convert the chlorophyll to phaeophytin, and absorbance was measured at wavelengths 665 nm and 750 nm. To minimize stray light and improve resolution, sample cuvettes were cleaned with a nonabrasive wipe prior to placement in the spectrophotometer.

Trichromatic equations were used to estimate Chl-*a*, Chl-*b*, and Chl-*c* concentrations, correcting for turbidity using the 750 nm absorbance value (APHA 2012, EPA 1997). Chl-*a* concentrations were corrected when phaeophytin was detected. When Chl-*a* was not detected in a sample, the concentration is reported as the spectrophotometer estimated detection limit and the values for Chl-*b* or Chl-*c* are excluded. The 2021 estimated detection limit for Chl-*a* concentration was 0.29 mg/m².

Data Presentation

For each site and by year, mean Chl-*a*, Chl-*b*, and Chl-*c* densities are presented in a table, Chl-*a* sample densities in a figure, and mean proportions of Chl-*a*, Chl-*b*, and Chl-*c* in a figure. A comparison of mean Chl-*a* densities among sites also is presented in a figure. The 2016–2021 sample density data are provided in Appendix B.

BENTHIC MACROINVERTEBRATE DENSITY AND COMMUNITY COMPOSITION

Benthic macroinvertebrates (BMI) classified in the orders Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies), collectively known as EPT taxa, have complex and short life cycles and many genera are sensitive to changes in water and sediment quality (Barbour et al. 1999). These organisms are secondary producers, feed upon periphyton and other macroinvertebrates, and provide a food source for fish.

^m Deviations from EPA (1997) include sample storage longer than 3.5 weeks, and cutting sample filters to reduce acetone exposure for laboratory staff (as opposed to homogenization).

Sample Collection and Analysis

Six BMI samples were collected from each site using a Surber stream bottom sampler in riffles and runs with gravel and cobble substrate and varying flow velocities—habitats that support greater BMI densities and taxonomic richness (Barbour et al. 1999). Other habitat types (e.g., pools) were excluded to reduce data variability.

The Surber stream bottom sampler has a 0.093 m^2 sample area and material is captured in a 200 mL cod end, both constructed with 300 µm mesh net. After securing the frame on the streambed with the opening facing the upstream current, rocks within the sample area were scoured with a scrub brush; gravel, sand, and silt were disturbed to about 10 cm depth to dislodge macroinvertebrates into the net. The net was rinsed in the stream to ensure all organisms drifted into the cod end, and each sample was transferred from the cod end to a labeled 500 mL plastic bottle. Samples were preserved in 95% ethanol at a ratio of three parts ethanol to one part sample. Samples exceeding the capacity of the cod end were discarded in the field to minimize detritus and substrate in samples and ensure proper sample preservation.

The samples were processed with an elutriator system with a 0.3 mm sieve to sort macroinvertebrates from debrisⁿ and organisms were identified to the lowest practical taxonomic level^{\circ} using Merritt and Cummins (1996) and Stewart and Oswood (2006). Quality control of benthic macroinvertebrate enumeration was completed for two samples.

BMI density was calculated for each sample by dividing the number of macroinvertebrates by 0.093 m^2 —the Surber sampling area. Mean density was estimated for each site by calculating the mean density among the six samples. Taxa richness is reported as the number of taxonomic groups identified to the lowest practical level; terrestrial^p organisms were excluded from all calculations.

Data Presentation

For each site and by year, a table is presented summarizing mean BMI density, total taxa, total EPT taxa, percent EPT insects, and percent Chironomidae insects. BMI densities and community composition are illustrated in figures and BMI density and taxa richness data comparisons among sites also are presented. The 2021 sample data and the 2016–2021 data summaries are provided in Appendix C.

RESIDENT FISH CONDITION

Age, sex, season, maturation, diet, gut contents, fat reserve, and muscular development affect fish condition. Length and weight data were used to assess fish condition—an index of fish health.

Sample Collection and Analysis

Resident Dolly Varden char FL was recorded to the nearest 1 mm and weight to the nearest 0.1 g. Fulton's condition factor (K) was calculated using the equation given in Anderson and Neumann

ⁿ Gordon Willson-Naranjo and Greg Albrecht, Habitat Biologists, to Jackie Timothy, Southeast Regional Supervisor, ADF&G Division of Habitat. Memorandum: Benthic macroinvertebrate elutriation trials amendment; dated 12/17/2013. Unpublished document can be obtained from the Southeast Regional Supervisor, ADF&G Habitat Section, 802 3rd St, Douglas, AK.

Insects of the orders Ephemeroptera, Plecoptera, Trichoptera, and Diptera to genus, except nonbiting midges to family Chironomidae, and all others to class or order. Damaged and degraded organisms that cannot be identified are not reported.

^p Including adult terrestrial insects of the orders Ephemeroptera, Plecoptera, Trichoptera, and Diptera.

(1996), where the weight (W) of each fish is divided by the cubed length (L), and the product multiplied by 100,000:

$$K = \frac{W}{L^3} \times 100,000$$

Data Presentation

For each site the mean fish condition factor of Dolly Varden char is presented and compared among sites; 2016–2020 data are provided in Appendix D.

Resident Fish Element Concentrations

Element bioavailability and bioaccumulation depends on physical and chemical factors and interactions among biological communities (Tchounwou et al. 2012). Similar to other studies in Alaska (Legere and Timothy 2016), resident Dolly Varden char samples from Lower and Middle Glacier Creek were analyzed for whole body concentrations of silver (Ag), arsenic (As), cadmium (Cd), copper (Cu), mercury (Hg), lead (Pb), selenium (Se), and zinc (Zn) to document baseline concentrations and variability. These elements were selected based on CNI's Glacier Creek water sample data and potential target elements identified in the ore body.

Sample Collection and Analysis

Fish were captured using a Smithroot LR-24 backpack electrofisher and 10 resident Dolly Varden char were retained.^{q,r} The target size range for sample retention was fish measuring 90–130 mm FL, as other Southeast Alaska Dolly Varden char sampling programs require (Timothy and Kanouse 2014, Legere and Timothy 2016, Kane 2021). A 90 mm fish provides the minimum weight requirement for laboratory testing, while a 130 mm fish is 2–3 years old and young enough to reasonably conclude it is resident due to sampling timing and location—about 60 km upriver from Chilkat Inlet. Due to general scarcity of fish at both sample sites, all fish captured were retained as samples regardless of size between 2016 and 2019; the sampling reach extent also was contingent on capture efforts each year. In 2020, we discontinued submitting composite samples of two smaller fish due to dilution needed to process samples at the lab resulting in greater method reporting limits. However, in some years we retained larger fish to obtain a minimum of five samples per site.

Wearing latex gloves, each fish was placed in an individually labeled plastic bag. During transport, samples were stored in a cooler with frozen icepacks and in a freezer while onsite. At the ADF&G Douglas laboratory, FL and weight were measured in the sample bags, correcting for bag weight. Samples were stored in a -20°C freezer in the lab until shipped to a private lab for analyses.

Samples were shipped to ALS Environmental in Kelso, WA in a cooler with frozen icepacks via overnight freight, maintaining written chain of custody documentation. ALS Environmental measured total concentrations of Ag, As, Cd, Cu, Hg, Pb, Se, and Zn in each sample on a dryweight basis, following EPA (2002) method 1631E for Hg, and EPA (1998) method 6020A^s for

^q In 2016 and 2019, baited minnow traps also were used to capture fish in Lower Glacier Creek.

^r In 2017, 2018, and 2020, only six samples were retained from Middle Glacier Creek; in 2021, only five samples were retained due to scarcity of fish.

^s In 2016, 2018, and 2019, the same lab used EPA method 200.8 (EPA 1994).

the other elements. The laboratory provided Tier IV quality control information including results for sample duplicates, matrix spikes, standard reference materials, and blanks.

Data Presentation

For each site and by year, Dolly Varden char whole body element concentrations are presented in a figure; comparisons of element concentrations data among sites also are presented. A table with the raw data, presenting the mean value for duplicate sample results and 2021 laboratory report are in Appendix D.

In 2018, the lab reported greater Ag and As method reporting limits than previous years, largely due to underweight samples (K. Clarkson, Senior Project Manager, ALS Environmental, Kelso, personal communication). Therefore, to avoid misrepresenting sample results below method reporting limits as whole body element concentrations data, element concentrations undetected are illustrated as an empty circle ($^{\circ}$) at the method reporting limit, while measured element concentrations are illustrated as a solid circle ($^{\circ}$).

SEDIMENT ELEMENT CONCENTRATIONS

Sediment element concentrations are influenced by a variety of factors, such as geochemical composition and weathering within the watershed, sediment grain size, organic content, and development (Tchounwou et al. 2012). Subsequently, sediment element concentrations influence aquatic productivity. Fine sediments were sampled at Lower and Middle Glacier Creek for total organic carbon, acid volatile sulfide, and total concentrations of Ag, aluminum (Al), As, Cd, Cu, iron (Fe), Hg, Pb, Se, and Zn to document baseline conditions and variability. These elements were selected based on CNI's Glacier Creek water sample data and potential target elements identified in the ore body.

Sample Collection and Analysis

Wearing latex gloves, five samples were collected from sand/silt bars within actively flowing channels and retained the top 4 cm of sediment in glass jars for element analyses and plastic bags for particle size analyses. Samples were stored in a cooler with frozen icepacks in the field and in a hotel refrigerator while in Haines. On June 23, 2021, CNI staff transported the sediment samples in coolers with ice packs via a courier to ALS Environmental in Whitehorse, BC.

ALS Environmental measured total organic carbon, acid volatile sulfide, and total Ag, Al, As, Cd, Cu, Fe, Hg, Pb, Se, and Zn concentrations on a dry-weight basis using methods listed in Table 3.^{t,} The laboratory provided quality control results for laboratory controls and blanks.

^t The 2016 Glacier Creek sediment samples were processed by an ALS Environmental lab in Kelso, WA. In 2017–2020, CNI sent the sediment samples to a different ALS lab; though methods used by each lab were different, the results are comparable. The parameters analyzed were different between labs; data comparisons between years are presented where applicable.

Test Description	Analyte	Method
Particle size distribution	Particle size determination	ASTM D6913-04/D7928-16
Total organic carbon calculation	Total organic carbon	CSSS (2008) 21.2
Total Carbon by combustion method	Total carbon	CSSS (2008) 21.2 (mod)
Mercury in soil by CVAAS	Hg	EPA 200.2 / 1631 Appendix (mod)
Inorganic carbon as CaCO ₃ equivalent	Inorganic carbon	Calculation
Metals in soil by CRC ICPMS	Ag, Al, As, Cd, Cu, Fe, Pb, Se, and Zn	EPA 6020B (mod)
Sulfide, acid volatile	Acid volatile sulfides	EPA 821/R-91-100 (mod)

Table 3.–2021 sediment tests, analytes, and methods.

Data Presentation

For each site and by year, sediment element concentrations data are presented in a figure; mean values are reported when sample duplicate data are available. Consistent with the whole body Dolly Varden char element concentration data presentations, sediment element concentrations undetected are illustrated as an empty circle ($^{\circ}$) at the method reporting limit and a solid circle ($^{\bullet}$) for measured element concentrations.

The data are compared with the threshold effects concentrations (TEC) and the probable effects concentrations (PEC) for inorganics in freshwater sediment guidelines developed by the National Oceanic and Atmospheric Administration (Buchman 2008). The guidelines are based on results of controlled laboratory bioassays, where element concentrations below the TECs rarely affect aquatic life survival and growth, and element concentrations above the PECs can affect aquatic life survival and growth.

Sediment element concentrations data are compared among sites and presented as a figure. Appendix E contains the 2016–2021 composition and raw element data in a table and the 2021 laboratory report.

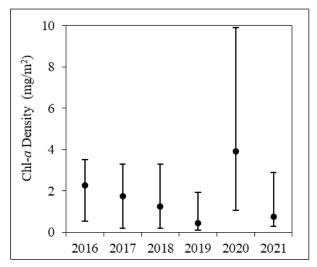
RESULTS

LOWER GLACIER CREEK

а

We sampled Lower Glacier Creek on June 16, 2021, and measured basic water quality at 1245 hours (Table 4).

Table 4	Table 4.–Lower Glacier Creek water quality data.					
Sample	Temperature	Dissolved Oxygen	Conductivity			
Date	(°C)	(mg/L)	(µS/cm)	pН		
06/16/21	5.12	ND ^a	207	8.20		


Measurements were far lower than anticipated, suggesting an error in the unit.

Periphyton: Chlorophyll Density and Composition

The 2021 Lower Glacier Creek mean Chl-a density was 0.77 mg/m², within the range of the 2016– 2020 mean densities (Table 5; Figure 5). The samples contained about 75% Chl-a, 23% Chl-c, and about 2% Chl-b (Figure 6); the greatest proportion of Chl-c observed. Chl-a, Chl-b, and Chl-c were not detected in 4 samples.

and c densities.					
	Chl-a	Chl-b	Chl-c		
Sample Date	(mg/m^2)	(mg/m^2)	(mg/m^2)		
06/07/16	2.27	0.00	0.35		
06/08/17	1.73	0.00	0.26		
05/30/18	1.25	0.02	0.24		
06/06/19	0.43	0.01	0.04		
06/03/20	3.91	0.00	0.47		

Table 5 Lower Classer Creek mean chlorophylls a h

06/16/21

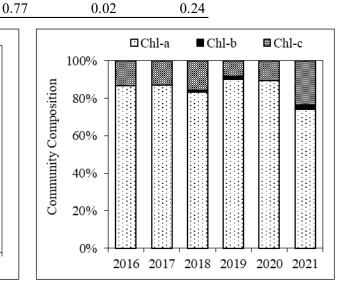
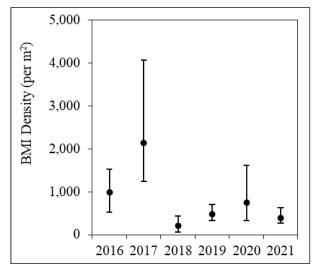


Figure 5.-Lower Glacier Creek chlorophyll a densities.

Note: Minimum, mean, and maximum values shown.


Figure 6.-Lower Glacier Creek mean proportions of chlorophylls a, b, and c.

Benthic Macroinvertebrate Density and Community Composition

Among the 2021 Lower Glacier Creek BMI samples, we identified 26 taxa and estimated mean density at 396 BMI/m², of which 27% were EPT insects (Table 6; Figures 7, 8). The dominant taxon was Diptera: Chironomidae, representing 58% of the samples, as in previous years.

	06/07/16	06/08/17	05/30/18	06/06/19	06/03/20	06/16/21
Mean BMI density (per m ²)	995	2,136	217	473	754	396
Total BMI taxa	17	30	16	12	25	26
Number of EPT taxa	9	13	10	5	12	12
Proportion of EPT insects	10%	17%	69%	30%	19%	27%
Proportion of Chironomidae insects	85%	78%	26%	67%	74%	58%

Table 6.-Lower Glacier Creek benthic macroinvertebrate data summaries.

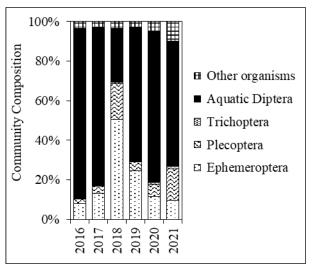


Figure 7.–Lower Glacier Creek benthic macroinvertebrate densities.

Figure 8.–Lower Glacier Creek mean benthic macroinvertebrate community compositions.

Note: Minimum, mean, and maximum values shown.

Resident Fish Condition and Element Concentrations

Of the 10 individual whole body Dolly Varden char (100–149 mm) samples we retained from Lower Glacier Creek in 2021, mean fish condition was 1.1, similar to previous years. We captured one adult cutthroat trout (260 mm FL) while sampling—the first adult trout captured during aquatic biomonitoring. Among the Lower Glacier Creek whole body Dolly Varden char samples in 2021 all element concentrations were within the ranges of values previously observed (Figure 9).

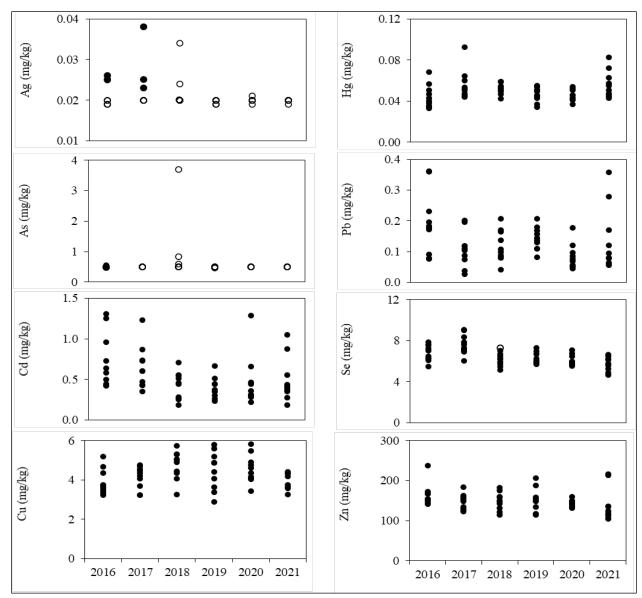


Figure 9.–Lower Glacier Creek whole body Dolly Varden char element concentrations. *Note:* Element concentrations undetected (o) are presented at the method reporting limit.

Sediment Composition and Element Concentrations

The 2021 Lower Glacier Creek sediment samples included particle sizes less than 9.5 mm. Total organic carbon concentrations were less than 0.440%, and acid volatile sulfide was not detected. The predominant elements were Fe and Al, and the 2021 element concentrations generally were similar to the 2016–2020 results.

We evaluated the 2021 sediment sample element concentration data against the guidelines for freshwater sediments published in Buchman (2008) and—similar to the 2016–2020 results—we found Cd, Cu, and Zn concentrations near or above the TEC values, and As, Hg, and Pb concentrations below the TEC values (Figure 10).

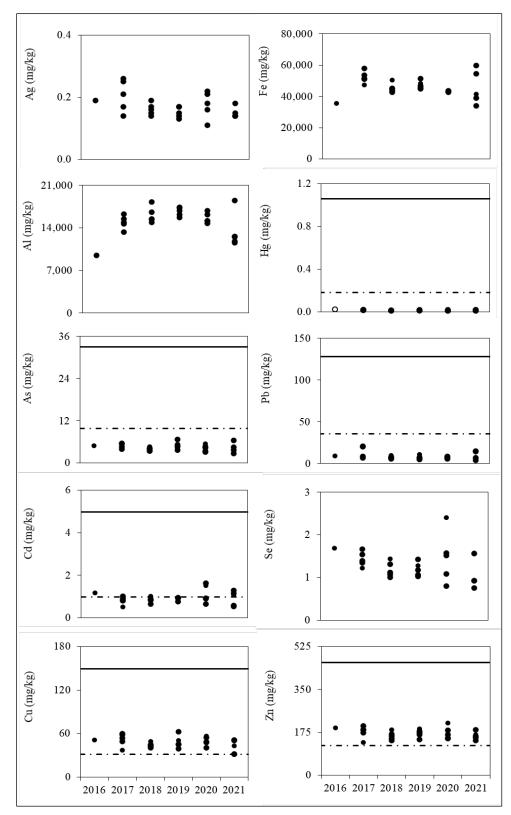


Figure 10.-Lower Glacier Creek sediment element concentrations.

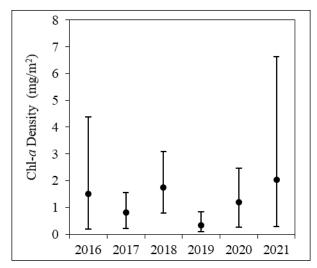
Note: Element concentrations undetected (o) are presented at the method reporting limit. The dashed line represents the TEC and the solid line represents the PEC for freshwater sediments (Buchman 2008); guidelines are not published for Ag, Al, Fe, or Se.

MIDDLE GLACIER CREEK

We sampled Middle Glacier Creek on June 15, 2021, and measured basic water quality at 1200 hours (Table 7).

Sample	Temperature	Dissolved Oxygen	Conductivity	
Date	(°C)	(mg/L)	(µS/cm)	pН
06/15/21	2.59	ND ^a	197	7.98

Table 7.-Middle Glacier Creek water quality data.


^a Measurements were far lower than anticipated, suggesting an error in the unit.

Periphyton: Chlorophyll Density and Composition

The 2021 Middle Glacier Creek mean Chl-*a* density was 2.03 mg/m², greater than the 2016–2020 sample means (Table 8; Figure 11). As in previous years, the samples contained about 85% Chl-*a* and 15% Chl-*c*; 1 sample contained a low concentration of Chl-*b* (Figure 12). Chl-*a*, Chl-*b*, and Chl-*c* were not detected in 1 sample.

Table 8.–Middle Glacier Creek mean chlorophylls *a*, *b*, and *c* densities.

	Chl-a	Chl-b	Chl-c	
Sample Date	(mg/m^2)	(mg/m^2)	(mg/m^2)	
06/08/16	1.50	0.00	0.25	
06/09/17	0.81	0.00	0.10	
05/31/18	1.76	0.00	0.29	
06/07/19	0.33	0.01	0.04	
06/02/20	1.19	0.01	0.16	
06/15/21	2.03	0.00	0.25	

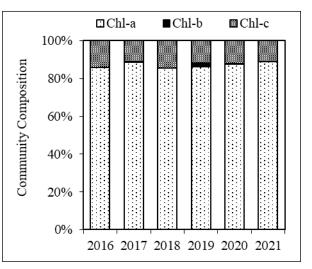
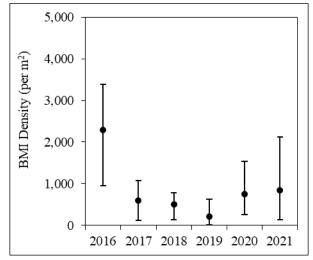
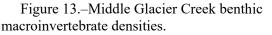


Figure 11.–Middle Glacier Creek chlorophyll *a* densities.

Note: Minimum, mean, and maximum values shown.


Figure 12.–Middle Glacier Creek mean proportions of chlorophylls *a*, *b*, and *c*.


Benthic Macroinvertebrate Density and Community Composition

Among the 2021 Middle Glacier Creek BMI samples, we identified 27 taxa and estimate mean density at 842 BMI/m², of which 33% were EPT insects (Table 9; Figures 13, 14). The dominant taxon was Diptera: Chironomidae, representing 57% of the samples, as in previous years.

	06/08/16	06/09/17	05/31/18	06/07/19	06/02/20	06/15/21		
Mean BMI density (per m ²)	2,299	593	504	215	754	842		
Total BMI taxa	22	14	12	11	25	27		
Number of EPT taxa	12	6	5	8	13	11		
Proportion of EPT insects	13%	12%	9%	28%	24%	33%		
Proportion of Chironomidae insects	85%	82%	87%	68%	69%	57%		

Note: Minimum, mean, and maximum values shown.



Figure 14.–Middle Glacier Creek mean benthic macroinvertebrate community compositions.

Resident Fish Condition and Element Concentrations

Of the 5 individual whole body Dolly Varden char (135–163 mm) samples we retained from Middle Glacier Creek in 2021, mean fish condition was 1.3. We did not capture other fish species while sampling. The 2021 whole body Dolly Varden char element concentrations generally were similar to concentrations observed in 2016–2020.

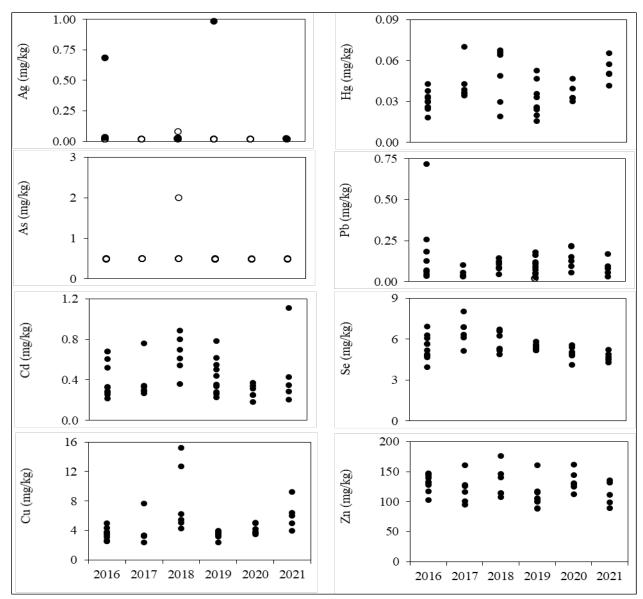


Figure 15.–Middle Glacier Creek whole body Dolly Varden char element concentrations. *Note:* Element concentrations undetected (o) are presented at the method reporting limit.

Sediment Composition and Element Concentrations

The 2021 Middle Glacier Creek sediment samples included particle sizes less than 9.5 mm. Total organic carbon concentrations were less than 0.320%, and acid volatile sulfide was not detected. The predominant elements were Fe and Al, and the 2021 element concentrations generally were similar to the 2016–2020 results.

We evaluated the 2021 sediment sample element concentration data against the guidelines for freshwater sediments published in Buchman (2008) and—similar to the 2016–2020 results—we found Cd, Cu, and Zn concentrations near or above the TEC values, and As, Hg, and Pb concentrations below the TEC values (Figure 16).

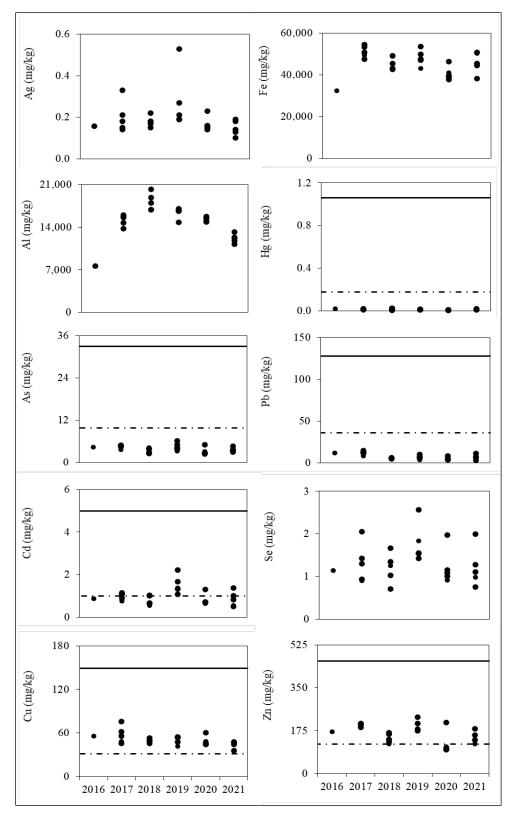


Figure 16.–Middle Glacier Creek sediment element concentrations.

Note: Element concentrations undetected (o) are presented at the method reporting limit. The dashed line represents the TEC and the solid line represents the PEC for freshwater sediments (Buchman 2008); guidelines are not published for Ag, Al, Fe, or Se.

COMPARISON AMONG SITES

Periphyton: Chlorophyll Density and Composition

In 2021, the Middle Glacier Creek mean Chl-*a* density was greater than the Lower Glacier Creek mean density, and greater than previously observed at the site (Figure 17). The 2021 Lower Glacier Creek mean Chl-*a* density was within the range observed at the site 2016–2020, similar to the 2019 mean which was the lowest observed. The 2021 Lower Glacier Creek periphyton samples contained a greater proportion, (23%), of Chl-*c* than previously observed; Middle Glacier Creek periphyton samples contained about 85% Chl-*a* and 15% Chl-*c*, similar to previous years.

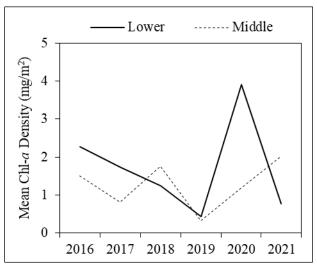


Figure 17.–Glacier Creek chlorophyll a densities.

Benthic Macroinvertebrate Density and Community Composition

In 2021, we documented BMI density and taxa richness at Lower Glacier Creek within the range 2016–2020 (Figures 18, 19). At Middle Glacier Creek, the 2021 mean BMI density was within the 2016–2020 range, however taxa richness was the greatest observed. Diptera: Chironomidae insects were the dominant taxon at both sites in 2021, as in most previous years.

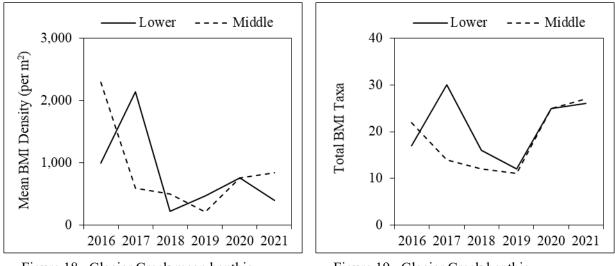


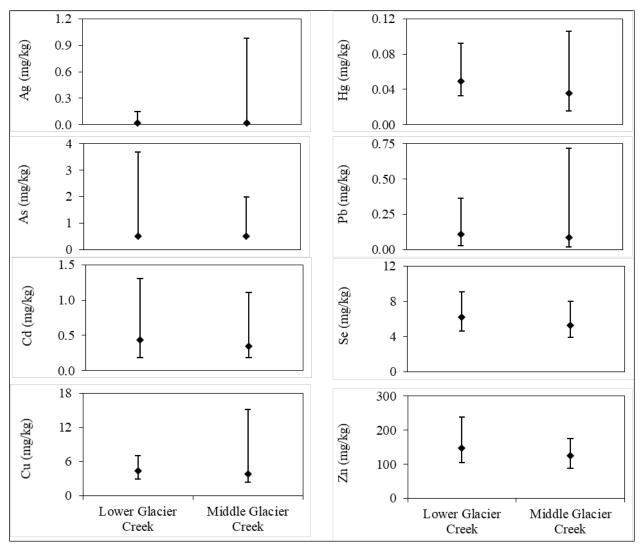
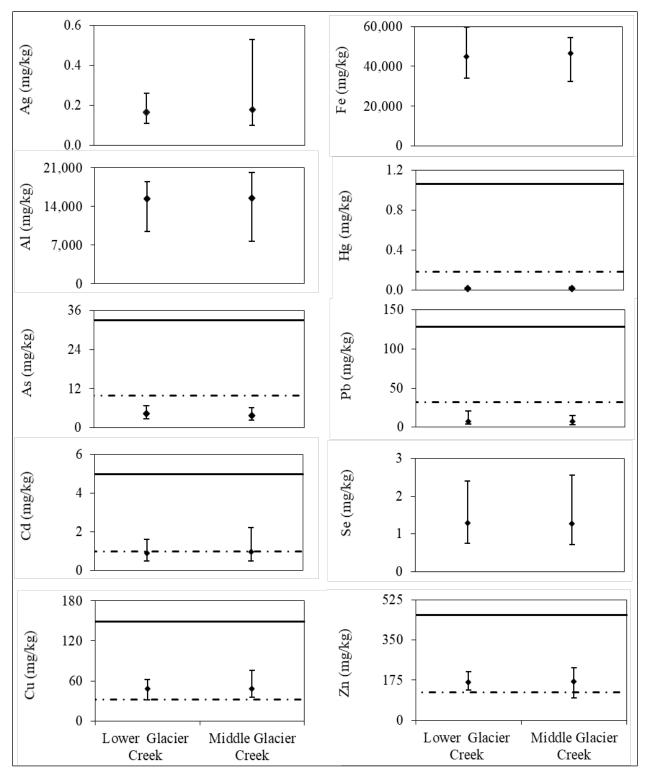
Figure 18.–Glacier Creek mean benthic macroinvertebrate densities.

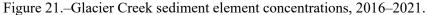
Figure 19.–Glacier Creek benthic macroinvertebrate taxa richness.

Resident Fish Condition and Element Concentrations

Mean fish condition among the 2021 Lower and Middle Glacier Creek Dolly Varden char samples was 1.1 and 1.3 at each site, similar to the 2016–2020 results and other Dolly Varden char condition data collected in Southeast Alaska (Kane 2021).

When we combined the 2016–2021 Dolly Varden char element concentration data by site, median element concentrations were greater among the Lower Glacier Creek samples, except median Ag and As concentrations were similar as those elements are often not detected (Figure 20). All concentrations were within the ranges observed in whole body Dolly Varden char samples collected from reference and exploration sites elsewhere in Alaska (Legere and Timothy 2016).


Figure 20.–Glacier Creek whole body Dolly Varden char element concentrations, 2016–2021. *Note*: Median (♦), minimum, and maximum concentrations presented; element concentrations not detected are included at the method reporting limit.

Sediment Composition and Element Concentrations

The 2016–2021 Lower and Middle Glacier Creek sediment samples were largely composed of sand and silt; total organic carbon was less than 0.5% and acid volatile sulfide was detected in one sample. When we combined the 2016–2021 sediment element concentration data by site, median element concentrations were generally similar among sites (Figure 21).

We evaluated the element concentration data against the guidelines for freshwater sediments published in Buchman (2008), and similar to the 2016–2020 results found Cd, Cu, and Zn concentrations near or above the TEC values, and As, Hg, and Pb concentrations below the TEC values at both sites (Figure 21). Guidelines are not published for Ag, Al, Fe, or Se.

Note: Median (\blacklozenge), minimum, and maximum concentrations presented; element concentrations not detected are included at the at the method reporting limit.

Note: The dashed line represents the TEC and the solid line represents the PEC for freshwater sediments (Buchman 2008); guidelines are not published for Ag, Al, Fe, or Se.

REFERENCES CITED

- Anderson, R. O. and R. M. Neumann. 1996. Length, weight, and associated structural indices. [*In*] B. R. Murphy and D. W. Willis, editors. Fisheries Techniques. 2nd edition. American Fisheries Society, Bethesda, MD.
- APHA (American Public Health Association). 2012. Standard Methods for the examination of water and wastewater. Section 1020.H.2. 22nd Edition. American Public Health Association, Washington DC.
- ASTM. (American Society for Testing and Materials). 2004. Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis (D6913-04). ASTM International. West Conshohocken, PA.
- ASTM. 2016. Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis (D7928-16). ASTM International. West Conshohocken, PA.
- Barbour, M. T., J. Gerritsen, B. D. Snyder, and J. B. Stribling. 1999. Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish, 2nd edition. EPA 841-B-99-002. U. S. Environmental Protection Agency, Office of Water, Washington, D.C.
- Buchman, M. F. 2008. NOAA screening quick reference tables, National Oceanic and Atmospheric Administration, Office of Response and Restoration Division, Report 08-1, Seattle, WA.
- CNI. 2015. Palmer Exploration Project plan of operations. Prepared for the Bureau of Land Management, Alaska Department of Environmental Conservation, and Alaska Department of Natural Resources, Vancouver, BC.
- DOI (U.S. Department of the Interior). 2016. Environmental Assessment for the Palmer Exploration Project. Case File AA-094088, U.S. Department of the Interior, Bureau of Land Management, Glennallen Field Office, Glennallen, AK.
- Entrekin, S. A., J. B. Wallace, and S. L. Eggert. 2007. The response of Chironomidae (Diptera) to a long-term exclusion of terrestrial organic matter. Hydrobiologia 575(1):401-413.
- EPA. 1991. Draft analytical method for determination of acid volatile sulfide and selected simultaneously extractable metals in sediment. (EPA-821-R-91-100). U.S. Environmental Protection Agency, Washington, D.C.
- EPA. 1994. Method 200.8, Revision 5.4: Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma – Mass Spectrometry. U.S. Environmental Protection Agency, Environmental Monitoring Systems Laboratory, Office of Research and Development, Cincinnati, OH.
- EPA. 1997. Method 446.0: In vitro determination of chlorophylls a, b, c₁ + c₂ and pheopigments in marine and freshwater algae by visible spectrophotometry (Revision 1.2). Adapted by Elizabeth J. Arar, U. S. Environmental Protection Agency, National Exposure Research Laboratory, Office of Research of Development, Cincinnati, OH.
- EPA. 2002. Method 1631 Revision E: Mercury in Water by Oxidation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectrometry. U. S. Environmental Protection Agency, Office of Water, Washington, D.C.
- EPA. 2014. Method 6020B (SW-846) Revision 2: Inductively Coupled Plasma-Mass Spectrometry. U.S. Environmental Protection Agency, Washington, D.C.
- Giefer, J., and B. Blossom. 2021. Catalog of waters important for spawning, rearing, or migration of anadromous fishes – Southeastern Region, effective June 1, 2021, Alaska Department of Fish and Game, Special Publication No. 21-04, Anchorage.
- Kane, W. J. 2021. Aquatic studies at Kensington Gold Mine, 2020. Alaska Department of Fish and Game, Technical Report No. 21-03, Douglas, AK.
- Kane, W. J. 2021. Aquatic biomonitoring at Greens Creek Mine, 2020. Alaska Department of Fish and Game, Technical Report No. 21-06, Douglas, AK.
- Kanouse, K. M., and N. M. Legere. 2016. Glacier Creek aquatic studies, 2016. Alaska Department of Fish and Game, Technical Report No. 16-10, Douglas, AK.
- Krull, D. 2019. Glacier Creek aquatic studies, 2019. Alaska Department of Fish and Game, Technical Report No. 19-12, Douglas, AK.

REFERENCES CITED, CONTINUED

- Krull, D. 2020. Glacier Creek aquatic studies, 2020. Alaska Department of Fish and Game, Technical Report No. 20-07, Douglas, AK.
- Legere, N. M. and K. M. Kanouse. 2017. Glacier Creek aquatic studies, 2017. Alaska Department of Fish and Game, Technical Report No. 17-11, Douglas, AK.
- Legere, N. M. and K. M. Kanouse. 2018. Glacier Creek aquatic studies, 2018. Alaska Department of Fish and Game, Technical Report No. 18-09, Douglas, AK.
- Legere, N. M. and J. Timothy. 2016. Tulsequah Chief acid mine drainage and Dolly Varden char metals concentrations. Alaska Department of Fish and Game, Technical Report No. 16-06, Douglas, AK.
- Merritt, R. W. and K. W. Cummins, editors. 1996. An introduction to the aquatic insects of North America. 3rd edition. Kendall/Hunt Publishing Co., Dubuque, IA.
- Paustian, S. 2010. Channel type user guide revision 2010. U.S. Department of Agriculture, Forest Service, R-10-TP-26.
- Stewart, K. W. and M. W. Oswood. 2006. The stoneflies (Plecoptera) of Alaska and Western Canada. The Caddis Press, Columbus, OH.
- Tetra Tech. 2013. Palmer VMS Project preliminary aquatic investigation. Prepared for Constantine North, Inc., Anchorage, AK.
- Timothy, J. and K. M. Kanouse. 2014. Aquatic studies at Kensington Gold Mine, 2013. Alaska Department of Fish and Game, Technical Report No. 14-01, Douglas, AK.
- Tchounwou, P. B., C. G. Yedjou, A. K. Patlolla, D. J. Sutton. 2012. Heavy metal toxicity and the environment. Pages 133-164 [*In*] Experimentia Supplementum: Molecular, Clinical and Environmental Toxicology: Volume 3: Environmental Toxicology. Springer Basel.

APPENDIX A: WATER QUALITY DATA

Sample	Temperature	Dissolved Oxygen	Conductivity	Turbidity	
Date	(°C)	(mg/L)	(µS/cm)	(NTU)	pH
06/07/16	3.3	12.6	115	126	6 ^a
06/08/17	6.5	13.6	129	306	8.32
05/30/18	5.8	10.8	161	17	8.15 ^b
06/06/19	6.6	12.4	133.6	11	6.76 ^c
06/03/20	5.74	12.02	233	17	7.85
06/16/21	5.12	ND	207	ND	8.20

Appendix A.1.–Lower Glacier Creek water quality data, 2016–2021.

We used a colorpHast pH indicator strip with 0.5 unit sensitivity.
 Taken by Allegra Cairns on 6/2/2018.
 Taken by Allegra Cairns on 6/8/2019.

Appendix A.2.-Middle Glacier Creek water quality data, 2016-2021.

Sample	Temperature	Dissolved Oxygen	Conductivity	Turbidity	
Date	(°C)	(mg/L)	(µS/cm)	(NTU)	pН
06/08/16	3.1	14.1	129	57	6 ^a
06/09/17	3.1	16.7	113	> 1000	8.38
05/31/18	4.1	11.3	182	16	ND
06/07/19	4.0	18.0	126	94	ND
06/02/20	3.44	13.3	246	23	8.14
06/15/21	2.59	ND	197	ND	7.98

^a We used a colorpHast pH indicator strip with 0.5 unit sensitivity.

APPENDIX B: CHLOROPHYLL DATA

	(06/07/16			06/08/17			(05/30/18	
mg/m ²	Chl-a	Chl-b	Chl-c	Chl-	a Chl-b	Chl-c		Chl-a	Chl-b	Chl-c
	3.35	0.00	0.47	1.5	0 0.00	0.17	_	0.21	0.00	0.08
	3.31	0.00	0.51	1.2	8 0.00	0.25		1.23	0.00	0.20
	2.56	0.00	0.45	2.8	9 0.00	0.30		3.31	0.00	0.51
	1.28	0.00	0.29	1.8	2 0.00	0.20		0.53	0.00	0.08
	3.10	0.00	0.38	1.9	2 0.00	0.25		0.53	0.00	0.07
	1.97	0.00	0.29	3.3	1 0.00	0.46		0.96	0.00	0.22
	0.53	0.00	0.11	1.9	2 0.00	0.24		3.10	0.00	0.53
	2.03	0.00	0.30	0.1	9 ND	ND		1.28	0.00	0.24
	3.52	0.00	0.63	1.3	9 0.00	0.21		0.43	0.15	0.27
	1.01	0.00	0.09	1.0	9 0.00	0.22		0.96	0.00	0.15
Mean	2.27	0.00	0.35	1.7	3 0.00	0.26	_	1.25	0.02	0.24
Minimum	0.53	0.00	0.09	0.1	9 0.00	0.17		0.21	0.00	0.07
Maximum	3.52	0.00	0.63	3.3	1 0.00	0.46		3.31	0.15	0.53

Appendix B.1.–Lower Glacier Creek chlorophylls *a*, *b*, and *c* densities, 2016–2021.

Note: Bold value is the spectrophotometer estimated detection limit, chlorophyll a not detected.

Appendix B.1.–Continued.

11									
	(06/06/19			06/03/20			06/16/21	
mg/m ²	Chl-a	Chl-b	Chl-c	Chl-a	Chl-b	Chl-c	Chl-a	Chl-b	Chl-c
	0.43	0.00	0.03	5.23	0.00	0.58	0.29	ND	ND
	0.10	ND	ND	6.19	0.00	0.86	0.63	0.06	0.24
	0.53	0.00	0.00	3.66	0.00	0.52	0.36	0.05	0.15
	0.14	0.00	0.00	2.20	0.00	0.23	0.29	ND	ND
	0.22	0.05	0.00	1.06	0.00	0.09	2.89	0.00	0.50
	0.10	ND	ND	1.34	0.00	0.11	1.39	0.00	0.32
	0.11	0.01	0.05	1.06	0.00	0.09	0.29	ND	ND
	1.92	0.00	0.18	9.90	0.00	1.10	0.32	0.02	0.14
	0.64	0.00	0.01	1.65	0.00	0.20	0.92	0.00	0.11
	0.10	ND	ND	6.84	0.00	0.89	0.29	ND	ND
Mean	0.43	0.01	0.04	3.91	0.00	0.47	0.77	0.02	0.24
Minimum	0.10	0.00	0.00	1.06	0.00	0.09	0.29	0.00	0.11
Maximum	1.92	0.05	0.18	9.90	0.00	1.10	2.89	0.06	0.50
1.100.10104111		0.00	0.10	,,,,,	0.00	1110	2.07	5.00	0.0

Note: Bold value is the spectrophotometer estimated detection limit, chlorophyll a not detected.

	(06/08/16		(06/09/17			05/31/18	
mg/m ²	Chl-a	Chl-b	Chl-c	Chl-a	Chl-b	Chl-c	Chl-a	Chl-b	Chl-c
	1.82	0.00	0.30	0.96	0.00	0.15	1.50	0.00	0.20
	4.38	0.00	0.75	0.75	0.00	0.15	1.92	0.00	0.27
	0.96	0.00	0.10	1.38	0.00	0.08	2.24	0.00	0.41
	1.60	0.00	0.26	1.56	0.00	0.22	2.78	0.00	0.44
	0.19	ND	ND	0.43	0.00	0.00	3.10	0.00	0.51
	1.17	0.00	0.13	0.75	0.00	0.05	0.96	0.00	0.14
	0.96	0.00	0.15	0.50	0.00	0.03	0.78	0.00	0.16
	1.82	0.00	0.27	1.17	0.00	0.23	1.60	0.00	0.25
	0.28	0.00	0.00	0.21	0.02	0.10	1.82	0.00	0.35
	1.82	0.00	0.27	0.43	0.00	0.02	0.85	0.00	0.20
Mean	1.50	0.00	0.25	0.81	0.00	0.10	1.76	0.00	0.29
Minimum	0.19	0.00	0.00	0.21	0.00	0.00	0.78	0.00	0.14
Maximum	4.38	0.00	0.75	1.56	0.02	0.23	3.10	0.00	0.51

Appendix B.2.–Middle Glacier Creek chlorophylls *a*, *b*, and *c* densities, 2016–2021.

Note: Bold value is the spectrophotometer estimated detection limit, chlorophyll a not detected.

ppendix B.2.–Continued.

	(06/07/19			06/02/20			06/15/21	
mg/m ²	Chl-a	Chl-b	Chl-c	Chl-a	Chl-b	Chl-c	Chl-a	Chl-b	Chl-c
	0.83	0.00	0.05	0.25	ND	ND	6.19	0.00	0.70
	0.18	0.00	0.04	2.43	0.00	0.33	0.64	0.00	0.10
	0.55	0.00	0.02	1.70	0.00	0.17	1.11	0.00	0.08
	0.10	ND	ND	0.28	0.00	0.03	0.85	0.00	0.01
	0.21	0.00	0.02	0.73	0.00	0.07	1.19	0.00	0.13
	0.14	0.01	0.05	0.55	0.00	0.02	2.34	0.00	0.28
	0.18	0.06	0.11	0.96	0.00	0.10	0.64	0.03	0.13
	0.21	0.00	0.00	0.50	0.06	0.20	0.43	0.00	0.00
	0.53	0.00	0.02	2.48	0.00	0.32	0.29	ND	ND
	0.32	0.00	0.09	2.06	0.00	0.25	6.62	0.00	0.84
Mean	0.33	0.01	0.04	1.19	0.01	0.16	2.03	0.00	0.25
Minimum	0.10	0.00	0.00	0.25	0.00	0.02	0.29	0.00	0.00
Maximum	0.83	0.06	0.11	2.48	0.06	0.33	6.62	0.03	0.84

Note: Bold value is the spectrophotometer estimated detection limit, chlorophyll a not detected.

APPENDIX C: BENTHIC MACROINVERTEBRATE DATA

					(Sample	Number	•		
Class or Subclass	Order	Family	Genus	1	2	3	4	5	6	Total
Insecta	Ephemeroptera	Baetidae	Baetis	1	6	1	2	6	2	18
		Heptageniidae	Cinygmula	0	1	0	0	0	0	1
			Epeorus	1	0	0	0	0	0	1
			Rhithrogena	0	0	0	1	0	0	1
	Plecoptera	Chloroperlidae	Kathroperla	0	0	0	0	3	0	3
			Suwallia	0	3	4	11	3	3	24
		Nemouridae	Podmosta	0	1	0	0	0	2	3
			Zapada	2	0	0	0	1	1	4
		Perlodidae	Isoperla	0	0	0	0	0	1	1
	Trichoptera	Rhyacophilidae	Rhyacophila	0	0	0	0	1	0	1
		Limnephilidae	Limnophila	0	0	0	1	0	0	1
			Onocosmoecus	0	0	0	0	1	0	1
	Diptera	Chironomidae	unidentified	21	15	23	22	34	14	129
		Dixidae	Dixa	0	0	0	0	0	1	1
		Empididae	unidentified	0	0	0	1	0	0	1
		Simuliidae	Prosimulium	0	0	0	1	1	0	2
		Tipulidae	Limonia	1	1	0	0	0	0	2
			Rhabdomastix	0	0	0	1	0	0	1
			Tipula	0	0	0	0	3	0	3
			unidentified	0	0	0	1	0	0	1
	Hemiptera	unidentified	unidentified	0	0	0	0	1	0	1
Arachnida	unidentified	unidentified	unidentified	0	0	0	2	0	0	2
Entognatha	Collembola	unidentified	unidentified	1	0	0	1	3	0	5
Nematoda	unidentified	unidentified	unidentified	1	0	0	0	0	0	1
Oligochaeta	unidentified	unidentified	unidentified	2	2	0	5	0	1	10
Ostracoda	unidentified	unidentified	unidentified	0	0	0	2	1	0	3
			Total	30	29	28	51	58	25	221

Appendix C.1.-Lower Glacier Creek benthic macroinvertebrate sample data, 2021.

	06/07/16	06/08/17	05/30/18	06/06/19	06/03/20	06/16/21
Total BMI taxa	17	30	16	12	25	26
Number of EPT taxa	9	13	10	5	12	12
Total counts						
Ephemeroptera	44	158	61	65	49	21
Plecoptera	13	41	22	12	26	35
Trichoptera	1	3	1	1	4	3
Aquatic Diptera	478	955	33	178	322	140
Other organisms	19	35	4	8	20	22
% Ephemeroptera	8%	13%	50%	25%	11.6%	9.5%
% Plecoptera	2%	3%	18%	5%	6.2%	15.8%
% Trichoptera	0.2%	0.3%	0.8%	0.4%	1.0%	1.4%
% Aquatic Diptera	86%	80%	27%	67%	76.5%	63.3%
% Other organisms	3%	3%	3%	3%	4.8%	10.0%
% EPT	10%	17%	69%	30%	19%	27%
% Chironomidae	85%	78%	26%	67%	74%	58%
Total aquatic invertebrates	555	1,192	121	264	421	221
Total terrestrial invertebrates	17	18	13	17	4	29
Total invertebrates	572	1,210	134	281	425	250
% Sample aquatic	97.0%	98.5%	90.3%	94.0%	99.1%	88.4%
% Sample terrestrial	3.0%	1.5%	0.0%	6.0%	0.9%	11.6%
Total sample area (m ²)	0.558	0.558	0.558	0.558	0.558	0.558
Mean BMI density (per m^2)	995	2,136	217	473	754	396
±1 SD	373	1,015	151	148	463	150

Appendix C.2.-Lower Glacier Creek benthic macroinvertebrate data summaries, 2016-2021.

					1	Sample	Number			
Class or Subclass	Order	Family	Genus	1	2	3	4	5	6	Total
Insecta	Ephemeroptera	Baetidae	Baetis	1	0	3	24	5	36	69
		Heptageniidae	Cinygmula	0	0	0	1	0	1	2
			Epeorus	0	0	0	1	0	3	4
			Rhithrogena	0	0	0	0	0	1	1
	Plecoptera	Chloroperlidae	Kathroperla	0	0	0	0	0	1	1
			Suwallia	0	0	1	15	0	27	43
		Nemouridae	Podmosta	2	0	2	0	1	12	17
			Zapada	1	0	0	3	0	4	8
		Perlodidae	Isoperla	0	0	0	0	1	0	1
	Trichoptera	Limnephilidae	Apatania	0	0	0	1	0	0	1
		Rhyacophilidae	Rhyacophila	0	0	0	1	2	3	6
		unidentified	unidentified	0	0	0	0	1	0	1
	Diptera	Ceratopogonidae	Probezzia	0	0	0	0	0	1	1
		Chironomidae	unidentified	27	12	32	71	29	95	266
		Empididae	Clinocera	0	0	0	0	0	1	1
			Oreogeton	0	1	0	0	0	0	1
			unidentified	0	0	0	0	0	1	1
		Limoniidae	Gonomyodes	0	0	1	0	1	0	2
		Simuliidae	Prosimulium	0	0	0	0	0	3	3
		Tipulidae	Limonia	0	0	0	0	0	1	1
			Molophilus	1	0	0	0	0	0	1
			Tipula	0	0	0	4	0	1	5
	Coleoptera	Carabidae	unidentified	1	0	0	0	0	0	1
Entognatha	Collembola	unidentified	unidentified	0	0	3	0	1	0	4
Gastropoda	unidentified	unidentified	unidentified	1	0	0	0	0	0	1
Nematoda	unidentified	unidentified	unidentified	1	0	1	0	0	0	2
Oligochaeta	unidentified	unidentified	unidentified	7	0	6	2	2	6	23
Ostracoda	unidentified	unidentified	unidentified	0	0	1	0	1	1	3
			Total	42	13	50	123	44	198	470

Appendix C.3.-Middle Glacier Creek benthic macroinvertebrate sample data, 2021.

	06/08/16	06/09/17	05/31/18	06/07/19	06/02/20	06/15/21
Total BMI taxa	22	14	12	11	25	27
Number of EPT taxa	12	6	5	8	13	11
Total counts						
Ephemeroptera	119	25	18	22	43	76
Plecoptera	45	14	7	10	52	70
Trichoptera	4	1	0	2	6	8
Aquatic Diptera	1,107	276	254	85	306	282
Other organisms	8	15	2	1	14	34
% Ephemeroptera	9%	8%	6%	18%	10%	16%
% Plecoptera	4%	4%	2%	8%	12%	15%
% Trichoptera	0.3%	0.3%	0.0%	1.7%	1.4%	1.7%
% Aquatic Diptera	86%	83%	90%	71%	73%	60%
% Other organisms	1%	5%	0.7%	0.8%	3.3%	7.2%
% EPT	13%	12%	9%	28%	24%	33%
% Chironomidae	85%	82%	87%	68%	69%	57%
Total aquatic invertebrates	1,283	331	281	120	421	470
Total terrestrial invertebrates	19	7	1	4	7	13
Total invertebrates	1,302	338	282	124	428	483
% Sample aquatic	98.5%	97.9%	99.6%	96.8%	98.4%	97.3%
% Sample terrestrial	1.5%	2.1%	0.4%	3.2%	1.6%	2.7%
Total sample area (m ²)	0.558	0.558	0.558	0.558	0.558	0.558
Mean BMI density (per m^2)	2,299	593	504	215	754	842
±1 SD	976	392	249	249	484	743

|--|

APPENDIX D: RESIDENT FISH DATA AND LABORATORY REPORT

Sample	Length	0	Condition	Ag	As	Cd	Cu	Hg	Pb	Se	Zn
Date	(mm)	(g)	(K)		(mg/kg)						
06/07/16	108	12.7		< 0.019	<0.48	0.429	3.55	0.0466	0.076	7.23	153
06/07/16	68	4.8	1.5	< 0.020	< 0.50	0.501	3.75	0.0330	0.182	7.60	173
06/07/16	112	17.7	1.3	0.025	<0.48	1.310	3.63	0.0567	0.230	5.48	145
06/07/16	105	15.9	1.4	< 0.019	<0.48	0.585	3.23	0.0509	0.078	7.56	150
06/07/16	113	14.3	1.0	< 0.020	0.50	0.420	3.42	0.0427	0.177	6.21	154
06/07/16	94	10.8	1.3	< 0.019	0.52	0.441	4.35	0.0381	0.195	7.83	167
06/07/16	109	14.6	1.1	0.026	< 0.50	1.250	5.20	0.0683	0.362	6.46	238
06/07/16	97	11.2	1.2	< 0.019	<0.49	0.641	3.71	0.0401	0.172	6.11	154
06/08/16	93	9.5	1.2	< 0.020	<0.49	0.960	3.32	0.0349	0.091	7.04	141
06/08/16	73	4.7	1.2	0.025	0.54	0.730	4.67	0.0353	0.360	6.31	168
06/08/17	133	29.1	1.2	0.023	< 0.50	0.727	4.47	0.0599	0.109	6.00	184
06/08/17	113	15.7	1.1	< 0.020	< 0.50	0.426	3.69	0.0505	0.027	7.01	148
06/08/17	105	12.6	1.1	< 0.020	< 0.50	0.601	3.23	0.0523	0.038	7.16	134
06/08/17	90	9.2	1.3	0.038	< 0.50	1.230	3.24	0.0473	0.088	8.33	123
06/08/17	106	12.8	1.1	< 0.020	< 0.50	0.606	4.06	0.0532	0.104	9.09	153
06/08/17	175	60.5	1.1	< 0.020	< 0.50	0.355	4.71	0.0924	0.119	6.90	162
06/08/17	75	5.7	1.4	< 0.020	< 0.50	0.429	4.77	0.0438	0.202	7.86	157
06/08/17	110	17.3	1.3	0.025	< 0.50	0.736	4.35	0.0446	0.074	9.03	126
06/08/17	59, 118 ^a	20.2	ND	< 0.020	< 0.50	0.472	4.20	0.0456	0.119	7.30	160
06/08/17	102, 70 ^a	15.6	ND	< 0.020	< 0.50	0.865	4.55	0.0642	0.196	7.62	130
05/30/18	112	12.3	0.9	< 0.020	< 0.50	0.183	3.26	0.0511	0.042	5.14	114
05/30/18	66, 65 ^a	4.7	ND	< 0.034	< 0.84	0.458	5.30	0.0467	0.098	5.90	142
05/30/18	109	15.1	1.2	< 0.020	< 0.50	0.257	4.34	0.0592	0.080	6.70	121
05/30/18	103	11.6	1.1	< 0.020	< 0.50	0.272	4.05	0.0426	0.108	7.04	132
05/30/18	78, 65 ^a	7.0	ND	< 0.020	< 0.50	0.545	5.03	0.0589	0.136	6.19	182
05/30/18	97	7.8	0.9	< 0.020	< 0.50	0.558	5.04	0.0529	0.165	6.25	160
05/30/18	61, 63 ^a	4.1	ND	< 0.15	<3.7	0.710	5.29	0.0511	0.170	7.30	158
05/30/18	92	6.5	0.8	< 0.020	< 0.50	0.512	5.74	0.0545	0.207	5.47	175
05/30/18	81	4.5	0.8	< 0.024	< 0.59	0.440	4.43	0.0496	0.080	6.50	150
05/30/18	106	12.2	1.0	< 0.020	< 0.50	0.284	4.91	0.0530	0.087	5.76	149

Appendix D.1.–Lower Glacier Creek whole body Dolly Varden char element concentrations, 2016–2021.

^a Composite sample of two fish.

Appendix D.1.–Continued.

Sample	Length	Weight	Condition	Ag	As	Cd	Cu	Hg	Pb	Se	Zn
Date	(mm)	(g)	(<i>K</i>)		(mg/kg)						
06/06/19	122	22.9	1.3	< 0.020	< 0.50	0.237	4.07	0.0546	0.110	5.83	158
06/06/19	124	22.7	1.2	< 0.019	< 0.48	0.349	3.63	0.0440	0.082	5.87	117
06/06/19	155	42.5	1.1	< 0.020	< 0.50	0.514	5.79	0.0510	0.180	6.27	207
06/06/19	97	12.3	1.3	< 0.020	< 0.50	0.372	5.58	0.0341	0.137	7.32	156
06/06/19	121	20.8	1.2	< 0.020	< 0.49	0.353	2.87	0.0496	0.144	5.82	116
06/06/19	106	15.0	1.3	< 0.019	< 0.47	0.259	4.42	0.0540	0.168	6.95	134
06/06/19	105	13.6	1.2	< 0.020	<0.49	0.300	3.37	0.0368	0.109	5.95	115
06/06/19	117	19.7	1.2	< 0.020	< 0.50	0.665	4.86	0.0428	0.206	6.02	150
06/06/19	141	27.1	1.0	< 0.019	< 0.48	0.440	4.87	0.0457	0.158	6.68	148
06/06/19	126	25.5	1.3	< 0.020	< 0.50	0.442	5.18	0.0549	0.129	5.69	188
06/03/20	115	14.8	1.0	< 0.020	< 0.49	0.223	4.15	0.0517	0.053	5.92	149
06/03/20	98	11.2	1.2	< 0.020	< 0.50	0.657	4.10	0.0412	0.051	5.55	134
06/03/20	110	15.4	1.2	< 0.020	< 0.50	0.29	4.03	0.0425	0.076	5.72	160
06/03/20	99	11.9	1.2	< 0.020	< 0.49	0.446	4.77	0.0455	0.178	6.75	132
06/03/20	123	19.9	1.1	< 0.019	< 0.49	0.467	4.91	0.0458	0.055	5.82	139
06/03/20	113	14.7	1.0	0.021	< 0.49	1.29	5.81	0.0429	0.120	6.50	144
06/03/20	107	14.0	1.1	< 0.020	< 0.50	0.309	4.36	0.0412	0.069	5.95	141
06/03/20	113	15.8	1.1	< 0.020	< 0.50	0.312	5.49	0.0509	0.085	5.95	143
06/03/20	112	15.6	1.1	< 0.020	< 0.50	0.359	3.43	0.0369	0.045	7.10	150
06/03/20	122	18.3	1.0	< 0.020	< 0.50	0.286	4.62	0.0537	0.097	6.00	146
06/16/21	113	13.5	0.9	< 0.020	< 0.49	1.05	6.69	0.0630	0.278	6.49	214
06/16/21	110	14.9	1.1	< 0.020	< 0.49	0.873	7.06	0.0476	0.357	5.57	216
06/16/21	142	30.6	1.1	< 0.020	< 0.49	0.404	4.17	0.0829	0.120	6.17	136
06/16/21	100	13.2	1.3	< 0.020	< 0.50	0.413	3.63	0.0551	0.094	5.68	124
06/16/21	103	14.2	1.3	< 0.019	< 0.49	0.375	3.76	0.0465	0.055	5.78	115
06/16/21	137	33.3	1.3	< 0.020	< 0.49	0.188	3.27	0.0573	0.078	4.66	119
06/16/21	138	27.9	1.1	< 0.020	< 0.50	0.556	4.41	0.0720	0.080	6.21	136
06/16/21	123	21.8	1.2	< 0.020	< 0.50	0.276	3.56	0.0430	0.063	6.64	106
06/16/21	149	34.9	1.1	< 0.020	< 0.50	0.351	4.34	0.0509	0.062	5.26	113
06/16/21	128	23.3	1.1	< 0.020	< 0.50	0.434	4.31	0.0443	0.170	4.85	105

Sample	Length	-	Condition	Ag	As	Cd	Cu	Hg	Pb	Se	Zn
Date	(mm)	(g)	(K)	(mg/kg)							
06/08/16	150	36.0	1.1	0.031	< 0.48	0.605	3.37	0.0429	0.069	5.66	143
06/08/16	108	15.9	1.3	< 0.020	< 0.50	0.327	4.33	0.0337	0.183	6.91	147
06/08/16	123	26.5	1.4	< 0.020	< 0.50	0.683	3.83	0.0301	0.717	5.64	117
06/08/16	73	5.2	1.3	< 0.020	< 0.49	0.288	4.99	0.0260	0.128	3.94	128
06/08/16	180	66.7	1.1	< 0.020	< 0.50	0.329	3.11	0.0376	0.061	5.17	132
06/08/16	77	6.0	1.3	< 0.020	< 0.50	0.215	3.53	0.0259	0.259	4.80	146
06/08/16	83	7.8	1.4	< 0.020	< 0.50	0.280	3.75	0.0247	0.182	6.05	132
06/08/16	146	31.5	1.0	< 0.020	< 0.50	0.521	2.50	0.0299	0.062	4.90	103
06/08/16	83	7.0	1.2	< 0.020	< 0.50	0.678	2.56	0.0328	0.046	4.66	139
06/08/16	70	5.0	1.5	0.682	< 0.50	0.257	2.63	0.0184	0.036	6.29	133
06/09/17	154	45.5	1.2	< 0.020	< 0.50	0.267	3.29	0.0364	0.036	5.14	116
06/09/17	130	24.3	1.1	< 0.020	< 0.50	0.333	3.23	0.0343	0.056	6.86	95
06/09/17	210	115.0	1.2	< 0.020	< 0.50	0.758	7.67	0.0701	0.031	6.34	161
06/09/17	141	34.7	1.2	< 0.020	< 0.50	0.291	3.33	0.0430	0.037	8.02	126
06/09/17	131	24.3	1.1	< 0.020	< 0.50	0.299	3.26	0.0385	0.100	6.10	128
06/09/17	90	7.4	1.0	< 0.020	< 0.50	0.343	2.40	0.0361	0.034	6.86	101
05/31/18	171	55.9	1.1	< 0.020	< 0.50	0.696	15.20	0.0641	0.080	6.56	176
05/31/18	138	28.3	1.1	< 0.020	< 0.50	0.541	6.22	0.0659	0.044	5.30	114
05/31/18	58, 57 ^a	4.2	ND	< 0.082	<2.0	0.357	4.25	0.0191	0.087	4.90	114
05/31/18	188	76.2	1.1	0.027	< 0.50	0.889	12.70	0.0487	0.143	6.22	140
05/31/18	175	58.1	1.1	< 0.020	< 0.50	0.612	5.47	0.0296	0.107	5.20	108
05/31/18	100	11.2	1.1	0.029	< 0.50	0.802	5.07	0.0676	0.122	6.72	146
06/07/19	65, 65 ^a	8.3	ND	< 0.020	< 0.50	0.501	3.89	0.0157	0.053	5.81	117
06/07/19	72, 70 ^a	10.2	ND	< 0.020	< 0.50	0.615	3.91	0.0241	0.073	5.30	101
06/07/19	141	36.9	1.3	< 0.019	< 0.48	0.354	3.16	0.0468	< 0.019	5.46	116
06/07/19	185	88.4	1.4	< 0.020	< 0.49	0.785	3.42	0.1060	0.050	5.16	161
06/07/19	67, 69 ^a	8.6	ND	< 0.020	< 0.50	0.438	3.55	0.0199	0.109	5.60	105
06/07/19	166	47.4	1.0	< 0.019	< 0.48	0.280	3.73	0.0528	0.091	5.47	115
06/07/19	87	8.7	1.3	< 0.019	< 0.48	0.231	2.39	0.0260	0.028	5.54	89.3
06/07/19	100	14.9	1.5	< 0.020	< 0.49	0.260	3.41	0.0356	0.163	5.43	99.8
06/07/19	75, 77 ^a	11.6	ND	0.984	< 0.48	0.337	3.94	0.0254	0.179	5.18	106
06/07/19	75, 75 ^a	8.4	ND	< 0.019	< 0.48	0.547	3.68	0.0331	0.120	5.25	88.6

Appendix D.2.–Middle Glacier Creek whole body Dolly Varden char element concentrations, 2016–2021.

^a Composite sample of two fish.

Appendix D.2.-Continued.

Sample	Length	Weight	Condition	Ag	As	Cd	Cu	Hg	Pb	Se	Zn
Date	(mm)	(g)	(K)	(mg/kg)							
06/02/20	141	30.3	1.1	< 0.019	<0.49	0.251	3.45	0.0465	0.054	5.38	162
06/02/20	142	35.4	1.2	< 0.020	< 0.50	0.182	3.73	0.0396	0.127	4.12	125
06/02/20	118	20.1	1.2	< 0.020	<0.49	0.344	4.97	0.0327	0.219	5.04	131
06/02/20	108	14.4	1.1	< 0.020	<0.49	0.373	5.07	0.0326	0.216	4.81	144
06/02/20	119	18.4	1.1	< 0.020	<0.49	0.314	4.19	0.0302	0.094	5.55	112
06/02/20	111	14.6	1.1	< 0.019	< 0.49	0.249	3.79	0.0326	0.151	4.94	129
06/15/21	140	37.2	1.4	0.022	< 0.50	1.11	9.25	0.0503	0.170	5.21	132
06/15/21	148	51.0	1.6	< 0.020	< 0.50	0.431	4.95	0.0505	0.080	4.30	99.1
06/15/21	158	48.2	1.2	< 0.020	< 0.49	0.348	6.37	0.0656	0.057	4.87	136
06/15/21	163	54.0	1.2	< 0.020	< 0.49	0.204	3.95	0.0416	0.031	4.50	89.1
06/15/21	135	32.8	1.3	< 0.020	< 0.49	0.286	5.99	0.0574	0.095	4.68	111

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626 **T** : +1 360 577 7222 **F** : +1 360 636 1068 www.alsglobal.com

September 24, 2021

Analytical Report for Service Request No: K2109749

Dylan Krull Alaska Department of Fish and Game Division of Habitat 802 3rd Street P.O. Box 110024 Douglas, AK 99811-0024

RE: 2021 Palmer Project Biomonitoring

Dear Dylan,

Enclosed are the results of the sample(s) submitted to our laboratory August 19, 2021 For your reference, these analyses have been assigned our service request number **K2109749**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3376. You may also contact me via email at Mark.Harris@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

noe D. Oan

Mark Harris Project Manager

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626 **T**: +1 360 577 7222 **F**: +1 360 636 1068 www.alsglobal.com

Table of Contents

Acronyms

Qualifiers

State Certifications, Accreditations, And Licenses

Case Narrative

Chain of Custody

Total Solids

Metals

Raw Data

Total Solids

Metals

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LOD	Limit of Detection
LOQ	Limit of Quantitation
LUFT	Leaking Underground Fuel Tank
M MCL	Modified Maximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH tr	Total Petroleum Hydrocarbons Trace level is the concentration of an analyte that is less than the PQL but greater than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
North Carolina DEQ	https://deq.nc.gov/about/divisions/water-resources/water-resources- data/water-sciences-home-page/laboratory-certification-branch/non-field-lab- certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator yAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Case Narrative

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 6 of 253

Client:Alaska Department of Fish and GameProject:2021 Palmer Project BiomonitoringSample Matrix:Animal Tissue, Water

Service Request: K2109749 Date Received: 08/19/2021 - 09/21/2021

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier level IV requested by the client.

Sample Receipt:

Seventeen animal tissue, water samples were received for analysis at ALS Environmental on 08/19/2021 - 09/21/2021. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

Metals:

Method 6020A, 09/24/2021: Method Blank KQ2118162-01 contained low levels of Copper above the Method Reporting Limit (MRL). The concentration of Copper in all of the associated field samples was greater than ten times the amounts measured in the Method Blank so no additional corrective action was required.

noe D. Oan

Approved by

Date

09/24/2021

Chain of Custody

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 8 of 253

	CH	HAIN OF CUSTODY	STODY	-	SR# _	ALLOGTY	ALL H
	1317 South 13th Ave., Kelso, WA 98626 360.5	. 1.1	360.636.1068 (fax)	PAGE	OF	coc#	
PROJECT NAME PROJECT NUMBER	t Biomonitaring			No.	190		
PROJECT MANAGER IN KANI			100		00° 29° 29°		
"Alaska Dept. of Fish	and Game	5/4			94 7059		
3		208 10228 19210	səpi: Uəbu	1 '10' 12' 11' 11' 11' 11' 11' 11' 11' 11' 11			
			CO BED	He 1003	00/00/	59, Lieun	_
HINE " AND. 465. 6160		91100 928 9260 928 9280	1808 H/səp	1 02 105 105 10 1 02 10 10 10 1 02 10 10 1 0 0 0 1 0 0	L L A		
		UMBE 000000000000000000000000000000000000			U ELE SUIXOIL IUIIENI	- FI	
SAMPLE I.D. DATE	TIME LABI.D. MATRIX	0 / <u>8</u> 8/ 0					/ REMAHKS
	Where I						
body juvenile fish main	אמאארו						
Semples							
	P.O. # Constantion	tals are to be a	(:		
pou	Bill To: Allego Cims	as Sp	Ba Be B Ca Co Co	Centre (Pb) Mg	Mo Xo Xi Xi Xi Xi Xi Xi Xi Xi Xi Xi Xi Xi Xi	e se v ⊐	> :
required	Alleyan Varituria	Dissolved Metals: Al As Sb	Ba Be B Ca Cd Co Cr	Curre Pp Mg	Mo Ni K Ag Na	Ze X =	Sn V Zh Hg
II. Report Dup., MS, MSD as	TURNAROUND REQUIREMENTS	_	SPECIAL INSTRUCTIONS/COMMENTS:	AN CA WI	NUNIHWESI UINEN:		- (CINCLE UNE)
required	24 hr48 hr.	$\overline{\sqrt{-}}$	ort to Dylum and Allegra	d Allegr.			
III. CLP LIKe Summary (no raw data)	5 day Standard (15 working days)		1. I Allen Castros & allegrade	(wins @ alle	me Corte	orstutineme	tals.con
IV. Data Validation Report	Provide FAX Results	Please send invoi			5		
	Requested Report Date	Sample Shipment contains USDA regulated soil samples (check box if applicable)	ntains USDA regulated so	oil samples (check bo.	ix if applicable)		
- C	A BECEIV		RELINQUISHED BY:	HED BY:		RECEIVED BY:	
Signature X/16/JH 07	1	Date/Time	Signature	Date/Time	Signature	Date	Date/Time
me	A	ţĘ	Printed Name	Firm	Printed Name	Firm	
						Copyrigh	Copyright 2012 by ALS Group

Page 9 of 253

K 2 (AT49 Attachment 1 of 1

> dalat hooid A EDA1631E U. dylan.krull@alaska.gov; (907) 465-6160 Alaska Department of Fish and Game 2021 Palmer Project Biomonitoring Whole body Dolly Varden char EDA 6020A total matale Dylan Krull Contact Information: Project Manager: Company Name: Sample Type: Analysis: Project Name:

					Fork Length	Weight
Matrix	Sample Date	Sample Name	Sample ID	Analytes .	(mm)	(g)
Whole Body	6/15/2021	Middle Glacier Creek DV Metals Fish #1	2021MGCDV1	Ag, As, Cd, Cu, Hg, Pb, Se, Zn	140	37.2
Whole Body	6/15/2021	Middle Glacier Creek DV Metals Fish #2	2021MGCDV2	Ag, As, Cd, Cu, Hg, Pb, Se, Zn	148	51.0
Whole Body	6/15/2021	Middle Glacier Creek DV Metals Fish #3	2021MGCDV3	Ag, As, Cd, Cu, Hg, Pb, Se, Zn	158	48.2
Whole Body	6/15/2021	Middle Glacier Creek DV Metals Fish #4	2021MGCDV4	Ag, As, Cd, Cu, Hg, Pb, Se, Zn	163	54.0
Whole Body	6/15/2021	Middle Glacier Creek DV Metals Fish #5	2021MGCDV5	Ag, As, Cd, Cu, Hg, Pb, Se, Zn	135	32.8
Whole Body	6/16/2021	Lower Glacier Creek DV Metals Fish #1	2021LGCDV1	Ag, As, Cd, Cu, Hg, Pb, Se, Zn	11.3	13.5
Whole Body	6/16/2021	Lower Glacier Creek DV Metals Fish #2	2021LGCDV2	Ag, As, Cd, Cu, Hg, Pb, Se, Zn	110	14.9
Whole Body	6/16/2021	Lower Glacier Creek DV Metals Fish #3	2021LGCDV3	Ag, As, Cd, Cu, Hg, Pb, Se, Zn	142	30.6
Whole Body	6/16/2021	Lower Glacier Creek DV Metals Fish #4	2021LGCDV4	Ag, As, Cd, Cu, Hg, Pb, Se, Zn	100	13.2
Whole Body	6/16/2021	Lower Glacier Creek DV Metals Fish #5	2021LGCDV5	Ag, As, Cd, Cu, Hg, Pb, Se, Zn	103	14.2
Whole Body	6/16/2021	Lower Glacier Creek DV Metals Fish #6	2021LGCDV6	Ag, As, Cd, Cu, Hg, Pb, Se, Zn	137	33.3
Whole Body	6/16/2021	Lower Glacier Creek DV Metals Fish #7	2021LGCDV7	Ag, As, Cd, Cu, Hg, Pb, Se, Zn	138	27.9
Whole Body	6/16/2021	Lower Glacier Creek DV Metals Fish #8	2021LGCDV8	Ag, As, Cd, Cu, Hg, Pb, Se, Zn	123	21.8
Whole Body	6/16/2021	Lower Glacier Creek DV Metals Fish #9	2021LGCDV9	Ag, As, Cd, Cu, Hg, Pb, Se, Zn	149	34.9
Whole Body	6/16/2021	Lower Glacier Creek DV Metals Fish #10	2021LGCDV10	Ag. As. Cd. Cu. Hg. Pb. Se. Zn	128	23.3

Pre by Nucleven Alskelso 8/14/221 0900

Page 10 of 253

										PM M+	_
	٨١). (\sim \sim	Cooler Receip					- 19		v
Client	1 <u>_</u>	uska 1	Lept_	of tish.	76	ane Servi	ce Request H	(21 <u>09</u>	(41		
Recei	ived: <u>8</u>	11710	_ Opened: _	811910	By:	AP	Unloaded:	81910	By:	AP_	
I. Sa	amples wer	e received via?	USPS	Fed Ex	UPS	DHL	PDX	Courier	Hand Del	ivered	
2. Sa	amples wer	e received in: (circ	cle) Ca	oler Box	E	nvelope	Other			NA	
3. W	ere custody	seals on coolers?		NA Y N	If yes, l	now many and w				-	
lf	present, we	re custody seals ir	ntact?	Y N	If prese	nt, were they sig	ned and dated	2	Y	N	
4. Wa	is a Temper	ature Blank preser	nt in cooler?	NA Y N	If yes, i	notate the temper	rature in the ap	propriate colur	nn below:		
If	no, take th	e temperature of a	representative	sample bottle conta	ined with	in the cooler; no	tate in the colu	mn "Sample T	emp":	~~~	
5. We	ere samples	received within th	e method spe	cified temperature ra	inges?				NA Y	N	
lfı	no, were th	ey received on ice	and same day	as collected? If not,	notate th	e cooler # below	and notify the	PM.	NA Y	(N)	
If app	olicable, tiss	sue samples were r	received: 1	Frozen Partially	Thawed (Thawed					
										·····	
						Out of temp	PM Notifie	d			
Теп	np Blank	Sample Temp	IR Gun	Cooler #/COC ID /	NA	Indicate with "X			racking Numb	er NA	Filed
		14-5	11/21					284	06122	6433	
ļ							_ <u>_</u>				
6. I	Packing ma	terial: Inserts	Baggies Bu	bble Wrap Gel Pa	icks W	et Ice Dry Ice	Sleeves				
	-	dy papers properly		and the second se		·			NA A	N	
		les received in goo							NA Y	N	
		• •	• •	s, preservation, etc.))?				NA Y	N	
		ple labels and tags	-						NA (Y) N	
				umes received for the					NA (Y)	N	
	-	-		EN SOP) received a			icate in the tab	le below (NA Y	N	
			hout headspace	e? Indicate in the t	able belo	Ψ.			(NA) Y	N	
14.	Was C12/R	les negative?							ŃA Y	N	
	S	imple ID on Bot	tie	Sam	ple iD o	n COC		ide	ntified by:		
-			<u></u>			<u></u>		an a			
	··				······································						

Sample ID	Bottle Count Bottle Type	Head- space Broke	pH Reagent	Volume Reagent Lot added Number	Initials Time
					1 1

Notes, Discrepancies, Resolutions:_____

Total Solids

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 12 of 253

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client:Alaska Department of Fish and GameProject:2021 Palmer Project BiomonitoringSample Matrix:Animal TissueAnalysis Method:Freeze DryPrep Method:None

Service Request: K2109749 Date Collected: 06/15/21 - 06/16/21 Date Received: 08/19/21

Units: Percent Basis: Wet

Total Solids

Sample Name	Lab Code	Result	MRL	MDL	Dil.	Date Analyzed	Q
Middle Glacier Creek DV Metals Fish #1	K2109749-001	25.5	-	-	1	09/02/21	
Middle Glacier Creek DV Metals Fish #2	K2109749-002	28.7	-	-	1	09/02/21	
Middle Glacier Creek DV Metals Fish #3	K2109749-003	28.0	-	-	1	09/02/21	
Middle Glacier Creek DV Metals Fish #4	K2109749-004	28.4	-	-	1	09/02/21	
Middle Glacier Creek DV Metals Fish #5	K2109749-005	26.4	-	-	1	09/02/21	
Lower Glacier Creek DV Metals Fish #1	K2109749-006	22.0	-	-	1	09/02/21	
Lower Glacier Creek DV Metals Fish #2	K2109749-007	24.7	-	-	1	09/02/21	
Lower Glacier Creek DV Metals Fish #3	K2109749-008	26.4	-	-	1	09/02/21	
Lower Glacier Creek DV Metals Fish #4	K2109749-009	24.9	-	-	1	09/02/21	
Lower Glacier Creek DV Metals Fish #5	K2109749-010	24.9	-	-	1	09/02/21	
Lower Glacier Creek DV Metals Fish #6	K2109749-011	29.2	-	-	1	09/02/21	
Lower Glacier Creek DV Metals Fish #7	K2109749-012	24.2	-	-	1	09/02/21	
Lower Glacier Creek DV Metals Fish #8	K2109749-013	26.4	-	-	1	09/02/21	
Lower Glacier Creek DV Metals Fish #9	K2109749-014	29.3	-	-	1	09/02/21	
Lower Glacier Creek DV Metals Fish #10	K2109749-015	28.4	-	-	1	09/02/21	

ALS Group USA, Corp. dba ALS Environmental

QA/QC Report

Client: Project Sample Matrix:	Alaska Department of Fish and Game 2021 Palmer Project Biomonitoring Animal Tissue					Service Request: Date Collected: Date Received:	06/15/2	1	
						Date Analyzed:	09/02/2	1	
Replicate Sample Summary									
Inorganic Parameters									
Sample Name:	Middle Glacier Cr	eek DV Meta	als Fish #1			Units:	Percent	t	
Lab Code:	K2109749-001					Basis:	Wet		
	Analysis			Sample	Duplicate Sample K2109749- 001DUP				
Analyte Name	Method	MRL	MDL	Result	Result		RPD	RPD Limit	
Total Solids	Freeze Dry	-	-	25.5	25.0	25.3	2	20	

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 15 of 253

ALS Group USA, Corp. dba ALS Environmental Analytical Report

Client:	Alaska Department of Fish and Game
Project:	2021 Palmer Project Biomonitoring
Sample Matrix:	Animal tissue

 Service Request:
 K2109749

 Date Collected:
 06/15-06/16/21

 Date Received:
 08/19/21

Units: ng/g Basis: Dry

Mercury, Total

Prep Method:	METHOD
Analysis Method:	1631E
Test Notes:	

Sample Name	Lab Code	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Middle Glacier Creek DV Metals Fish #1	K2109749-001	10.0	1.99	10	09/17/21	09/22/21	50.3	
Middle Glacier Creek DV Metals Fish #2	K2109749-002	9.8	1.96	10	09/17/21	09/22/21	50.5	
Middle Glacier Creek DV Metals Fish #3	K2109749-003	9.7	1.94	10	09/17/21	09/22/21	65.6	
Middle Glacier Creek DV Metals Fish #4	K2109749-004	9.8	1.96	10	09/17/21	09/22/21	41.6	
Middle Glacier Creek DV Metals Fish #5	K2109749-005	9.8	1.96	10	09/17/21	09/22/21	57.4	
Lower Glacier Creek DV Metals Fish #1	K2109749-006	9.8	1.96	10	09/17/21	09/22/21	63.0	
Lower Glacier Creek DV Metals Fish #2	K2109749-007	9.8	1.96	10	09/17/21	09/22/21	47.6	
Lower Glacier Creek DV Metals Fish #3	K2109749-008	10.0	2.00	10	09/17/21	09/22/21	82.9	
Lower Glacier Creek DV Metals Fish #4	K2109749-009	10.0	1.99	10	09/17/21	09/22/21	55.1	
Lower Glacier Creek DV Metals Fish #5	K2109749-010	10.0	2.00	10	09/17/21	09/22/21	46.5	
Lower Glacier Creek DV Metals Fish #6	K2109749-011	9.8	1.97	10	09/17/21	09/22/21	57.3	
Lower Glacier Creek DV Metals Fish #7	K2109749-012	10.0	2.00	10	09/17/21	09/22/21	72.0	
Lower Glacier Creek DV Metals Fish #8	K2109749-013	9.9	1.99	10	09/17/21	09/22/21	43.0	
Lower Glacier Creek DV Metals Fish #9	K2109749-014	9.8	1.97	10	09/17/21	09/22/21	50.9	
Lower Glacier Creek DV Metals Fish #10	K2109749-015	10.0	2.00	10	09/17/21	09/22/21	44.3	
Method Blank 1	K2109749-MB1	1.0	0.20	1	09/17/21	09/22/21	ND	
Method Blank 2	K2109749-MB2	1.0	0.20	1	09/17/21	09/22/21	ND	
Method Blank 3	K2109749-MB3	1.0	0.20	1	09/17/21	09/22/21	ND	

Client: Project: Sample Matrix:	-	Alaska Department of Fish and Game 2021 Palmer Project Biomonitoring Animal tissue								Da Da Da	vice Request: the Collected: ate Received: te Extracted: the Analyzed:	06/15/21 08/19/21 09/17/21	
			Matrix S	pike/D	-	Matrix Sp Metals	ike Sum	nmary					
Sample Name: Lab Code: Test Notes:		Middle Glacier Creek DV Metals Fish #1 K2109749-001MS, K2109749-001DMS								Units: Basis:			
									Per	c e n t	Recovery		
Analyte	Prep Method	Analysis Method	MRL	Spiko MS	e Level DMS	Sample Result	Spike MS	Result DMS	MS	DMS	ALS Acceptance Limits	Relative Percent Difference	Result Notes
Mercury	METHOD	1631E	10.0	242	250	50.3	306	315	106	106	70-130	3	

Client: Project: Sample Matrix:	Alaska Department of Fish and Game 2021 Palmer Project Biomonitoring Animal tissue								Da Da Da	vice Request: te Collected: ate Received: te Extracted: te Analyzed:	06/16/21 08/19/21 09/17/21		
			Matrix S	pike/D	1	Matrix Sp Metals	oike Sum	nmary					
Sample Name: Lab Code: Test Notes:	Lower Glacier Creek DV Metals Fish #3 K2109749-008MS, K2109749-008DMS								Units: Basis:				
									Per	c e n t	Recovery		
Analyte	Prep Method	Analysis Method	MRL	Spik MS	e Level DMS	Sample Result	Spike MS	Result DMS	MS	DMS	ALS Acceptance Limits	Relative Percent Difference	Result Notes
Mercury	METHOD	1631E	9.9	248	248	82.9	341	335	104	102	70-130	2	

Client: Project: LCS Matrix:	Alaska Department of Fish a 2021 Palmer Project Biomon Water					Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed:	NA NA NA
	Ongoi	ng Precision a	nd Recover	ry (OPR) S	Sample Sum	mary	
			Total M	etals			
Sample Name:	Ongoing Precision and Reco	very (Initial)				Units:	ng/g
						Basis:	NA
Test Notes:							
						ALS	
	Prep	Analysis	True		Percent	Percent Recovery Acceptance	Result
Analyte	Method	Method	Value	Result	Recovery	Limits	Notes

5.00

5.49

110

70-130

METHOD

1631E

Mercury

Client: Project: LCS Matrix:	Alaska Department of Fish a 2021 Palmer Project Biomon Water	itoring		Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed:	NA NA NA		
	Ongoir	ng Precision a	nd Recover	ry (OPR) S	Sample Sum	mary	
			Total M	etals			
Sample Name:	Ongoing Precision and Reco	very (Final)				Units:	ng/g
						Basis:	NA
Test Notes:							
	P		T		D	ALS Percent Recovery	D
Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Acceptance Limits	Result Notes

5.00

5.05

101

70-130

METHOD

1631E

Mercury

Client: Project: LCS Matrix:	Alaska Departn 2021 Palmer Pr Animal tissue		Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed:	NA NA 09/17/21				
			Quality Cor	ntrol Samp	le (QCS) S	ummary		
				Total M	etals			
Sample Name:	Quality Control	l Sample					Units:	ng/g
Lab Code:							Basis:	Dry
Test Notes:	Tort-3 Solids =	97.4%						
Source:	TORT-3						ALS	
							Percent	
							Recovery	
		Prep	Analysis	True		Percent	Acceptance	Result
Analyte		Method	Method	Value	Result	Recovery	-	Notes
•								
Mercury		METHOD	1631E	292	280	96	70-130	

Analytical Report

Client: Project:	Alaska Department of Fish and Game 2021 Palmer Project Biomonitoring	Service Request: K2109749 Date Collected: 06/15/21
Sample Matrix:	Animal Tissue	Date Received: 08/19/21 09:00
Sample Name: Lab Code:	Middle Glacier Creek DV Metals Fish #1 K2109749-001	Basis: Dry

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020A	0.33 J	mg/Kg	0.50	0.02	5	09/24/21 15:44	09/21/21	
Cadmium	6020A	1.11	mg/Kg	0.020	0.004	5	09/24/21 15:44	09/21/21	
Copper	6020A	9.32	mg/Kg	0.099	0.030	5	09/24/21 15:44	09/21/21	
Lead	6020A	0.178	mg/Kg	0.020	0.003	5	09/24/21 15:44	09/21/21	
Selenium	6020A	5.15	mg/Kg	0.99	0.20	5	09/24/21 15:44	09/21/21	
Silver	6020A	0.018 J	mg/Kg	0.020	0.008	5	09/24/21 15:44	09/21/21	
Zinc	6020A	134	mg/Kg	0.50	0.08	5	09/24/21 15:44	09/21/21	

Analytical Report

Client:	Alaska Department of Fish and Game	Service Request: K2109749
Project:	2021 Palmer Project Biomonitoring	Date Collected: 06/15/21
Sample Matrix:	Animal Tissue	Date Received: 08/19/21 09:00
Sample Name: Lab Code:	Middle Glacier Creek DV Metals Fish #2 K2109749-002	Basis: Dry

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020A	0.24 J	mg/Kg	0.50	0.02	5	09/24/21 15:56	09/21/21	
Cadmium	6020A	0.431	mg/Kg	0.020	0.004	5	09/24/21 15:56	09/21/21	
Copper	6020A	4.95	mg/Kg	0.099	0.030	5	09/24/21 15:56	09/21/21	
Lead	6020A	0.080	mg/Kg	0.020	0.003	5	09/24/21 15:56	09/21/21	
Selenium	6020A	4.30	mg/Kg	0.99	0.20	5	09/24/21 15:56	09/21/21	
Silver	6020A	ND U	mg/Kg	0.020	0.008	5	09/24/21 15:56	09/21/21	
Zinc	6020A	99.1	mg/Kg	0.50	0.08	5	09/24/21 15:56	09/21/21	

Analytical Report

Client:	Alaska Department of Fish and Game	Service Request: K2109749
Project:	2021 Palmer Project Biomonitoring	Date Collected: 06/15/21
Sample Matrix:	Animal Tissue	Date Received: 08/19/21 09:00
Sample Name: Lab Code:	Middle Glacier Creek DV Metals Fish #3 K2109749-003	Basis: Dry

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020A	0.20 J	mg/Kg	0.49	0.02	5	09/24/21 16:03	09/21/21	
Cadmium	6020A	0.348	mg/Kg	0.020	0.004	5	09/24/21 16:03	09/21/21	
Copper	6020A	6.37	mg/Kg	0.098	0.030	5	09/24/21 16:03	09/21/21	
Lead	6020A	0.057	mg/Kg	0.020	0.003	5	09/24/21 16:03	09/21/21	
Selenium	6020A	4.87	mg/Kg	0.98	0.20	5	09/24/21 16:03	09/21/21	
Silver	6020A	ND U	mg/Kg	0.020	0.008	5	09/24/21 16:03	09/21/21	
Zinc	6020A	136	mg/Kg	0.49	0.08	5	09/24/21 16:03	09/21/21	

Analytical Report

Client:	Alaska Department of Fish and Game	Service Request: K2109749
Project:	2021 Palmer Project Biomonitoring	Date Collected: 06/15/21
Sample Matrix:	Animal Tissue	Date Received: 08/19/21 09:00
Sample Name: Lab Code:	Middle Glacier Creek DV Metals Fish #4 K2109749-004	Basis: Dry

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020A	0.13 J	mg/Kg	0.49	0.02	5	09/24/21 16:05	09/21/21	
Cadmium	6020A	0.204	mg/Kg	0.020	0.004	5	09/24/21 16:05	09/21/21	
Copper	6020A	3.95	mg/Kg	0.099	0.030	5	09/24/21 16:05	09/21/21	
Lead	6020A	0.031	mg/Kg	0.020	0.003	5	09/24/21 16:05	09/21/21	
Selenium	6020A	4.50	mg/Kg	0.99	0.20	5	09/24/21 16:05	09/21/21	
Silver	6020A	ND U	mg/Kg	0.020	0.008	5	09/24/21 16:05	09/21/21	
Zinc	6020A	89.1	mg/Kg	0.49	0.08	5	09/24/21 16:05	09/21/21	

Analytical Report

Client:	Alaska Department of Fish and Game	Service Request: K2109749
Project:	2021 Palmer Project Biomonitoring	Date Collected: 06/15/21
Sample Matrix:	Animal Tissue	Date Received: 08/19/21 09:00
Sample Name: Lab Code:	Middle Glacier Creek DV Metals Fish #5 K2109749-005	Basis: Dry

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020A	0.17 J	mg/Kg	0.49	0.02	5	09/24/21 16:08	09/21/21	
Cadmium	6020A	0.286	mg/Kg	0.020	0.004	5	09/24/21 16:08	09/21/21	
Copper	6020A	5.99	mg/Kg	0.098	0.029	5	09/24/21 16:08	09/21/21	
Lead	6020A	0.095	mg/Kg	0.020	0.003	5	09/24/21 16:08	09/21/21	
Selenium	6020A	4.68	mg/Kg	0.98	0.20	5	09/24/21 16:08	09/21/21	
Silver	6020A	0.009 J	mg/Kg	0.020	0.008	5	09/24/21 16:08	09/21/21	
Zinc	6020A	111	mg/Kg	0.49	0.08	5	09/24/21 16:08	09/21/21	

Analytical Report

Client:	Alaska Department of Fish and Game	Service Request: K2109749
Project:	2021 Palmer Project Biomonitoring	Date Collected: 06/16/21
Sample Matrix:	Animal Tissue	Date Received: 08/19/21 09:00
Sample Name: Lab Code:	Lower Glacier Creek DV Metals Fish #1 K2109749-006	Basis: Dry

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020A	0.40 J	mg/Kg	0.49	0.02	5	09/24/21 16:10	09/21/21	
Cadmium	6020A	1.05	mg/Kg	0.020	0.004	5	09/24/21 16:10	09/21/21	
Copper	6020A	6.69	mg/Kg	0.098	0.029	5	09/24/21 16:10	09/21/21	
Lead	6020A	0.278	mg/Kg	0.020	0.003	5	09/24/21 16:10	09/21/21	
Selenium	6020A	6.49	mg/Kg	0.98	0.20	5	09/24/21 16:10	09/21/21	
Silver	6020A	0.011 J	mg/Kg	0.020	0.008	5	09/24/21 16:10	09/21/21	
Zinc	6020A	214	mg/Kg	0.49	0.08	5	09/24/21 16:10	09/21/21	

Analytical Report

Client:	Alaska Department of Fish and Game	Service Request: K2109749
Project:	2021 Palmer Project Biomonitoring	Date Collected: 06/16/21
Sample Matrix:	Animal Tissue	Date Received: 08/19/21 09:00
Sample Name: Lab Code:	Lower Glacier Creek DV Metals Fish #2 K2109749-007	Basis: Dry

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020A	0.37 J	mg/Kg	0.49	0.02	5	09/24/21 16:12	09/21/21	
Cadmium	6020A	0.873	mg/Kg	0.020	0.004	5	09/24/21 16:12	09/21/21	
Copper	6020A	7.06	mg/Kg	0.098	0.029	5	09/24/21 16:12	09/21/21	
Lead	6020A	0.357	mg/Kg	0.020	0.003	5	09/24/21 16:12	09/21/21	
Selenium	6020A	5.57	mg/Kg	0.98	0.20	5	09/24/21 16:12	09/21/21	
Silver	6020A	0.011 J	mg/Kg	0.020	0.008	5	09/24/21 16:12	09/21/21	
Zinc	6020A	216	mg/Kg	0.49	0.08	5	09/24/21 16:12	09/21/21	

Analytical Report

Client:	Alaska Department of Fish and Game	Service Request: K2109749
Project:	2021 Palmer Project Biomonitoring	Date Collected: 06/16/21
Sample Matrix:	Animal Tissue	Date Received: 08/19/21 09:00
Sample Name: Lab Code:	Lower Glacier Creek DV Metals Fish #3 K2109749-008	Basis: Dry

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020A	0.24 J	mg/Kg	0.50	0.02	5	09/24/21 16:15	09/21/21	
Cadmium	6020A	0.404	mg/Kg	0.020	0.004	5	09/24/21 16:15	09/21/21	
Copper	6020A	4.17	mg/Kg	0.10	0.03	5	09/24/21 16:15	09/21/21	
Lead	6020A	0.120	mg/Kg	0.020	0.003	5	09/24/21 16:15	09/21/21	
Selenium	6020A	6.17	mg/Kg	1.0	0.2	5	09/24/21 16:15	09/21/21	
Silver	6020A	0.008 J	mg/Kg	0.020	0.008	5	09/24/21 16:15	09/21/21	
Zinc	6020A	136	mg/Kg	0.50	0.08	5	09/24/21 16:15	09/21/21	

Analytical Report

Client:	Alaska Department of Fish and Game	Service Request: K2109749
Project:	2021 Palmer Project Biomonitoring	Date Collected: 06/16/21
Sample Matrix:	Animal Tissue	Date Received: 08/19/21 09:00
Sample Name: Lab Code:	Lower Glacier Creek DV Metals Fish #4 K2109749-009	Basis: Dry

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020A	0.16 J	mg/Kg	0.50	0.02	5	09/24/21 16:17	09/21/21	
Cadmium	6020A	0.413	mg/Kg	0.020	0.004	5	09/24/21 16:17	09/21/21	
Copper	6020A	3.63	mg/Kg	0.099	0.030	5	09/24/21 16:17	09/21/21	
Lead	6020A	0.094	mg/Kg	0.020	0.003	5	09/24/21 16:17	09/21/21	
Selenium	6020A	5.68	mg/Kg	0.99	0.20	5	09/24/21 16:17	09/21/21	
Silver	6020A	0.012 J	mg/Kg	0.020	0.008	5	09/24/21 16:17	09/21/21	
Zinc	6020A	124	mg/Kg	0.50	0.08	5	09/24/21 16:17	09/21/21	

Analytical Report

Client: Project:	Alaska Department of Fish and Game 2021 Palmer Project Biomonitoring	Service Request: K2109749 Date Collected: 06/16/21
Sample Matrix:	Animal Tissue	Date Received: 08/19/21 09:00
Sample Name: Lab Code:	Lower Glacier Creek DV Metals Fish #5 K2109749-010	Basis: Dry

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020A	0.15 J	mg/Kg	0.49	0.02	5	09/24/21 16:19	09/21/21	
Cadmium	6020A	0.375	mg/Kg	0.019	0.004	5	09/24/21 16:19	09/21/21	
Copper	6020A	3.76	mg/Kg	0.097	0.029	5	09/24/21 16:19	09/21/21	
Lead	6020A	0.055	mg/Kg	0.019	0.003	5	09/24/21 16:19	09/21/21	
Selenium	6020A	5.78	mg/Kg	0.97	0.19	5	09/24/21 16:19	09/21/21	
Silver	6020A	0.009 J	mg/Kg	0.019	0.008	5	09/24/21 16:19	09/21/21	
Zinc	6020A	115	mg/Kg	0.49	0.08	5	09/24/21 16:19	09/21/21	

Analytical Report

Client: Project:	Alaska Department of Fish and Game 2021 Palmer Project Biomonitoring	Service Request: K2109749 Date Collected: 06/16/21
Sample Matrix:	Animal Tissue	Date Received: 08/19/21 09:00
Sample Name: Lab Code:	Lower Glacier Creek DV Metals Fish #6 K2109749-011	Basis: Dry

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020A	0.26 J	mg/Kg	0.49	0.02	5	09/24/21 16:22	09/21/21	
Cadmium	6020A	0.188	mg/Kg	0.020	0.004	5	09/24/21 16:22	09/21/21	
Copper	6020A	3.27	mg/Kg	0.099	0.030	5	09/24/21 16:22	09/21/21	
Lead	6020A	0.078	mg/Kg	0.020	0.003	5	09/24/21 16:22	09/21/21	
Selenium	6020A	4.66	mg/Kg	0.99	0.20	5	09/24/21 16:22	09/21/21	
Silver	6020A	0.009 J	mg/Kg	0.020	0.008	5	09/24/21 16:22	09/21/21	
Zinc	6020A	119	mg/Kg	0.49	0.08	5	09/24/21 16:22	09/21/21	

Analytical Report

Client: Project:	Alaska Department of Fish and Game 2021 Palmer Project Biomonitoring	Service Request: K2109749 Date Collected: 06/16/21
Sample Matrix:	Animal Tissue	Date Received: 08/19/21 09:00
Sample Name: Lab Code:	Lower Glacier Creek DV Metals Fish #7 K2109749-012	Basis: Dry

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020A	0.17 J	mg/Kg	0.50	0.02	5	09/24/21 16:24	09/21/21	
Cadmium	6020A	0.556	mg/Kg	0.020	0.004	5	09/24/21 16:24	09/21/21	
Copper	6020A	4.41	mg/Kg	0.099	0.030	5	09/24/21 16:24	09/21/21	
Lead	6020A	0.080	mg/Kg	0.020	0.003	5	09/24/21 16:24	09/21/21	
Selenium	6020A	6.21	mg/Kg	0.99	0.20	5	09/24/21 16:24	09/21/21	
Silver	6020A	0.015 J	mg/Kg	0.020	0.008	5	09/24/21 16:24	09/21/21	
Zinc	6020A	136	mg/Kg	0.50	0.08	5	09/24/21 16:24	09/21/21	

Analytical Report

Client:	Alaska Department of Fish and Game	Service Request: K2109749
Project:	2021 Palmer Project Biomonitoring	Date Collected: 06/16/21
Sample Matrix:	Animal Tissue	Date Received: 08/19/21 09:00
Sample Name: Lab Code:	Lower Glacier Creek DV Metals Fish #8 K2109749-013	Basis: Dry

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020A	0.19 J	mg/Kg	0.50	0.02	5	09/24/21 16:31	09/21/21	
Cadmium	6020A	0.276	mg/Kg	0.020	0.004	5	09/24/21 16:31	09/21/21	
Copper	6020A	3.56	mg/Kg	0.099	0.030	5	09/24/21 16:31	09/21/21	
Lead	6020A	0.063	mg/Kg	0.020	0.003	5	09/24/21 16:31	09/21/21	
Selenium	6020A	6.64	mg/Kg	0.99	0.20	5	09/24/21 16:31	09/21/21	
Silver	6020A	0.008 J	mg/Kg	0.020	0.008	5	09/24/21 16:31	09/21/21	
Zinc	6020A	106	mg/Kg	0.50	0.08	5	09/24/21 16:31	09/21/21	

Analytical Report

Client: Project:	Alaska Department of Fish and Game 2021 Palmer Project Biomonitoring	Service Request: K2109749 Date Collected: 06/16/21
Sample Matrix:	Animal Tissue	Date Received: 08/19/21 09:00
Sample Name: Lab Code:	Lower Glacier Creek DV Metals Fish #9 K2109749-014	Basis: Dry

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020A	0.21 J	mg/Kg	0.50	0.02	5	09/24/21 16:34	09/21/21	
Cadmium	6020A	0.351	mg/Kg	0.020	0.004	5	09/24/21 16:34	09/21/21	
Copper	6020A	4.34	mg/Kg	0.099	0.030	5	09/24/21 16:34	09/21/21	
Lead	6020A	0.062	mg/Kg	0.020	0.003	5	09/24/21 16:34	09/21/21	
Selenium	6020A	5.26	mg/Kg	0.99	0.20	5	09/24/21 16:34	09/21/21	
Silver	6020A	0.008 J	mg/Kg	0.020	0.008	5	09/24/21 16:34	09/21/21	
Zinc	6020A	113	mg/Kg	0.50	0.08	5	09/24/21 16:34	09/21/21	

Analytical Report

Client: Project:	Alaska Department of Fish and Game 2021 Palmer Project Biomonitoring	Service Request: K2109749 Date Collected: 06/16/21
Sample Matrix:	Animal Tissue	Date Received: 08/19/21 09:00
Sample Name: Lab Code:	Lower Glacier Creek DV Metals Fish #10 K2109749-015	Basis: Dry

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020A	0.30 J	mg/Kg	0.50	0.02	5	09/24/21 16:36	09/21/21	
Cadmium	6020A	0.434	mg/Kg	0.020	0.004	5	09/24/21 16:36	09/21/21	
Copper	6020A	4.31	mg/Kg	0.099	0.030	5	09/24/21 16:36	09/21/21	
Lead	6020A	0.170	mg/Kg	0.020	0.003	5	09/24/21 16:36	09/21/21	
Selenium	6020A	4.85	mg/Kg	0.99	0.20	5	09/24/21 16:36	09/21/21	
Silver	6020A	0.010 J	mg/Kg	0.020	0.008	5	09/24/21 16:36	09/21/21	
Zinc	6020A	105	mg/Kg	0.50	0.08	5	09/24/21 16:36	09/21/21	

Analytical Report

Client:	Alaska Department of Fish and Game	Service Request:	K2109749
Project:	2021 Palmer Project Biomonitoring	Date Collected:	NA
Sample Matrix:	Animal Tissue	Date Received:	NA
Sample Name: Lab Code:	Method Blank KQ2118162-01	Basis:	Dry

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020A	ND U	mg/Kg	0.5	0.02	5	09/24/21 15:34	09/21/21	
Cadmium	6020A	ND U	mg/Kg	0.020	0.004	5	09/24/21 15:34	09/21/21	
Copper	6020A	0.15	mg/Kg	0.10	0.03	5	09/24/21 15:34	09/21/21	
Lead	6020A	ND U	mg/Kg	0.020	0.003	5	09/24/21 15:34	09/21/21	
Selenium	6020A	ND U	mg/Kg	1.0	0.2	5	09/24/21 15:34	09/21/21	
Silver	6020A	ND U	mg/Kg	0.020	0.008	5	09/24/21 15:34	09/21/21	
Zinc	6020A	0.19 J	mg/Kg	0.5	0.08	5	09/24/21 15:34	09/21/21	

QA/QC Report

Client:	Alaska Department of Fish and Game	Service Request:	K2109749
Project	2021 Palmer Project Biomonitoring	Date Collected:	06/15/21
Sample Matrix:	Animal Tissue	Date Received:	08/19/21
		Date Analyzed:	09/24/21

Replicate Sample Summary Total Metals

Sample Name: Middle Glacier Creek DV Metals Fish #1						1	Units: mg/K	g	
Lab Code: K2109749-001							Basis: Dry		
Analyte Name	Analysis Method	MRL	MDL	Sample Result	Duplicate Sample KQ2118162-05 Result	Average	Average RPD		
Arsenic	6020A	0.5	0.02	0.33 J	0.28 J	0.31	16	20	
Cadmium	6020A	0.020	0.004	1.11	1.11	1.11	<1	20	
Copper	6020A	0.10	0.03	9.32	9.18	9.25	2	20	

25 2 20
170 10 20
21 2 20
022 33 # 20
32 4 20
5. 5.

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:	Alaska Department of Fish and Game	Service Request:	K2109749
Project:	2021 Palmer Project Biomonitoring	Date Collected:	06/15/21
Sample Matrix:	Animal Tissue	Date Received:	08/19/21
		Date Analyzed:	09/24/21
		Date Extracted:	09/21/21
	Matrix Spike Summary Total Metals		
Sample Name:	Middle Glacier Creek DV Metals Fish #1	Units:	mg/Kg
Lab Code:	K2109749-001	Basis:	Dry
Analysis Method:	6020A		
Prep Method:	PSEP Metals		

Matrix Spike KQ2118162-06

Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Arsenic	0.33 J	17.6	16.6	105	75-125
Cadmium	1.11	6.01	4.97	99	75-125
Copper	9.32	33.8	24.8	99	75-125
Lead	0.178	49.1	49.7	99	75-125
Selenium	5.15	24.4	16.6	116	75-125
Silver	0.018 J	4.80	4.97	96	75-125
Zinc	134	183	49.7	97	75-125

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

QA/QC Report

Client:	Alaska Department of Fish and Game
Project:	2021 Palmer Project Biomonitoring
Sample Matrix:	Animal Tissue

Service Request: K2109749 Date Analyzed: 09/24/21

Lab Control Sample Summary Total Metals

Units:mg/Kg Basis:Dry

Lab Control Sample KQ2118162-02

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Arsenic	6020A	16.9	16.7	101	80-120
Cadmium	6020A	4.89	5.00	98	80-120
Copper	6020A	24.6	25.0	99	80-120
Lead	6020A	50.4	50.0	101	80-120
Selenium	6020A	18.2	16.7	109	80-120
Silver	6020A	4.93	5.00	99	80-120
Zinc	6020A	48.6	50.0	97	80-120

Client: Project: LCS Matrix:	Alaska Department of Fish and 2021 Palmer Project Biomonit Tissue					Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed:	NA NA 9/21/2021
		Standard R	Reference N	Iaterial Su	mmary	·	
			Total M	etals	2		
Sample Name:	Standard Reference Material					Units:	mg/Kg (ppm)
Lab Code:	KQ2118162-03					Basis:	Dry
Test Notes:	Dorm-4 Solids = 93.8%						
Source:	N.R.C.C. Dorm-4						
Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Control Limits	Result Notes

Arsenic	PSEP Tissue	6020A	6.87	6.94	101	5.14 - 8.77
Cadmium	PSEP Tissue	6020A	0.299	0.307	103	0.225 - 0.380
Copper	PSEP Tissue	6020A	15.7	15.7	100	12.2 - 19.4
Lead	PSEP Tissue	6020A	0.40	0.39	97	0.274 - 0.559
Selenium	PSEP Tissue	6020A	3.45	4.08	118	2.44 - 4.62
Silver	PSEP Tissue	6020A	0.0252	0.0281	112	0.0162 - 0.0362
Zinc	PSEP Tissue	6020A	51.6	50.1	97	39.0 - 65.3

Client:	Alaska Department of Fish and Game						Service Request:	K2109749
Project:	2021 Palmer Project I	2021 Palmer Project Biomonitoring						NA
LCS Matrix:	Tissue						Date Received:	NA
							Date Extracted:	9/21/2021
							Date Analyzed:	9/24/2021
			Standard R	eference N	Iaterial Su	mmary	-	
				Total M	etals			
Sample Name:	Standard Reference M	I aterial					Units:	mg/Kg (ppm)
Lab Code:	KQ2118162-04						Basis:	Dry
Test Notes:	Tort-3 Solids = 97.4%	ó						
Source:	N.R.C.C. Tort-3							
Analvte		Prep ethod	Analysis Method	True Value	Result	Percent Recoverv	Control Limits	Result Notes

Analyte	Method	Method	Value	Result	Recovery	Limits	Notes
Arsenic	PSEP Tissue	6020A	59.5	65.0	109	44.6-76.0	
Cadmium	PSEP Tissue	6020A	42.3	40.3	95	32.4-52.9	
Copper	PSEP Tissue	6020A	497	492	99	380-623	
Lead	PSEP Tissue	6020A	0.225	0.199	88	0.166-0.292	
Selenium	PSEP Tissue	6020A	10.9	11.5	106	7.9-14.3	
Zinc	PSEP Tissue	6020A	136	128	94	104-170	

APPENDIX E: SEDIMENT DATA AND LABORATORY REPORT

_		Particle S	ize Data				
							Acid
				% Course		% Total	Volatile
Sample				Material	% Total	Organic	Sulfide
Date	% Clay	% Silt	% Sand	(> 2 mm)	Solids	Carbon	(mg/kg)
06/07/16	4.00	29.17	66.83	0.00	78.6	0.274	ND
06/09/17	1.98	26.67	71.07	0.29	82.3	< 0.16	< 0.20
06/09/17	1.60	39.31	58.97	0.14	73.3	< 0.17	< 0.20
06/09/17	0.65	18.35	81.01	0.00	73.9	0.20	< 0.20
06/09/17	1.33	27.75	70.31	0.62	77.8	0.25	< 0.20
06/09/17	0.38	3.16	95.57	0.62	76.3	< 0.16	< 0.20
05/30/18	1.16	14.01	84.73	0.10	74.7	0.25	< 0.20
05/30/18	1.93	44.25	50.12	3.72	77.7	0.29	0.63
05/30/18	2.04	41.78	56.19	0.00	78.0	< 0.27	< 0.20
05/30/18	1.05	9.59	85.04	4.32	79.1	< 0.20	< 0.20
05/30/18	1.44	16.08	81.88	4.32	78.6	< 0.20	< 0.20
06/06/19	0.29	10.14	89.32	0.00	83.1	0.29	< 0.20
06/07/19	0.25	6.83	92.63	0.00	78.2	0.25	< 0.20
06/08/19	0.25	8.49	91.16	0.00	74.6	0.250	< 0.20
06/09/19	0.31	17.90	81.35	0.00	75.7	0.310	< 0.20
06/10/19	0.32	8.51	90.95	0.00	80.1	0.320	< 0.20
06/03/20	1.79	29.84	68.36	0.00	77.9	0.498	< 0.20
06/03/20	2.35	31.30	64.96	1.38	72.4	0.336	< 0.20
06/03/20	1.48	20.59	77.93	0.00	79.6	0.444	< 0.20
06/03/20	1.97	24.20	73.78	0.07	83.1	0.203	< 0.20
06/03/20	1.77	28.87	69.10	0.07	77.8	0.370	< 0.20
06/16/21	2.60	14.40	83.00	0.00	71.8	0.440	< 5.0
06/16/21	3.40	30.10	66.50	0.00	76.9	0.418	<5.0
06/16/21	4.20	33.90	61.80	0.10	79.6	0.185	<5.0
06/16/21	2.20	29.40	68.40	0.00	81.2	0.195	< 5.0
06/16/21	4.00	2.70	88.60	4.70	80.0	0.269	<5.0

Appendix E.1.-Lower Glacier Creek sediment compositions, 2016–2021.

Sample				Concent	ration (m	g/kg dry v	veight)			
Date	Ag	Al	As	Cd	Cu	Fe	Hg	Pb	Se	Zn
06/07/16	0.19	9,460	4.98	1.17	51.1	35,700	< 0.020	9.06	1.69	193
06/09/17	0.14	15,500	3.91	0.510	37.0	47,300	0.0120	7.90	1.22	133
06/09/17	0.25	16,300	5.68	0.910	58.5	57,800	0.0194	20.6	1.35	202
06/09/17	0.26	14,700	5.49	1.01	53.6	51,100	0.0204	8.49	1.67	186
06/09/17	0.21	14,900	4.66	0.821	60.1	53,600	0.0144	20.1	1.39	173
06/09/17	0.17	13,300	3.94	0.818	48.9	51,400	0.0135	7.03	1.54	186
05/30/18	0.19	18,300	4.65	1.02	49.3	50,400	0.0125	9.84	1.44	185
05/30/18	0.14	16,600	4.08	0.880	44.4	42,600	0.0079	5.88	1.07	150
05/30/18	0.17	14,900	3.60	0.858	44.1	43,600	0.0119	6.58	1.31	160
05/30/18	0.16	15,400	4.27	0.835	41.6	45,100	0.0142	8.11	1.12	168
05/30/18	0.15	15,500	3.46	0.639	40.7	44,900	0.0092	7.53	1.00	141
06/06/19	0.17	17,300	4.32	0.95	50.4	48,400	0.0172	10.9	1.28	189
06/06/19	0.17	16,800	6.70	0.950	62.4	51,400	0.0131	6.23	1.43	173
06/06/19	0.13	17,400	5.15	0.937	39.3	46,900	0.0174	7.50	1.18	179
06/06/19	0.15	16,200	3.68	0.934	45.3	45,400	0.0156	5.23	1.06	166
06/06/19	0.14	15,700	4.72	0.771	45.2	44,900	0.0111	4.99	1.03	146
06/03/20	0.22	15,200	5.44	1.52	56.3	43,200	0.0125	7.14	2.41	213
06/03/20	0.16	16,200	3.35	0.904	48.0	42,800	0.0109	6.08	1.08	166
06/03/20	0.18	16,800	4.33	1.63	48.4	43,700	0.0164	8.49	1.58	184
06/03/20	0.11	14,800	3.14	0.64	40.1	43,400	0.0103	5.98	0.8	152
06/03/20	0.21	15,200	4.61	0.924	54.3	43,000	0.0097	7.57	1.52	150
06/16/21	0.18	11,800	4.48	1.07	43.1	41,600	0.0161	7.41	1.58	166
06/16/21	0.14	12,500	4.48	1.15	31.6	39,000	0.0100	4.26	1.56	160
06/16/21	0.15	18,500	3.69	0.572	50.7	59,800	0.0192	14.20	0.75	186
06/16/21	0.14	11,600	6.48	0.54	51.0	54,400	0.0158	15.10	0.92	142
06/16/21	0.14	12,600	2.66	1.30	31.6	34,000	0.0192	6.97	0.93	154

Appendix E.2.–Lower Glacier Creek sediment element concentrations, 2016–2021.

_		Particle S	ize Data				
							Acid
				% Course		% Total	Volatile
Sample				Material	% Total	Organic	Sulfide
Date	% Clay	% Silt	% Sand	(> 2 mm)	Solids	Carbon	(mg/kg)
06/08/16	4.06	31.18	64.76	0.00	80.5	0.491	ND
06/09/17	0.66	11.07	83.97	4.30	82.5	< 0.16	< 0.20
06/09/17	0.59	16.12	80.79	2.51	80.3	< 0.17	< 0.20
06/09/17	1.21	28.37	70.36	0.05	76.1	< 0.19	0.30
06/09/17	2.30	48.51	49.19	0.00	74.8	0.27	< 0.20
06/09/17	2.62	45.51	51.89	0.00	74.7	< 0.19	< 0.20
05/31/18	1.62	33.75	63.45	1.19	83.8	< 0.28	0.40
05/31/18	1.65	26.48	71.45	0.41	80.1	< 0.29	< 0.20
05/31/18	1.21	10.73	74.57	13.49	77.7	< 0.25	< 0.20
05/31/18	1.56	25.93	71.89	0.62	75.0	< 0.27	< 0.20
05/31/18	1.56	15.69	80.82	1.94	71.4	0.37	< 0.20
06/06/19	0.49	10.58	84.23	4.68	83.4	0.44	< 0.20
06/06/19	1.51	21.39	77.09	0.00	84.1	0.30	< 0.20
06/06/19	0.52	9.97	89.51	0.00	82.9	0.37	< 0.20
06/06/19	1.14	25.86	73.00	0.00	78.6	0.58	< 0.20
06/06/19	0.56	13.64	85.80	0.00	76.2	0.56	< 0.20
06/02/20	2.33	39.96	57.09	0.62	75.6	0.26	< 0.20
06/02/20	2.37	35.95	61.67	0.00	73.0	0.36	< 0.20
06/02/20	2.60	37.46	59.93	0.00	80.3	0.40	< 0.20
06/02/20	2.84	42.50	54.30	0.36	71.6	0.42	< 0.20
06/02/20	2.72	36.99	60.30	0.00	78.3	0.31	< 0.20
06/15/21	3.40	28.70	67.90	0.00	77.7	0.172	< 5.0
06/15/21	3.80	4.90	90.90	0.40	80.8	0.257	<5.0
06/15/21	4.60	31.80	59.50	4.10	76.8	0.317	< 5.0
06/15/21	2.20	18.60	78.60	0.60	81.5	0.193	< 5.0
06/15/21	2.20	32.90	64.90	0.00	80.4	0.320	<5.0

Appendix E.3.-Middle Glacier Creek sediment compositions, 2016-2021.

Sample				Concent	ration (mg	g/kg dry v	veight)			
Date	Ag	Al	As	Cd	Cu	Fe	Hg	Pb	Se	Zn
06/08/16	0.16	7,650	4.33	0.871	55.8	32,400	< 0.020	12.0	1.14	170
06/09/17	0.14	15,700	3.68	0.758	48.1	49,400	0.0094	8.67	0.90	190
06/09/17	0.15	13,800	4.76	0.902	45.5	53,400	0.0179	14.8	0.93	203
06/09/17	0.33	14,700	4.88	1.11	75.6	54,500	0.0161	12.5	2.05	189
06/09/17	0.18	16,000	4.47	1.14	55.7	47,500	0.0210	12.3	1.30	205
06/09/17	0.21	15,600	4.73	1.07	62.1	50,800	0.0181	11.9	1.42	199
05/31/18	0.18	18,000	4.17	0.564	47.4	49,000	0.0072	6.89	1.25	122
05/31/18	0.22	16,900	3.95	1.03	49.6	45,400	0.0260	5.48	1.67	167
05/31/18	0.18	20,200	2.80	0.675	49.1	49,200	0.0079	5.49	1.03	139
05/31/18	0.15	18,900	2.48	0.645	45.6	42,500	0.0093	5.24	0.71	129
05/31/18	0.17	16,900	3.74	1.02	52.8	43,000	0.0118	5.99	1.34	160
06/07/19	0.19	14,800	3.20	1.38	41.6	43,000	0.0133	3.76	1.83	189
06/07/19	0.19	16,600	4.97	1.07	53.5	53,600	0.0140	7.40	1.54	174
06/07/19	0.21	16,800	3.74	1.33	54.2	49,800	0.0128	5.45	1.43	230
06/07/19	0.53	16,700	4.19	2.22	47.6	47,500	0.015	10.4	1.55	181
06/07/19	0.27	17,000	6.14	1.67	54.6	47,000	0.015	7.45	2.56	204
06/02/20	0.14	14,900	3.10	0.646	48.2	41,000	0.0122	5.04	0.91	110
06/02/20	0.15	14,900	2.36	0.687	44.5	37,800	0.0060	4.69	1.00	97
06/02/20	0.16	15,500	2.71	0.726	44.4	38,800	0.0072	5.24	1.15	106
06/02/20	0.23	15,400	4.99	1.300	60.7	46,400	0.0137	8.36	1.97	208
06/02/20	0.16	15,800	2.66	0.716	46.5	39,600	0.0058	3.84	1.08	99
06/15/21	0.13	13,200	3.17	0.566	44.7	50,300	0.0113	8.62	0.98	122
06/15/21	0.10	11,200	2.95	0.818	35.4	38,300	0.0106	3.44	1.11	138
06/15/21	0.19	12,200	3.70	1.02	44.4	45,400	0.0167	6.53	1.28	156
06/15/21	0.14	12,300	3.31	0.516	47.9	50,800	0.0156	11.1	0.75	137
06/15/21	0.18	11,800	4.55	1.38	47.3	44,400	0.019	7.11	1.99	183

Appendix E.4.-Middle Glacier Creek sediment element concentrations, 2016-2021.

	V CEBTIEIO	CATE OF ANAL VEIS	
		VIE OF ANALTOIS	
Work Order	: WR2100682	Page	: 1 of 8
Amendment	.		
Client	: Constantine North Inc.	Laboratory	: Whitehorse - Environmental
Contact	: Dylan Krull	Account Manager	: Carla Fuginski
Address	Suite 320 - 800 West Pender St.	Address	: #12 151 Industrial Road
Talanhana	Vancouver BC Canada V6C 2V6	Telenhone	Whitehorse YT Canada Y1A 2V3
Project	. 90/-403-0100 . Dalmar Draiaat	Date Samples Received	: +1 007 000 0009 · 22 him 2021 21:15
			· 20-0411-2021 21.10
C-O-C number	. 17-773584	Date Artarysis Commenced Issue Date	: 28-JUN-2021 · 37_Oct 3031 13:33
Sampler			
Site	: Sediment Analysis		
Quote number	: Q62329		
No. of samples received	. 10		
No. of samples analysed	. 10		
This report supersedes an	This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.) as submitted. This document shall n	ot be reproduced, except in full.
This Certificate of Analysis	This Certificate of Analysis contains the following information:		
General Comments	Its		
 Analytical Results 			
Additional information	pertinent to this report will be found in the following separa	ate attachments: Quality Control	Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and
Sample Receipt Notification (SRN)	ation (SRN).		
Signatories			
This document has been e	This document has been electronically signed by the authorized signatories below. Electronic sig	Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.	US FDA 21 CFR Part 11.
Signatories	Position	Laboratory Department	
Angela Ren	Team Leader - Metals	Metals, Burnaby, British Columbia	Columbia
Dee Lee	Analyst	Metals, Burnaby, British Columbia	Columbia
Hedy Lai	Team Leader - Inorganics	Inorganics, Saskatoon, Saskatchewan	baskatchewan
Janice Leung	Supervisor - Organics Instrumentation	Organics, Burnaby, British Columbia	sh Columbia
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia	Columbia
Maria Painchaud	Laboratory Assistant	Inorganics, Saskatoon, Saskatchewan	saskatchewan
Miles Gropen	Department Manager - Inorganics	Inorganics, Burnaby, British Columbia	ish Columbia
Ophelia Chiu	Department Manager - Organics	Organics, Burnaby, British Columbia	sh Columbia
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia	Columbia
Xihua Yao	Laboratory Analyst	Inorganics, Saskatoon, Saskatchewan	saskatchewan

Page Work Order Client Project	: 2 of 8 : WR2100682 Amendm : Constantine North Inc. : Palmer Project	2 of 8 WR2100682 Amendment 1 Constantine North Inc. Palmer Project
Gener	General Comments	
The ana ISO, Env incorporai	The analytical methods used by ALS are c ISO, Environment Canada, BC MOE, and C incorporate modifications to improve performance.	ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, OE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may erformance.
Where a l	reported less than (<) result is	Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.
Where th Please re	ie LOR of a reported result diff sfer to Quality Control Interprei	Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference. Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.
Key :	CAS Number: Chemical Abstracts Servi LOR: Limit of Reporting (detection limit).	CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances LOR: Limit of Reporting (detection limit).
	Unit	Description
		No Unit
	%	percent
	g/lomu	micromole per gram
	mg/kg	milligrams per kilogram
	siin rig	
	<: less than.	
	>: greater than.	
	Surrogate: An analyte th as a check on recovery.	Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.
Test resu	ilts reported relate only to the :	Test results reported relate only to the samples as received by the laboratory.
NNLESS	OTHERWISE STATED on SF	UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.
Worke	Workorder Comments	
Laborator sample re	Laboratory control standard recovery da sample recoveries are not impacted.	Laboratory control standard recovery data is not available for acid volatile sulfide analysis of samples #1-10. Acceptable positive control results are available from the 'matrix spike', and associated sample recoveries are not impacted.
Qualifiers	ïers	
Qualifier	D	Description
DUPH	Ľ	Duplicate results outside ALS DQO, due to sample heterogeneity.

Page	: 3 of 8
Work Order	: WR2100682 Amendment 1
Client	: Constantine North Inc.
Project	: Palmer Project

Analytical Results

1									
Sub-Matrix: Soil			CI	Client sample ID	2021 LGC S1	2021 LGC S2	2021 LGC S3	2021 LGC S4	2021 LGC S5
(Matrix: Soil/Solid)									
			Client samp	Client sampling date / time	16-Jun-2021 12:00	16-Jun-2021 12:00	16-Jun-2021 12:00	16-Jun-2021 12:00	16-Jun-2021 12:00
Analyte	CAS Number	Method	LOR	Unit	WR2100682-001	WR2100682-002	WR2100682-003	WR2100682-004	WR2100682-005
				1	Result	Result	Result	Result	Result
Physical Tests									
loss on ignition @ 550°C	-	E205D	1.0	%	1.4	1.4	1.0	<1.0	1.2
moisture		E144	0.25	%	28.2	23.1	20.4	18.8	20.0
pH (1:2 soil:water)		E108	0.10	pH units	8.24	8.37	8.34	8.43	11.2
ash content @ 550°C		E205D	1.0	%	98.6	98.6	98.9	0.99.0	98.8
Particle Size		l							
grain size curve	1	E185			See	See	See Attached	See	See Attached
					Attached	Attached		Attached	
passing (9.5 mm)		E181	1.0	%	100	100	6.66	100	99.7
passing (4.75 mm)		E181	1.0	%	100	100	6.99	100	98.2
passing (19 mm)		E181	1.0	%	100	100	100	100	100
passing (25.4 mm)		E181	1.0	%	100	100	100	100	100
passing (38.1 mm)		E181	1.0	%	100	100	100	100	100
passing (50.8 mm)		E181	1.0	%	100	100	100	100	100
passing (76.2 mm)		E181	1.0	%	100	100	100	100	100
passing (1.0 mm)		E182	1.0	%	<u>99.9</u>	6.66	99.8	99.7	85.9
passing (0.841 mm)		E182	1.0	%	99.8	99.8	99.7	9.66	83.9
passing (0.50 mm)		E182	1.0	%	96.4	98.5	97.5	96.9	63.4
passing (0.420 mm)		E182	1.0	%	95.0	97.9	96.7	96.1	58.2
passing (0.250 mm)		E182	1.0	%	75.1	89.3	85.9	87.0	35.4
passing (0.149 mm)		E182	1.0	%	47.2	69.9	65.2	69.3	17.7
passing (0.125 mm)		E182	1.0	%	37.4	58.1	56.4	57.1	14.1
passing (0.075 mm)		E182	1.0	%	17.0	33.5	38.1	31.6	6.7
passing (0.063 mm)		E182	1.0	%	14.7	28.2	35.0	26.8	5.4
passing (0.05 mm)		E182	1.0	%	12.1	22.4	31.7	21.5	4.3
passing (0.0312 mm)		E183	1.0	%	7.3	12.1	22.4	11.6	4.1
passing (0.020 mm)		E183	1.0	%	4.4	6.6	13.6	6.3	4.0
passing (0.005 mm)		E183	1.0	%	2.6	3.4	4.2	2.2	4.0
passing (0.004 mm)		E183	1.0	%	2.5	3.4	3.9	2.0	3.9
passing (0.002 mm)		E183	1.0	%	2.4	2.8	3.8	2.0	3.8
nassing (2.0 mm)		E181	0	%	100	100	6 66	100	05.3

: 4 of 8	: WR2100682 Amendment 1	: Constantine North Inc.	: Palmer Project	
Page	Work Order	Client	Project	

Analytical Results									
Sub-Matrix: Soil			Clie	Client sample ID	2021 LGC S1	2021 LGC S2	2021 LGC S3	2021 LGC S4	2021 LGC S5
(Matrix: Soil/Solid)									
			Client samplii	Client sampling date / time	16-Jun-2021 12-00	16-Jun-2021	16-Jun-2021 12-00	16-Jun-2021	16-Jun-2021
Analyte	CAS Number	Method	LOR	Unit	WR2100682-001	WR2100682-002	WR2100682-003	WR2100682-004	WR2100682-005
					Result	Result	Result	Result	Result
Organic / Inorganic Carbon									
carbon, total [TC]	-	E351	0.050	%	1.11	1.07	0.753	0.749	0.955
carbon, total organic [TOC]	1	EC356	0.050	%	0.440	0.418	0.185	0.195	0.269
Inorganic Parameters									
sulfides, acid volatile		EC396	0.20	hmol/g	<0.20	<0.20	<0.20	<0.20	<0.20
sulfides, acid volatile	-	E396	5.0	mg/kg	<5.0	<5.0	<5.0	<5.0	<5.0
Metals								-	
aluminum	7429-90-5	E440	50	mg/kg	11800	12500	18500	11600	12600
antimony	7440-36-0	E440	0.10	mg/kg	0.55	0.51	0.33	0.34	0.37
arsenic	7440-38-2	E440	0.10	mg/kg	4.48	4.48	3.69	6.48	2.66
barium	7440-39-3	E440	0.50	mg/kg	157	89.6	225	127	67.3
beryllium	7440-41-7	E440	0.10	mg/kg	0.20	0.20	0.33	0.25	0.14
bismuth	7440-69-9	E440	0.20	mg/kg	<0.20	<0.20	<0.20	<0.20	<0.20
boron	7440-42-8	E440	5.0	mg/kg	<5.0	<5.0	<5.0	<5.0	<5.0
cadmium	7440-43-9	E440	0.020	mg/kg	1.07	1.15	0.572	0.540	1.30
calcium	7440-70-2	E440	50	mg/kg	28100	28300	26400	24500	24800
chromium	7440-47-3	E440	0.50	mg/kg	33.8	34.0	35.4	22.7	22.1
cobalt	7440-48-4	E440	0.10	mg/kg	20.6	16.8	29.0	28.2	14.5
copper	7440-50-8	E440	0.50	mg/kg	43.1	31.6	50.7	51.0	31.6
iron	7439-89-6	E440	50	mg/kg	41600	39000	59800	54400	34000
lead	7439-92-1	E440	0.50	mg/kg	7.41	4.26	14.2	15.1	6.97
lithium	7439-93-2	E440	2.0	mg/kg	6.9	7.2	9.6	6.3	5.5
magnesium	7439-95-4	E440	20	mg/kg	11700	11900	17700	11000	10800
manganese	7439-96-5	E440	1.0	mg/kg	749	729	1060	747	680
mercury	7439-97-6	E510	0.0050	mg/kg	0.0161	0.0100	0.0192	0.0158	0.0192 ^{DUPH}
molybdenum	7439-98-7	E440	0.10	mg/kg	2.62	3.03	1.30	0.91	2.10
nickel	7440-02-0	E440	0.50	mg/kg	24.9	25.0	22.0	16.3	18.7
phosphorus	7723-14-0	E440	50	mg/kg	808	852	1220	966	789
potassium	7440-09-7	E440	100	mg/kg	1050	1000	1880	1140	1020
selenium	7782-49-2	E440	0.20	mg/kg	1.58	1.56	0.75	0.92	0.93
silver	7440-22-4	E440	0.10	mg/kg	0.18	0.14	0.15	0.14	0.14
sodium	7440-23-5	E440	50	mg/kg	157	128	247	164	84

: 5 of 8	: WR2100682 Amendment 1	: Constantine North Inc.	: Palmer Project
Page	Work Order	Client	Project

Analytical Results

Sub-Matrix: Soil			Clie	Cilent sample ID	2021 LGC S1	2021 LGC S2	2021 LGC S3	2021 LGC S4	2021 LGC S5
(Matrix: Soil/Solid)									
			Client sampli	Client sampling date / time	16-Jun-2021	16-Jun-2021	16-Jun-2021	16-Jun-2021	16-Jun-2021
Analvte	CAS Number	Method	LOR	Unit	WR2100682-001	WR2100682-002	WR2100682-003	WR2100682-004	WR2100682-005
					Result	Result	Result	Result	Result
Metals									
strontium	7440-24-6	E440	0.50	mg/kg	73.2	70.3	76.0	64.9	59.3
sulfur	7704-34-9	E440	1000	mg/kg	2400	1200	2600	4800	1300
thallium	7440-28-0	E440	0.050	mg/kg	0.081	0.065	0.108	0.067	0.054
tin	7440-31-5	E440	2.0	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0
titanium	7440-32-6	E440	1.0	mg/kg	1480	1160	2320	1600	635
tungsten	7440-33-7	E440	0.50	mg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
uranium	7440-61-1	E440	0.050	mg/kg	0.470	0.385	0.354	0.458	0.254
vanadium	7440-62-2	E440	0.20	mg/kg	93.7	89.8	149	125	74.6
zinc	7440-66-6	E440	2.0	mg/kg	166	160	186	142	154
zirconium	7440-67-7	E440	1.0	mg/kg	1.3	1.1	2.0	1.5	<1.0
Extractable Metals									
cadmium	7440-43-9	EC449	0.0050	g/lomu	0.0074	0.0075	<0.0050	<0.0050	<0.0050
cadmium	7440-43-9	E449	0.50	mg/kg	0.83	0.84	<0.50	<0.50	0.53
copper	7440-50-8	EC449	0.010	g/lomu	0.203	0.162	0.297	0.203	0.144
copper	7440-50-8	E449	0.60	mg/kg	12.9	10.3	18.9	12.9	9.12
lead	7439-92-1	EC449	0.020	g/lomu	0.023	<0.020	0.043	0.039	<0.020
lead	7439-92-1	E449	4.0	mg/kg	4.7	<4.0	8.9	8.1	<4.0
mercury	7439-97-6	EC519	0.000050	g/lomu	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
mercury	7439-97-6	E519	0.010	mg/kg	<0.010	<0.010	<0.010	<0.010	<0.010
nickel	7440-02-0	EC449	0.050	g/lomu	0.099	0.087	0.078	<0.050	0.053
nickel	7440-02-0	E449	2.9	mg/kg	5.8	5.1	4.6	<2.9	3.1
zinc	7440-66-6	EC449	0.0050	g/lomu	0.938	0.881	1.09	0.604	0.574
zinc	7440-66-6	E449	0.30	mg/kg	61.3	57.6	71.3	39.5	37.5

Please refer to the General Comments section for an explanation of any qualifiers detected.

: 6 of 8	: WR2100682 Amendment 1	: Constantine North Inc.	: Palmer Project
Page	Work Order	Client	Project

10
.v,
-
_
_
1
S
d
~
r
the state of the s
-
с С
63
\sim
1
>
-
-
10
2
57

Soil
Matrix:
Sub-

•									
Sub-Matrix: Soil			Clie	Client sample ID	2021 MGC S1	2021 MGC S2	2021 MGC S3	2021 MGC S4	2021 MGC S5
(Matrix: Soil/Solid)									
			Client samplı	Client sampling date / time	15-Jun-2021 13:00	15-Jun-2021 13:00	15-Jun-2021 13:00	15-Jun-2021 13:00	15-Jun-2021 13:00
Analyte CAS N	CAS Number	Method	LOR	Unit	WR2100682-006	WR2100682-007	WR2100682-008	WR2100682-009	WR2100682-010
					Result	Result	Result	Result	Result
Physical Tests								•	
loss on ignition @ 550°C	1	E205D	1.0	%	<1.0	1.2	1.2	<1.0	1.2
moisture		E144	0.25	%	22.3	19.2	23.2	18.5	19.6
pH (1:2 soil:water)		E108	0.10	pH units	8.53	8.58	8.45	8.48	8.32
ash content @ 550°C	1	E205D	1.0	%	99.1	98.8	98.8	99.0	98.7
Particle Size									
grain size curve	1	E185	,		See	See	See Attached	See	See Attached
					Attached	Attached		Attached	
passing (9.5 mm)	1	E181	1.0	%	100	100	99.8	100	100
passing (4.75 mm)	1	E181	1.0	%	100	100	9.66	99.9	100
passing (19 mm)		E181	1.0	%	100	100	100	100	100
passing (25.4 mm)		E181	1.0	%	100	100	100	100	100
passing (38.1 mm)		E181	1.0	%	100	100	100	100	100
passing (50.8 mm)		E181	1.0	%	100	100	100	100	100
passing (76.2 mm)		E181	1.0	%	100	100	100	100	100
passing (1.0 mm)		E182	1.0	%	9.66	98.4	92.2	94.9	9.66
passing (0.841 mm)		E182	1.0	%	99.5	98.0	91.6	94.0	99.7
passing (0.50 mm)	1	E182	1.0	%	96.6	89.1	89.0	83.7	98.8
passing (0.420 mm)		E182	1.0	%	95.7	86.4	88.3	81.0	98.4
passing (0.250 mm)	1	E182	1.0	%	86.4	60.9	82.0	66.7	91.6
passing (0.149 mm)	1	E182	1.0	%	68.6	32.2	66.3	47.8	70.6
passing (0.125 mm)	1	E182	1.0	%	56.8	24.5	56.6	39.0	59.1
passing (0.075 mm)		E182	1.0	%	32.1	8.7	36.4	20.8	35.1
passing (0.063 mm)		E182	1.0	%	27.3	7.0	29.7	18.1	29.6
passing (0.05 mm)		E182	1.0	%	22.0	5.6	22.4	14.9	23.6
passing (0.0312 mm)		E183	1.0	%	12.0	4.5	12.3	8.2	12.7
passing (0.020 mm)	1	E183	1.0	%	6.7	4.1	6.9	5.3	6.8
passing (0.005 mm)		E183	1.0	%	3.4	3.8	4.6	2.2	2.2
passing (0.004 mm)		E183	1.0	%	3.0	3.8	4.2	2.0	2.0
passing (0.002 mm)	1	E183	1.0	%	1.9	3.8	3.4	1.7	2.0
passing (2.0 mm)	-	E181	1.0	%	100	9.66	95.9	99.4	100
Organic / Inorganic Carbon									

. 7 of 8	WR2100682 Amendment 1	: Constantine North Inc.	: Palmer Project	
Page	Work Order	Client	Project	

Analytical Results sub-Matrix: soil			Clier	Client sample ID	2021 MGC S1	2021 MGC S2	2021 MGC S3	2021 MGC S4	2021 MGC S5
(Matrix: Soil/Soild)			Client sampling date / time	g date / time	15-Jun-2021 13-00	15-Jun-2021 13-00	15-Jun-2021 13-00	15-Jun-2021	15-Jun-2021 13-00
Analyte	CAS Number	Method	LOR	Unit	WR2100682-006	WR2100682-007	WR2100682-008	WR2100682-009	WR2100682-010
					Result	Result	Result	Result	Result
Organic / Inorganic Carbon	Ì								
carbon, total [TC]	-	E351	0.050	%	0.779	0.812	0.920	0.743	0.908
carbon, total organic [TOC]	-	EC356	0.050	%	0.172	0.257	0.317	0.193	0.320
Inorganic Parameters									
sulfides, acid volatile	1	EC396	0.20	hmol/g	<0.20	<0.20	<0.20	<0.20	<0.20
sulfides, acid volatile		E396	5.0	mg/kg	<5.0	<5.0	<5.0	<5.0	<5.0
Metals									
aluminum	7429-90-5	E440	50	mg/kg	13200	11200	12200	12300	11800
antimony	7440-36-0	E440	0.10	mg/kg	0.31	0.51	0.47	0.32	0.54
arsenic	7440-38-2	E440	0.10	mg/kg	3.17	2.95	3.70	3.31	4.55
barium	7440-39-3	E440	0.50	mg/kg	139	81.8	144	153	147
beryllium	7440-41-7	E440	0.10	mg/kg	0.22	0.19	0.21	0.24	0.20
bismuth	7440-69-9	E440	0.20	mg/kg	<0.20	<0.20	<0.20	<0.20	<0.20
boron	7440-42-8	E440	5.0	mg/kg	<5.0	<5.0	<5.0	<5.0	<5.0
cadmium	7440-43-9	E440	0.020	mg/kg	0.566	0.818	1.02	0.516	1.38
calcium	7440-70-2	E440	50	mg/kg	31600	25000	24200	24600	26200
chromium	7440-47-3	E440	0.50	mg/kg	31.8	29.0	34.8	23.7	35.3
cobalt	7440-48-4	E440	0.10	mg/kg	24.4	16.1	21.5	23.2	20.8
copper	7440-50-8	E440	0.50	mg/kg	44.7	35.4	44.4	47.9	47.3
iron	7439-89-6	E440	50	mg/kg	50300	38300	45400	50800	44400
lead	7439-92-1	E440	0.50	mg/kg	8.62	3.44	6.53	11.1	7.11
lithium	7439-93-2	E440	2.0	mg/kg	6.5	6.6	6.8	6.4	6.9
magnesium	7439-95-4	E440	20	mg/kg	12300	11700	11900	11800	11700
manganese	7439-96-5	E440	1.0	mg/kg	743	686	735	782	735
mercury	7439-97-6	E510	0.0050	mg/kg	0.0113	0.0106	0.0167	0.0156	0.0190
molybdenum	7439-98-7	E440	0.10	mg/kg	1.75	2.23	2.44	1.13	3.19
nickel	7440-02-0	E440	0.50	mg/kg	22.8	20.5	25.0	16.9	28.2
phosphorus	7723-14-0	E440	50	mg/kg	1000	833	981	1030	932
potassium	7440-09-7	E440	100	mg/kg	1380	1040	1150	1240	980
selenium	7782-49-2	E440	0.20	mg/kg	0.98	1.11	1.28	0.75	1.99
silver	7440-22-4	E440	0.10	mg/kg	0.13	0.10	0.19	0.14	0.18
sodium	7440-23-5	E440	50	mg/kg	228	144	167	153	137

: 8 of 8	: WR2100682 Amendment 1	: Constantine North Inc.	: Palmer Project
Page	Work Order	Client	Project

Sub-Matrix: Soil			Clie	Client sample ID	2021 MGC S1	2021 MGC S2	2021 MGC S3	2021 MGC S4	2021 MGC S5
(Matrix: Soil/Solid)									
			Client sampli	Client sampling date / time	15-Jun-2021	15-Jun-2021	15-Jun-2021	15-Jun-2021	15-Jun-2021
				•	13:00	13:00	13:00	13:00	13:00
Analyte	CAS Number	Method	LOR	Unit	WR2100682-006	WR2100682-007	WR2100682-008	WR2100682-009	WR2100682-010
					Result	Result	Result	Result	Result
Metals									
strontium	7440-24-6	E440	0.50	mg/kg	71.3	60.1	64.9	61.6	65.8
sulfur	7704-34-9	E440	1000	mg/kg	3600	1300	2300	3100	2600
thallium	7440-28-0	E440	0.050	mg/kg	0.083	0.067	0.075	0.079	0.078
tin	7440-31-5	E440	2.0	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0
titanium	7440-32-6	E440	1.0	mg/kg	1850	1300	1490	1570	1240
tungsten	7440-33-7	E440	0.50	mg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
uranium	7440-61-1	E440	0.050	mg/kg	0.389	0.419	0.357	0.323	0.416
vanadium	7440-62-2	E440	0.20	mg/kg	123	90.2	107	118	96.9
zinc	7440-66-6	E440	2.0	mg/kg	122	138	156	137	183
zirconium	7440-67-7	E440	1.0	mg/kg	1.4	<1.0	1.2	1.4	1.0
Extractable Metals									
cadmium	7440-43-9	EC449	0.0050	hmol/g	<0.0050	0.0064	0.0062	<0.0050	0.0102
cadmium	7440-43-9	E449	0.50	mg/kg	<0.50	0.72	0.70	<0.50	1.15
copper	7440-50-8	EC449	0.010	g/lomu	0.182	0.142	0.160	0.223	0.228
copper	7440-50-8	E449	09.0	mg/kg	11.6	9.00	10.2	14.2	14.5
lead	7439-92-1	EC449	0.020	g/lomu	0.023	<0.020	<0.020	0.032	0.022
lead	7439-92-1	E449	4.0	mg/kg	4.7	<4.0	<4.0	6.7	4.5
mercury	7439-97-6	EC519	0.000050	g/lomu	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
mercury	7439-97-6	E519	0.010	mg/kg	<0.010	<0.010	<0.010	<0.010	<0.010
nickel	7440-02-0	EC449	0.050	g/lomu	0.063	0.065	0.068	0.065	0.123
nickel	7440-02-0	E449	2.9	mg/kg	3.7	3.8	4.0	3.8	7.2
zinc	7440-66-6	EC449	0.0050	g/lomu	0.492	0.639	0.696	0.792	1.09
zinc	7440-66-6	E449	0.30	mg/kg	32.2	41.8	45.5	51.8	71.2

Please refer to the General Comments section for an explanation of any qualifiers detected.

With Order WC210062 Page 1 d 21 Americania Cariat Fugues Ministria Radia Ministria Radia Clank Splits Splits Ministria Radia Ministria Radia Clank Splits Splits Ministria Radia Ministria Radia Affect Ministria Sclass Splits Ministria Radia Ministria Radia Affect Ministria Ministria Radia Ministria Radia Ministria Radia Affect Ministria Ministria Radia Ministria Radia Ministria Radia Affect Ministria Radia Ministria Radia Ministria Radia Ministria Radia Affect Ministria Radia Ministria Radia Ministria Radia Ministria Radia Affect Ministria Radia Ministria Radia Ministria Radia Ministria Radia Affect Ministria Radia Ministria Radia Ministria Radia Ministria Radia Affect Ministria Radia Ministria Radia Ministria Radia Ministria Radia Affect Ministria Radia Ministria R	Work Order Amendment Client Contact Address Address Telephone Project PO C-O-C number	: WR2100682	Page	: 1 of 21
Image: Section of the sectin of the section of the section of the section of the section of th	Amendment Client Contact Address Telephone Project PO C-O-C number	·		
ti i contribuenta i c	Client Contact Address Telephone Project PO C-O-C number			
did Dyan Nanger Cant Rate Control Nanger Control Nanger in Up Structure EC Canada V6C 2VG Natures #1911111111111111111111111111111111111	Contact Address Telephone Project PO C-O-C number	Constantine North Inc.	Laboratory	: Whitehorse - Environmental
aligne Sulf 20: e00 west Pronet SI, were in the model Address #12 is 11 Industrial Read from 997-465-610 Tempinen #12 is 11 industrial Read inter 57-001-2021 12/23 Tempinen #12 is 10 industrial Read inter 05 Sediment Analysis #12 is 10 industrial Read intermet 05 Sediment Analysis #12 is 10 industrial Read intermet 05 Sediment Analysis #12 is 10 industrial Read intermet 05 Sediment Analysis #12 is 10 industrial Read intermet 05 Sediment Analysis #10 is 10 industrial Read intermet 05 Sediment Analysis #11 is 10 industrial Read intermet 05 Sediment Analysis #10 is 10 industrial Read intermet 05 Sediment Analysis #11 is 10 industrial Read inter	Address Telephone Project PO C-O-C number	: Dylan Krull	Account Manager	: Carla Fuginski
Monton Varactoria	Telephone Project PO C-O-C number	: Suite 320 - 800 West Pender St.	Address	: #12 151 Industrial Road
Dome 97-465-6100 Treptone	Telephone Project PO C-O-C number	Vancouver BC Canada V6C 2V6		Whitehorse, Yukon Canada Y1A 2V3
dt Talme Project Dam Gampes Received :33-Jun 2021 21:15 cmuther :17-77384 Bear Date :27-064-2021 12:23 cmuther :17-77384 Bear Date :27-064-2021 12:23 cmuther :00 :27-064-2021 12:23 Bear Date :27-064-2021 12:23 cmuther :00 :27-064-2021 12:23 Bear Date :27-064-2021 12:23 cmuther :00 :00 :27-064-2021 12:23 Bear Date cmuther :00 :00 :27-064-2021 12:23 cmuther :00 :00 :27-064-2021 12:23 cmuther :00 :28-00 :00 cmuther :00 :28-00 :28-00 cmuther :00 :28-00	Project PO C-O-C number	: 907-465-6160	Telephone	: +1 867 668 6689
Current :17-7334 Ref :10 Ref :27-05:202112:23 Ref :27-05:2010; Ref <td< td=""><td>oo C-O-C number</td><td>: Palmer Project</td><td>Date Samples Received</td><td>: 23-Jun-2021 21:15</td></td<>	oo C-O-C number	: Palmer Project	Date Samples Received	: 23-Jun-2021 21:15
Controler (17.77364 Control to Example control to Example control to Example the end of	C-O-C number	.	Issue Date	: 27-Oct-2021 12:23
Inter Sediment Analysis Funder Sediment Analysis Funder Sediment Analysis Funder Sediment Analysis For Sediment Analysis For Sediment Analysis For Sediment Analysis For Sediment Analysis For Sediment Analysis For Sediment Analysis framples reacted by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (OC) results parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reveewers. The report high generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (OC) results parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reveewers. The report high generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (OC) results parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reveewers. The report his applicable m consist and summaries. Sediment Reporting levelorin imp. Discretion and autority constrol and the work order, but which formed part of the OC process lot. Sediment Reporting levelorin imp. Discretion and autority control Samples Millers : Quality Control Samples Inters : Quality Control Samples Inters : Analysis Holding Time Compliance (Breaches) Analysis Holding Time Compliance (Breaches)		: 17-773584		
 Soloment Analysis Isambles review (samples review (Sampler	, DK		
 numbric constant (samples received 10) (samples recover) relates corr. <l< td=""><td>bite</td><td>: Sediment Analysis</td><td></td><td></td></l<>	bite	: Sediment Analysis		
<pre>(samples reacled ::0 feamples analysis ::0 feamples analysis ::0 feamples analysis ::0 feamples analysis ::0 feamples and ::0 feamples ::0 feample</pre>	luote number	: Q62329		
(samples analysed :10 report is automatically generated by the SLIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any outliers of ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable morees and summaries. So that a control (AC) results to the state and parameters services number is a unque identifier assigned to discrete substances. So that posterion. So that and posterion. So that and posterion into: So that and posterion. So that and precent plates assigned to discrete substances. So that of fleporting (detection limit). So that is Splite outliers cocur. I be deterned when defen to cocur. Be deterned when a limit with the details. I deterned when a limit with the details. I deterned material (RM) Samples I defense that a limit of the details. Analysis Holding Time Outliers exist - please set following pages for ful details. I defense that a limit of the details. I defense the details (flef) Samples I defense that a limit of the details. I	o. of samples received	: 10		
report is automatcally generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any occusions to ALS bata Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable m ences and summaries. Solutions: Role or ALS bata Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable m ences and summaries. Solutions: Role to supplicable m ences and summarizes QC sample frequencies, and lists applicable m ences and summaries. EX control Role of the Astract Services number is a unique identifier assigned to discrete substances. Solutions: Role to supply objectives, provides holding time details and exceptions, summarizes QC samples frequencies, and lists applicable m ences and summaries. EX control Role of Role of Role of Role of Role of Role of Partee substances. EX control Role of	o. of samples analysed	: 10		
Summary of Outliers Dutiers : Quality Control Samples No Method Blank value outliers occur. No Matrix Spike outliers occur. No Duplicate outliers occur. Dutliers: Reference Material (RM) Samples Outliers: Analysis Holding Time Compliance (Breaches) Analysis Holding Time Councies occur. Dutliers: Frequency of Quality Control Samples Dutliers: Frequency of Quality Control Samples	Anonymous: Refers to CAS Number: Chemic DQO: Data Quality Ob LOR: Limit of Reportin RPD: Relative Percent	o samples which are not part of this work order, but which formed part al Abstracts Services number is a unique identifier assigned to discref jective. ng (detection limit). : Difference.	t of the QC process lot. te substances.	
Outliers : Quality Control Samples No • No Method Blank value outliers occur. No • No matrix Spike outliers occur. No • Laboratory Control Sample (LCS) outliers occur - please see following pages for full details. Laboratory Control Sample (LCS) outliers occur - please see following pages for full details. • No Test sample Surrogate recovery outliers exist. • No Test sample Surrogate recovery outliers exist. • No Reference Material (RM) Samples • No Reference Material (RM) Samples • Analysis Holding Time Compliance (Breaches) Analysis Holding Time Control Samples • Analysis Holding Time Outliers exist - please see following pages for full details. Dutliers : Frequency of Quality Control Samples	Summary of	Outliers		
 No Method Blank value outliers occur. No Matrix Spike outliers occur. Duplicate outliers occur - please see following pages for full details. Laboratory Control Sample (LCS) outliers occur - please see following pages for full details. Laboratory Control Sample (LCS) outliers occur - please see following pages for full details. No Test sample Surrogate recovery outliers occur - please see following pages for full details. No Test sample Surrogate recovery outliers exist. Outliers: Reference Material (RM) Samples No Reference Material (RM) Samples Analysis Holding Time Compliance (Breaches) Analysis Holding Time Control Samples Outliers : Frequency of Quality Control Samples 	Outliers : Quali	ty Control Samples		
Outliers: Reference Material (RM) Samples • No Reference Material (RM) Sample outliers occur. • No Reference Material (RM) Sample outliers occur. • Analysis Holding Time Compliance (Breaches) • Analysis Holding Time Outliers exist - please see following pages for full details. • Outliers : Frequency of Quality Control Samples	 <u>No</u> Method Blar <u>No</u> Matrix Spike <u>Duplicate outlie</u> Laboratory Coni <u>No</u> Test sample 	ik value outliers occur. outliers occur. ouctiers occur. occur - please see following pages for full details. trol Sample (LCS) outliers occur - please see following pages for Surrogate recovery outliers exist. 	full details.	
 <u>No</u> Reference Material (RM) Sample outliers occur. <i>Outliers : Analysis Holding Time Compliance (Breaches)</i> Analysis Holding Time Outliers exist - please see following pages for full details. <i>Outliers : Frequency of Quality Control Samples</i> 	Outliers: Referv	ence Material (RM) Samples		
 Outliers : Analysis Holding Time Compliance (Breaches) Analysis Holding Time Outliers exist - please see following pages for full details. Outliers : Frequency of Quality Control Samples 	● <u>No</u> Reference ∿	faterial (RM) Sample outliers occur.		
Outliers : Frequency of Quality Control Samples	Outliers : Analy ● Analysis Holdinę	<i>sis Holding Time Compliance (Breaches)</i> 3 Time Outliers exist - please see following pages for full details.		
	Outliers : Frequ	Jency of Quality Control Samples		

Comment

Limits

Result

Method

CAS Number

Analyte

Client/Ref Sample ID

Laboratory sample ID

Outliers : Quality Control Samples Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: Soil/Solid Analyte Group

Duplicate (DUP) RPDs								
Metals	WR2100682-005	2021 LGC S5	cadmium	7440-43-9	E440	57.6 % DUP-H	30%	Duplicate RPD does not meet the DQO for this test.
Metals	WR2100682-005	2021 LGC S5	lead	7439-92-1	E440	51.8 % DUP-H	40%	Duplicate RPD does not meet the DQO for this test.
Metals	WR2100682-005	2021 LGC S5	mercury	7439-97-6	E510	0.0104 ^{DUP-H} %	Diff <2x LOR	Diff <2x LOR Low Level DUP DQO exceeded (difference > 2 LOR).

Result Qualifiers

Description	
Qualifier	

DUP-H

Duplicate results outside ALS DQO, due to sample heterogeneity.

Laboratory Control Sample (LCS) Recoveries	ries						
Metals	QC-MRG2-2335420 02	 aluminum	7429-90-5	E440	76.7 % ^{MES}	80.0-120%	80.0-120% Recovery less than lower control limit
Metals	QC-MRG2-2339580 02	 aluminum	7429-90-5	E440	77.2 % ^{MES}	80.0-120%	Recovery less than lower control limit
Result Qualifiers							

Oualifier

Description	Data Quality Objective was marginally exceeded (by < 10% absolute) for < 10% of analytes in a Multi-Element Scan / Multi-Parameter Scan (considered acceptable as per OMOE & CCME).
Qualifier	MES

- : WR2100682 Amendment 1 3 of 21

 - Constantine North Inc.

 - Palmer Project

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA). requirements.

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Soil/Solid

Evaluation: * = Holding time exceedance; < = Within Holding Time

							0			>
Analyte Group	Method	Sampling Date	Ext	Extraction / Preparation	paration			Analysis		
Container / Client Sample ID(s)			Preparation Date	Holding Times Rec Actual	Times Actual	Eval	Analysis Date	Holding Times Rec Actual		Eval
Extractable Metals : Simultaneously Extracted Mercury by CVAAS										
Glass soil jar/Tefton lined cap 2021 LGC S1	E519	16-Jun-2021	29-Jun-2021	l	1		29-Jun-2021	28 days 13 days	ays	>
Extractable Metals : Simultaneously Extracted Mercury by CVAAS	l									
Glass soil jar/Tefton lined cap 2021 LGC S2	E519	16-Jun-2021	29-Jun-2021	1			29-Jun-2021	28 days 13 days	ays	>
Extractable Metals : Simultaneously Extracted Mercury by CVAAS	l									
Glass soil jar/Teflon lined cap 2021 LGC S3	E519	16-Jun-2021	29-Jun-2021	ļ			29-Jun-2021	28 days 13 days	ays	>
Extractable Metals : Simultaneously Extracted Mercury by CVAAS								_		
Glass soil jar/Teflon lined cap 2021 LGC S4	E519	16-Jun-2021	29-Jun-2021	I	1		29-Jun-2021	28 days 13 days	ays	>
Extractable Metals : Simultaneously Extracted Mercury by CVAAS								-	-	
Glass soil jar/Tefton lined cap 2021 LGC S5	E519	16-Jun-2021	29-Jun-2021	l			29-Jun-2021	28 days 13 days	ays	>
Extractable Metals : Simultaneously Extracted Mercury by CVAAS								-		
Glass soil jar/Teflon lined cap 2021 MGC S1	E519	15-Jun-2021	29-Jun-2021	l	1		29-Jun-2021	28 days 14 days	ays	>
Extractable Metals : Simultaneously Extracted Mercury by CVAAS	l								-	
Glass soil jar/Tefion lined cap 2021 MGC S2	E519	15-Jun-2021	29-Jun-2021	l	1		29-Jun-2021	28 days 14 days	ays	>
					_					

: 4 of 21 : WR2100682 Amendment 1 : Constantine North Inc. : Palmer Project Page Work Order Client Project

Matrix: Soil/Solid		-			Eval	uation: × = F	Evaluation: $x = Holding$ time exceedance; $ = Within Holding Time$	edance; v	 Mithin H 	Holding Time
Analyte Group	Method	Sampling Date	Extr	Extraction / Preparation	aration			Analysis	is	
Container / Client Sample ID(s)			Preparation Date	Holding Times Rec Actual	Times Actual	Eval	Analysis Date	Holding Rec	Holding Times Rec Actual	Eval
Extractable Metals : Simultaneously Extracted Mercury by CVAAS										
Glass soil jar/Tefton lined cap 2021 MGC S3	E519	15-Jun-2021	29-Jun-2021		1		29-Jun-2021	28 days	14 days	>
Extractable Metals : Simultaneously Extracted Mercury by CVAAS										
Glass soil jar/Teflon lined cap 2021 MGC S4	E519	15-Jun-2021	29-Jun-2021				29-Jun-2021	28 days	28 days 14 days	>
Extractable Metals : Simultaneously Extracted Mercury by CVAAS								_		
Glass soil jar/Teflon lined cap 2021 MGC S5	E519	15-Jun-2021	29-Jun-2021		ł		29-Jun-2021	28 days	14 days	>
Extractable Metals : Simultaneously Extracted Metals by CRC ICPMS (mg/kg)										
Glass soil jar/Teflon lined cap 2021 LGC S1	E449	16-Jun-2021	29-Jun-2021				29-Jun-2021	180 days	13 days	>
Extractable Metals : Simultaneously Extracted Metals by CRC ICPMS (mg/kg)								-	-	
Glass soil jar/Teflon lined cap 2021 LGC S2	E449	16-Jun-2021	29-Jun-2021	l	1		29-Jun-2021	180 days	13 days	>
Extractable Metals : Simultaneously Extracted Metals by CRC ICPMS (mg/kg)				-	-					
Glass soil jar/Teflon lined cap 2021 LGC S3	E449	16-Jun-2021	29-Jun-2021		ł		29-Jun-2021	180 days	13 days	>
Extractable Metals : Simultaneously Extracted Metals by CRC ICPMS (mg/kg)										
Glass soil jar/Teflon lined cap 2021 LGC S4	E449	16-Jun-2021	29-Jun-2021		1		29-Jun-2021	180 days	13 days	>
Extractable Metals : Simultaneously Extracted Metals by CRC ICPMS (mg/kg)					-			_		
Glass soil jar/Teflon lined cap 2021 LGC S5	E449	16-Jun-2021	29-Jun-2021	l	ł		29-Jun-2021	180 days	13 days	>
Extractable Metals : Simultaneously Extracted Metals by CRC ICPMS (mg/kg)					-					
Glass soil jar/Teflon lined cap 2021 MGC S1	E449	15-Jun-2021	29-Jun-2021		ł		29-Jun-2021	180 days	14 days	>

: 5 of 21 : WR2100682 Amendment 1 : Constantine North Inc. : Palmer Project Page Work Order Client Project

Matrix: Soil/Solid					Evaluatior	Evaluation: $*$ = Holding time exceedance ; \checkmark = Within Holding Time	exceedance	e; 🗸 = Withir	Holding Time
Analyte Group	Method	Sampling Date	Extr	Extraction / Preparation	paration		An	Analysis	
Container / Client Sample ID(s)			Preparation Date	Holding Times Rec Actual	Times Eval Actual	al Analysis Date		Holding Times Rec Actual	Eval
Extractable Metals : Simultaneously Extracted Metals by CRC ICPMS (mg/kg)							-		
Glass soil jar/Tefton lined cap 2021 MGC S2	E449	15-Jun-2021	29-Jun-2021	1		29-Jun-2021	21 180	14 davs	>
Extractable Metals : Simultaneously Extracted Metals by CRC ICPMS (mg/kg)					-				
Glass soil jar/Teflon lined cap 2021 MGC S3	E449	15-Jun-2021	29-Jun-2021			29-Jun-2021) 14 days	>
Extractable Metals : Simultaneously Extracted Metals by CBC ICPNS (ma/kg)	l			I		_	udys	0	
Class soil jar/Tefton lined cap 2021 MGC S4	E449	15-Jun-2021	29-Jun-2021	1		29-Jun-2021	21 180 days) 14 days	>
Extractable Metals : Simultaneously Extracted Metals by CRC ICPMS (mg/kg)									
Glass soil jar/Teflon lined cap 2021 MGC S5	E449	15-Jun-2021	29-Jun-2021	1		29-Jun-2021	21 180 days) 14 days	>
Inorganic Parameters : Acid Volatile Sulfide by Colourimetry (5 mg/kg)							-	-	
Glass soil jar/Teflon lined cap 2021 LGC S1	E396	16-Jun-2021	29-Jun-2021			29-Jun-2021		14 days 13 days	>
Inorganic Parameters : Acid Volatile Sulfide by Colourimetry (5 mg/kg)	l						_		
Glass soil jar/Tefton lined cap 2021 LGC S2	E396	16-Jun-2021	29-Jun-2021	I		29-Jun-2021	21 14 days	lys 13 days	>
Inorganic Parameters : Acid Volatile Sulfide by Colourimetry (5 mg/kg)							_		
Glass soil jar/Teflon lined cap 2021 LGC S3	E396	16-Jun-2021	29-Jun-2021	I		29-Jun-2021	21 14 days	lys 13 days	>
Inorganic Parameters : Acid Volatile Sulfide by Colourimetry (5 mg/kg)								_	
Glass soil jar/Tefton lined cap 2021 LGC S4	E396	16-Jun-2021	29-Jun-2021			29-Jun-2021		14 days 13 days	>
Inorganic Parameters : Acid Volatile Sulfide by Colourimetry (5 mg/kg)									
Glass soil jar/Teflon lined cap 2021 LGC S5	E396	16-Jun-2021	29-Jun-2021	I		29-Jun-2021	21 14 days	lys 13 days	>
		-			-	-	-	-	

: 6 of 21 : WR2100682 Amendment 1 : Constantine North Inc. : Palmer Project Page Work Order Client Project

Matrix: Soil/Solid Analyte Group	Method	Sampling Date	Ext	Extraction / Preparation	paration		n Analysis	Analysis		
Container / Client Sample ID(s)			Preparation Date	Holding Times Rec Actual	Times Actual	Eval	Analysis Date	Holding Times Rec Actual		Eval
Inorganic Parameters : Acid Volatile Sulfide by Colourimetry (5 mg/kg)									_	
Glass soli Jar/ erron lined cap 2021 MGC S1	E396	15-Jun-2021	29-Jun-2021	I	1		29-Jun-2021	14 days 14 days		* EHT
Inorganic Parameters : Acid Volatile Sulfide by Colourimetry (5 mg/kg)									-	
Glass soil jar/Teflon lined cap 2021 MGC S2	E396	15-Jun-2021	29-Jun-2021		1		29-Jun-2021	14 days 14 days		EHT *
Inorganic Parameters : Acid Volatile Sulfide by Colourimetry (5 mg/kg)									-	
Glass soil jar/Teflon lined cap 2021 MGC S3	E396	15-Jun-2021	29-Jun-2021	I			29-Jun-2021	14 days 14 days		* EHT
Inorganic Parameters : Acid Volatile Sulfide by Colourimetry (5 mg/kg)										
Glass soil jar/Tefton lined cap 2021 MGC S4	E396	15-Jun-2021	29-Jun-2021				29-Jun-2021	14 days 14 days		EHT *
Inorganic Parameters : Acid Volatile Sulfide by Colourimetry (5 mg/kg)										
Glass soil jar/Teflon lined cap 2021 MGC S5	E396	15-Jun-2021	29-Jun-2021		ł		29-Jun-2021	14 days 14 days		# EHT
Metals : Mercury in Soil/Solid by CVAAS	l				-			-		
Glass soil jar/Teflon lined cap 2021 LGC S1	E510	16-Jun-2021	01-Jul-2021	l			02-Jul-2021	28 days 16 days	ays	>
Metals : Mercury in Soil/Solid by CVAAS	l									
Glass soil jar/Teflon lined cap 2021 LGC S2	E510	16-Jun-2021	01-Jul-2021				02-Jul-2021	28 days 16 days	ays	>
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Tefton lined cap 2021 LGC S3	E510	16-Jun-2021	01-Jul-2021	1	1		02-Jul-2021	28 days 16 days	ays	>
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap 2021 LGC S4	E510	16-Jun-2021	01-Jul-2021	1			02-Jul-2021	28 days 16 days	ays	>
					-			_	_	

: 7 of 21 : WR2100682 Amendment 1 : Constantine North Inc. : Palmer Project Page Work Order Client Project

ALS

Matrix: Soil/Solid					Eva	uation: × = }	Evaluation: $x =$ Holding time exceedance ; $u =$ Within Holding Time	edance; <	<pre>< = Within }</pre>	Holding Time
Analyte Group	Method	Sampling Date	Ext	Extraction / Preparation	paration			Analysis	is	
Container / Client Sample ID(s)			Preparation Date	Holding Times Rec Actual	Times Actual	Eval	Analysis Date	Holding Rec	Holding Times Rec Actual	Eval
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap 2021 LGC S5	E510	16-Jun-2021	01-Jul-2021	I	1		02-Jul-2021	28 days	16 days	>
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap 2021 MGC S1	E510	15-Jun-2021	02-Jul-2021				02-Jul-2021	28 days 17 days	17 days	>
Metals : Mercury in Soil/Solid by CVAAS	ļ									
Glass soil jar/Tefton lined cap 2021 MGC S2	E510	15-Jun-2021	02-Jul-2021				02-Jul-2021	28 days 17 days	17 days	>
Metals : Mercury in Soil/Solid by CVAAS									-	
Glass soil jar/Teflon lined cap 2021 MGC S3	E510	15-Jun-2021	02-Jul-2021				02-Jul-2021	28 days	17 days	>
Metals : Mercury in Soil/Solid by CVAAS								_	-	
Glass soil jar/Teflon lined cap 2021 MGC S4	E510	15-Jun-2021	02-Jul-2021	ļ	1		02-Jul-2021	28 days 17 days	17 days	>
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap 2021 MGC S5	E510	15-Jun-2021	02-Jul-2021		1		02-Jul-2021	28 days 17 days	17 days	>
Metals : Metals in Soil/Solid by CRC ICPMS	l									
Glass soil jar/Teflon lined cap 2021 LGC S1	E440	16-Jun-2021	01-Jul-2021				02-Jul-2021	180 days	16 days	>
Metals : Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teflon lined cap 2021 LGC S2	E440	16-Jun-2021	01-Jul-2021	I	1		02-Jul-2021	180 days	16 days	>
Metals : Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teflon lined cap 2021 LGC S3	E440	16-Jun-2021	01-Jul-2021	I	1		02-Jul-2021	180 days	16 days	>

: 8 of 21 : WR2100682 Amendment 1 : Constantine North Inc. : Palmer Project Page Work Order Client Project

ALS

Matrix: Soil/Solid					Evaluation	Evaluation: κ = Holding time exceedance; \checkmark = Within Holding Time	e exceedanc	e; < = Withi	Holding Time
Analyte Group	Method	Sampling Date	Extr	Extraction / Preparation	paration		A	Analysis	
Container / Client Sample ID(s)			Preparation	Holding Times	Times Eval	al Analysis Date		Holding Times	Eval
Metals : Metals in Soil/Solid by CRC ICPMS			Date		Juluar			-	
Glass soil jar/Teflon lined cap 2021 LGC S4	E440	16-Jun-2021	01-Jul-2021	1		02-Jul-2021	021 180	0 16 days	>
						_	days	ls/	
Metals : Metals in Soil/Solid by CKC ICPMS Glass soil iar/Tefton lined cap	l					-	ŀ	-	
2021 LGC S5	E440	16-Jun-2021	01-Jul-2021			02-Jul-2021	021 180 days	0 16 days	>
Metals : Metals in Soil/Solid by CRC ICPMS	l						` 		
Glass soil jar/Teflon lined cap 2021 MGC S1	E440	15-Jun-2021	02-Jul-2021	1		02-Jul-2021	021 180 days	0 17 days	>
Metals : Metals in Soil/Solid by CRC ICPMS							-	-	
Glass soil jar/Tefton lined cap 2021 MGC S2	E440	15-Jun-2021	02-Jul-2021			02-Jul-2021	021 180 days	0 17 days	>
Metals : Metals in Soil/Solid by CRC ICPMS									
Glass soil jar/Tefion lined cap 2021 MGC S3	E440	15-Jun-2021	02-Jul-2021			02-Jul-2021	021 180 days	0 17 days /s	>
Metals : Metals in Soil/Solid by CRC ICPMS							_	-	
Glass soil jar/Tefton lined cap 2021 MGC S4	E440	15-Jun-2021	02-Jul-2021	1		02-Jul-2021	021 180 days	0 17 days	>
Metals : Metals in Soil/Solid by CRC ICPMS									
Glass soil jar/Tefion lined cap 2021 MGC S5	E440	15-Jun-2021	02-Jul-2021			02-Jul-2021	021 180 days	0 17 days /s	>
Organic / Inorganic Carbon : Total Carbon by Combustion					-		-	-	
LDPE bag 2021 LGC S1	E351	16-Jun-2021	-			29-Jun-2021	2021 180 days	0 0 days	>
Organic / Inorganic Carbon : Total Carbon by Combustion					-	-	-	-	
LDPE bag 2021 LGC S2	E351	16-Jun-2021	I	I		29-Jun-2021	2021 180 days	0 0 days	>

- : 9 of 21 : WR2100682 Amendment 1
- - Constantine North Inc. Palmer Project

l

Matrix: Soil/Solid					Evalu	ation: × = F	Evaluation: * = Holding time exceedance; < = Within Holding Time	sdance ; v	<pre>< = Within }</pre>	Holding Time
Analyte Group	Method	Sampling Date	Ext	Extraction / Preparation	paration			Analysis	is	
Container / Client Sample ID(s)			Preparation Date	Holding Times Rec Actual	Times Actual	Eval	Analysis Date	Holding Rec	Holding Times Rec Actual	Eval
Organic / Inorganic Carbon : Total Carbon by Combustion										
LDPE bag 2021 LGC S3	E351	16-Jun-2021			1		29-Jun-2021	180 days	0 days	>
Organic / Inorganic Carbon : Total Carbon by Combustion										
LDPE bag 2021 LGC S4	E351	16-Jun-2021					29-Jun-2021	180 days	0 days	>
Organic / Inorganic Carbon : Total Carbon by Combustion										
LDPE bag 2021 LGC S5	E351	16-Jun-2021	1				29-Jun-2021	180 days	0 days	>
Organic / Inorganic Carbon : Total Carbon by Combustion										
LDPE bag 2021 MGC S1	E351	15-Jun-2021	-				29-Jun-2021	180 days	0 days	>
Organic / Inorganic Carbon : Total Carbon by Combustion										
LDPE bag 2021 MGC S2	E351	15-Jun-2021			1		29-Jun-2021	180 days	0 days	>
Organic / Inorganic Carbon : Total Carbon by Combustion										
LDPE bag 2021 MGC S3	E351	15-Jun-2021	-				29-Jun-2021	180 days	0 days	>
Organic / Inorganic Carbon : Total Carbon by Combustion									-	
LDPE bag 2021 MGC S4	E351	15-Jun-2021					29-Jun-2021	180 days	0 days	>
Organic / Inorganic Carbon : Total Carbon by Combustion										
LDPE bag 2021 MGC S5	E351	15-Jun-2021	I				29-Jun-2021	180 days	0 days	>
Particle Size : Grain Size Report (Attachment) Hydrometer/Sieve Method	l									
LDPE bag 2021 LGC S1	E185	16-Jun-2021	I	I	1		02-Jul-2021	365 days	I	

: 10 of 21 : WR2100682 Amendment 1 : Constantine North Inc. : Palmer Project Page Work Order Client

Project

Matrix: Soil/Solid					2	ממויטווי אי – י				2
Analyte Group	Method	Sampling Date	Ext	Extraction / Preparation	paration			Analysis	S.	
Container / Client Sample ID(s)			Preparation	Holding Times	Times	Eval	Analysis Date	Holding Times	Times	Eval
Particla Siza - Grain Siza Bonort (Attachmant) Hudromatar/Siava Mathod			Date	200	Actual			1 2 2	Actual	
raticie ore : Gain ore Nepoli (Anachineni) nyurumeteroleve metriou I DPF had										
2021 LGC S2	E185	16-Jun-2021		l			02-Jul-2021	365 davs		
Particle Size : Grain Size Report (Attachment) Hydrometer/Sieve Method	l				1					
LDPE bag 2021 LGC S3	E185	16-Jun-2021	1	1	1		02-Jul-2021	365		
								days		
Particle Size : Grain Size Report (Attachment) Hydrometer/Sieve Method										
LDPE bag 2021 LGC S4	E185	16-Jun-2021	1	I	1		02-Jul-2021	365 days		
Particle Size : Grain Size Report (Attachment) Hydrometer/Sieve Method										
LDPE bag 2021 LGC S5	E185	16-Jun-2021	I	I			02-Jul-2021	365 days	1	
Particle Size : Grain Size Report (Attachment) Hydrometer/Sieve Method										
LDPE bag 2021 MGC S1	E185	15-Jun-2021	I				02-Jul-2021	365 days		
Particle Size : Grain Size Report (Attachment) Hydrometer/Sieve Method									-	
LDPE bag 2021 MGC S2	E185	15-Jun-2021	-	l			02-Jul-2021	365 days	I	
Particle Size : Grain Size Report (Attachment) Hydrometer/Sieve Method										
LDPE bag 2021 MGC S3	E185	15-Jun-2021	I				02-Jul-2021	365 days		
Particle Size : Grain Size Report (Attachment) Hydrometer/Sieve Method										
LDPE bag 2021 MGC S4	E185	15-Jun-2021			I		02-Jul-2021	365 days		
Particle Size : Grain Size Report (Attachment) Hydrometer/Sieve Method										
LDPE bag 2021 MGC S5	E185	15-Jun-2021	I	I			02-Jul-2021	365 days		

: 11 of 21 : WR2100682 Amendment 1 : Constantine North Inc. : Palmer Project Page Work Order Client Project

Matrix: Soil/Solid					Eval	uation: × = }	Evaluation: $* =$ Holding time exceedance ; $\checkmark =$ Within Holding Time	edance; √	= Within F	Holding Time
Analyte Group	Method	Sampling Date	Ext	Extraction / Preparation	paration			Analysis	Ş	
Container / Client Sample ID(s)			Preparation Date	Holding Times Rec Actual	Times Actual	Eval	Analysis Date	Holding Rec	Holding Times Rec Actual	Eval
Particle Size : Particle Size Analysis - Hydrometer										
LDPE bag 2021 LGC S1	E183	16-Jun-2021		l			29-Jun-2021	365 davs	0 days	>
Particle Size : Particle Size Analysis - Hydrometer	l							`		
LDPE bag 2021 LGC S2	E183	16-Jun-2021	1	1			29-Jun-2021	365 days	0 days	>
Particle Size : Particle Size Analysis - Hydrometer								-		
LDPE bag 2021 LGC S3	E183	16-Jun-2021	1	1			29-Jun-2021	365 days	0 days	>
Particle Size : Particle Size Analysis - Hydrometer										
LDPE bag 2021 LGC S4	E183	16-Jun-2021	I	-			29-Jun-2021	365 days	0 days	>
Particle Size : Particle Size Analysis - Hydrometer										
LDPE bag 2021 LGC S5	E183	16-Jun-2021	1	1			29-Jun-2021	365 days	0 days	>
Particle Size : Particle Size Analysis - Hydrometer									-	
LDPE bag 2021 MGC S1	E183	15-Jun-2021	1	1			29-Jun-2021	365 days	0 days	>
Particle Size : Particle Size Analysis - Hydrometer										
LDPE bag 2021 MGC S2	E183	15-Jun-2021	I	-			29-Jun-2021	365 days	0 days	>
Particle Size : Particle Size Analysis - Hydrometer										
LDPE bag 2021 MGC S3	E183	15-Jun-2021	I				29-Jun-2021	365 days	0 days	>
Particle Size : Particle Size Analysis - Hydrometer						-			-	
LDPE bag 2021 MGC S4	E183	15-Jun-2021	1	l	l		29-Jun-2021	365 days	0 days	>

- : 12 of 21 : WR2100682 Amendment 1 : Constantine North Inc. : Palmer Project

Matrix: Soil/Solid	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				Γνα	uduou. * - r				2
Anaryre Group Container / Client Sample ID(s)	Method	Sampling Date	uo	Holding Times	Holding Times	Eval	Analysis Date	Holding 7	Holding Times	Eval
			Date	Rec	Actual			Rec	Actual	
Particle Size : Particle Size Analysis - Hydrometer					-					
LDPE bag 2021 MGC S5	E183	15-Jun-2021	I	1	l		29-Jun-2021	365 days	0 days	>
Particle Size : Particle Size Analysis - Sieve <2mm	l									
LDPE bag 2021 LGC S1	E182	16-Jun-2021	1	1			29-Jun-2021	365 days	0 days	>
Particle Size : Particle Size Analysis - Sieve <2mm										
LDPE bag 2021 LGC S2	E182	16-Jun-2021	ł	I	1		29-Jun-2021	365 days	0 days	>
Particle Size : Particle Size Analysis - Sieve <2mm										
LDPE bag 2021 LGC S3	E182	16-Jun-2021	ł	-	1		29-Jun-2021	365 days	0 days	>
Particle Size : Particle Size Analysis - Sieve <2mm										
LDPE bag 2021 LGC S4	E182	16-Jun-2021	-	-	1		29-Jun-2021	365 days	0 days	>
Particle Size : Particle Size Analysis - Sieve <2mm										
LDPE bag 2021 LGC S5	E182	16-Jun-2021	-	1			29-Jun-2021	365 days	0 days	>
Particle Size : Particle Size Analysis - Sieve <2mm										
LDPE bag 2021 MGC S1	E182	15-Jun-2021	I	1			29-Jun-2021	365 days	0 days	>
Particle Size : Particle Size Analysis - Sieve <2mm										
LDPE bag 2021 MGC S2	E182	15-Jun-2021	I		ł		29-Jun-2021	365 days	0 days	>
Particle Size : Particle Size Analysis - Sieve ≺2mm					-					
LDPE bag 2021 MGC S3	E182	15-Jun-2021	ł		ł		29-Jun-2021	365 days	0 days	>

: 13 of 21 : WR2100682 Amendment 1 : Constantine North Inc. : Palmer Project

Matrix: Soil/Solid					Evalu	ation: × = F	Evaluation: κ = Holding time exceedance ; \checkmark = Within Holding Time	edance; √	 Mithin F 	Holding Time
Analyte Group	Method	Sampling Date	Extr	Extraction / Preparation	paration			Analysis	is	
Container / Client Sample ID(s)			Preparation Date	Holding Times Rec Actual	Times Actual	Eval	Analysis Date	Holding Rec	Holding Times Rec Actual	Eval
Particle Size : Particle Size Analysis - Sieve ≺2mm					-					
LDPE bag 2021 MGC S4	E182	15-Jun-2021	l	I			29-Jun-2021	365 davs	0 days	>
Particle Size : Particle Size Analysis - Sieve ≺2mm					_					
LDPE bag 2021 MGC S5	E182	15-Jun-2021	ł				29-Jun-2021	365 days	0 days	>
Particle Size : Particle Size Analysis - Sieve >2mm	l									
LDPE bag 2021 LGC S1	E181	16-Jun-2021	I		1		29-Jun-2021	365 days	0 days	>
Particle Size : Particle Size Analysis - Sieve >2mm										
LDPE bag 2021 LGC S2	E181	16-Jun-2021	ł	l			29-Jun-2021	365 days	0 days	>
Particle Size : Particle Size Analysis - Sieve >2mm										
LDPE bag 2021 LGC S3	E181	16-Jun-2021	l	l			29-Jun-2021	365 days	0 days	>
Particle Size : Particle Size Analysis - Sieve >2mm	l				-					
LDPE bag 2021 LGC S4	E181	16-Jun-2021	I				29-Jun-2021	365 days	0 days	>
Particle Size : Particle Size Analysis - Sieve >2mm										
LDPE bag 2021 LGC S5	E181	16-Jun-2021	I				29-Jun-2021	365 days	0 days	>
Particle Size : Particle Size Analysis - Sieve >2mm										
LDPE bag 2021 MGC S1	E181	15-Jun-2021	1	l			29-Jun-2021	365 days	0 days	>
Particle Size : Particle Size Analysis - Sieve >2mm										
LDPE bag 2021 MGC S2	E181	15-Jun-2021	l				29-Jun-2021	365 days	0 days	>

: 14 of 21 : WR2100682 Amendment 1 : Constantine North Inc. : Palmer Project Page Work Order Client Project

Matrix: Soil/Solid					Eval	uation: × =	Evaluation: $* =$ Holding time exceedance ; $\checkmark =$ Within Holding Time	dance; v	<pre>< = Within {</pre>	Holding Time
Analyte Group	Method	Sampling Date	Ext	Extraction / Preparation	paration			Analysis	is	
Container / Client Sample ID(s)			Preparation	Holding Times	Times	Eval	Analysis Date	Holding	Holding Times	Eval
Darticla Siza - Darticla Siza Analysis - Siava >3mm			Date	Xec	Actual			Sec	Actual	
ratucie dize : ratucie dize Atlarysis - dieve zitititi I DPE han	l									
2021 MGC S3	E181	15-Jun-2021		-			29-Jun-2021	365	0 days	>
Destinits Sizes Destinits Size Auchains Sizes Onem					1			days		
Particle Size : Particle Size Analysis - Sieve >∠mm LDPE had					ŀ					
2021 MGC S4	E181	15-Jun-2021	-	l	l		29-Jun-2021	365 davs	0 days	>
Particle Size : Particle Size Analysis - Sieve >2mm			l							
LDPE bag 2021 MGC S5	E181	15-Jun-2021	ļ	1			29-Jun-2021	365 davs	0 days	>
Physical Tests : Loss On Ignition (550°C)	l							,		
LDPE bag 2021 LGC S1	E205D	16-Jun-2021	ł				03-Jul-2021	365 days	17 days	>
Physical Tests : Loss On Ignition (550°C)										
LDPE bag 2021 LGC S2	E205D	16-Jun-2021	ł	l			03-Jul-2021	365 days	17 days	>
Physical Tests : Loss On Ignition (550°C)										
LDPE bag 2021 LGC S3	E205D	16-Jun-2021	1	1			03-Jul-2021	365 days	17 days	>
Physical Tests : Loss On Ignition (550°C)										
LDPE bag 2021 LGC S4	E205D	16-Jun-2021	I	-			03-Jul-2021	365 days	17 days	>
Physical Tests : Loss On Ignition (550°C)										
LDPE bag 2021 LGC S5	E205D	16-Jun-2021	ł	-			03-Jul-2021	365 days	17 days	>
Physical Tests : Loss On Ignition (550°C)										
LDPE bag 2021 MGC S1	E205D	15-Jun-2021	ł	I	I		03-Jul-2021	365 days	18 days	>

: 15 of 21 : WR2100682 Amendment 1 : Constantine North Inc. : Palmer Project

Matrix: Soil/Solid					Eva	luation: × =	Evaluation: \star = Holding time exceedance ; \checkmark = Within Holding Time	edance;	<pre>< = Within</pre>	Holding Tim
Analyte Group	Method	Sampling Date	Extr	Extraction / Preparation	paration			Analysis	sis	
Container / Client Sample ID(s)			Preparation Date	Holding Times Rec Actual	Times Actual	Eval	Analysis Date	Holdin, Rec	Holding Times Rec Actual	Eval
Physical Tests : Loss On Ignition (550°C)										
LDPE bag 2021 MGC S2	E205D	15-Jun-2021					03-Jul-2021	365 days	18 days	>
Physical Tests : Loss On Ignition (550°C)										
LDPE bag 2021 MGC S3	E205D	15-Jun-2021	-		-		03-Jul-2021	365 days	18 days	>
Physical Tests : Loss On Ignition (550°C)										
LDPE bag 2021 MGC S4	E205D	15-Jun-2021	I	I			03-Jul-2021	365 days	18 days	>
Physical Tests : Loss On Ignition (550°C)										
LDPE bag 2021 MGC S5	E205D	15-Jun-2021	I	I			03-Jul-2021	365 days	18 days	>
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap 2021 LGC S1	E144	16-Jun-2021					30-Jun-2021	0 days	I	
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Tefion lined cap 2021 LGC S2	E144	16-Jun-2021	I	I			30-Jun-2021	0 days	I	
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Tefton lined cap 2021 LGC S3	E144	16-Jun-2021			-		30-Jun-2021	0 days		
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap 2021 LGC S4	E144	16-Jun-2021	-	ļ			30-Jun-2021	0 days	I	
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap 2021 LGC S5	E144	16-Jun-2021	1				30-Jun-2021	0 days	I	
-		•								

: 16 of 21 : WR2100682 Amendment 1 : Constantine North Inc. : Palmer Project Page Work Order Client

Project

Matrix: Soil/Solid					Eva	luation: × = F	Evaluation: * = Holding time exceedance; < = Within Holding Time	edance ; 🗸	= Within	Holding 11m
Analyte Group	Method	Sampling Date	Ext	Extraction / Preparation	paration			Analysis		
Container / Client Sample ID(s)			Preparation	Holding Times	Times	Eval	Analysis Date	ng	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Moisture Content by Gravimetry								-		
Glass soil jar/Teflon lined cap 2021 MGC S1	E144	15-Jun-2021	I	l	I		30-Jun-2021	0 days	-	
Physical Tests : Moisture Content by Gravimetry			l							
Glass soil jar/Teflon lined cap 2021 MGC S2	E144	15-Jun-2021	ļ	I			30-Jun-2021	0 days	-	
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap 2021 MGC S3	E144	15-Jun-2021	-	I	1		30-Jun-2021	0 days	1	
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap 2021 MGC S4	E144	15-Jun-2021	ł	I			30-Jun-2021	0 days	l	
Physical Tests : Moisture Content by Gravimetry					-			-		
Glass soil jar/Teflon lined cap 2021 MGC S5	E144	15-Jun-2021	ł				30-Jun-2021	0 days	l	
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)	l									
Glass soil jar/Teflon lined cap 2021 LGC S5	E108	16-Jun-2021	01-Jul-2021	l			01-Jul-2021	30 days	15 days	>
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)					-			-		
Glass soil jar/Tefton lined cap 2021 LGC S1	E108	16-Jun-2021	01-Jul-2021				02-Jul-2021	30 days	16 days	>
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soli jar/Teflon lined cap 2021 LGC S2	E108	16-Jun-2021	01-Jul-2021	ļ			02-Jul-2021	30 days	16 days	>
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap 2021 LGC S3	E108	16-Jun-2021	01-Jul-2021	I			02-Jul-2021	30 days 16 days	16 days	>
					_					

: 17 of 21 : WR2100682 Amendment 1 : Constantine North Inc. : Palmer Project Page Work Order Client Project

Analyte Group	Method	Sampling Date	Ext	Extraction / Preparation	eparation	Analysis		Analysis	is	
Container / Client Sample ID(s)	5		Prenaration	Holding	Holding Times	Eval	Analvsis Date	Holding Times	Times	Eval
			Date	Rec	Actual		`	Rec	Actual	
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Tefton lined cap 2021 LGC S4	E108	16-Jun-2021	01-Jul-2021	l			02-Jul-2021	30 days 16 days	16 days	>
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)	l									
Glass soil jar/Tefton lined cap 2021 MGC S1	E108	15-Jun-2021	02-Jul-2021				02-Jul-2021	30 days 17 days	17 days	>
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)	l							_		
Glass soil jar/Tefton lined cap 2021 MGC S2	E108	15-Jun-2021	02-Jul-2021		1		02-Jul-2021	30 days 17 days	17 days	>
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)								-	-	
Glass soil jar/Teflon lined cap 2021 MGC S3	E108	15-Jun-2021	02-Jul-2021	l			02-Jul-2021	30 days 17 days	17 days	>
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)	l									
Glass soil jar/Tefton lined cap 2021 MGC S4	E108	15-Jun-2021	02-Jul-2021		1		02-Jul-2021	30 days 17 days	17 days	>
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)								-		
Glass soll jar/Tefton lined cap 2021 MGC S5	E108	15-Jun-2021	02-Jul-2021	ļ			02-Jul-2021	30 days 17 days	17 days	>

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Page Work Order Project Client

- : 18 of 21 : WR2100682 Amendment 1

 - : Constantine North Inc. : Palmer Project

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Soil/Solid		Evaluation	ו: × = QC freque	ency outside spe	cification; < = (Evaluation: $* = QC$ frequency outside specification; $\checkmark = QC$ frequency within specification	iin specification.
Quality Control Sample Type			°C	Count		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Acid Volatile Sulfide by Colourimetry (5 mg/kg)	E396	232091	-	10	10.0	5.0	>
Loss On Ignition (550°C)	E205D	235713	-	10	10.0	5.0	>
Mercury in Soil/Solid by CVAAS	E510	233542	e	28	10.7	5.0	>
Metals in Soil/Solid by CRC ICPMS	E440	233543	ю	27	11.1	5.0	>
Moisture Content by Gravimetry	E144	233545	ю	19	15.7	5.0	>
Particle Size Analysis - Hydrometer	E183	232581	-	10	10.0	5.0	>
Particle Size Analysis - Sieve <2mm	E182	232580	-	10	10.0	5.0	>
pH by Meter (1:2 Soil:Water Extraction)	E108	233544	3	29	10.3	5.0	>
Simultaneously Extracted Mercury by CVAAS	E519	232092	-	10	10.0	5.0	>
Simultaneously Extracted Metals by CRC ICPMS (mg/kg)	E449	232093	-	10	10.0	4.7	>
Total Carbon by Combustion	E351	232764	-	10	10.0	5.0	>
Laboratory Control Samples (LCS)							
Acid Volatile Sulfide by Colourimetry (5 mg/kg)	E396	232091	0	10	0.0	5.0	х
Loss On Ignition (550°C)	E205D	235713	~	10	10.0	5.0	>
Mercury in Soil/Solid by CVAAS	E510	233542	9	28	21.4	10.0	>
Metals in Soil/Solid by CRC ICPMS	E440	233543	9	27	22.2	10.0	>
Moisture Content by Gravimetry	E144	233545	ю	19	15.7	5.0	>
Particle Size Analysis - Hydrometer	E183	232581	-	10	10.0	5.0	>
Particle Size Analysis - Sieve <2mm	E182	232580	-	10	10.0	5.0	>
Particle Size Analysis - Sieve >2mm	E181	232579	-	10	10.0	5.0	>
pH by Meter (1:2 Soil:Water Extraction)	E108	233544	з	29	10.3	5.0	>
Simultaneously Extracted Mercury by CVAAS	E519	232092	-	10	10.0	5.0	>
Simultaneously Extracted Metals by CRC ICPMS (mg/kg)	E449	232093	-	10	10.0	4.7	>
Total Carbon by Combustion	E351	232764	2	10	20.0	10.0	>
Method Blanks (MB)							
Acid Volatile Sulfide by Colourimetry (5 mg/kg)	E396	232091	-	10	10.0	5.0	>
Loss On Ignition (550°C)	E205D	235713	-	10	10.0	5.0	>
Mercury in Soil/Solid by CVAAS	E510	233542	ъ	28	10.7	5.0	>
Metals in Soil/Solid by CRC ICPMS	E440	233543	з	27	11.1	5.0	>
Moisture Content by Gravimetry	E144	233545	с	19	15.7	5.0	>
Simultaneously Extracted Mercury by CVAAS	E519	232092	-	10	10.0	5.0	>
Simultaneously Extracted Metals by CRC ICPMS (mg/kg)	E449	232093	~	10	10.0	4.7	>
Total Carbon by Combustion	E351	232764	-	10	10.0	5.0	>
Matrix Spikes (MS)							
Acid Volatile Sulfide by Colourimetry (5 mg/kg)	E396	232091	-	10	10.0	5.0	>

Work Order Project Client Page

- : 19 of 21 WR2100682 Amendment 1

 - : Constantine North Inc. : Palmer Project

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
pH by Meter (1:2 Soil:Water Extraction)	E108	Soil/Solid	BC Lab Manual	pH is determined by potentiometric measurement with a pH electrode at ambient
				laboratory temperature (normally $20 \pm 5^{\circ}$ C), and is carried out in accordance with
	Vancouver -			procedures described in the BC Lab Manual (prescriptive method). The procedure
	Environmental			involves mixing the dried (at <60 °C) and sieved (10mesh/2mm) sample with ultra pure
				water at a 1:2 ratio of sediment to water. The pH is then measured by a standard pH probe.
Moisture Content by Gravimetry	E144	Soil/Solid	CCME PHC in Soil - Tier	e.
			-	calculated as the weight loss (due to water) divided by the wet weight of the sample,
	Vancouver -			expressed as a percentage.
	Environmental			
Particle Size Analysis - Sieve >2mm	E181	Soil/Solid	ASTM D6913-04	samples are disaggregated and sieved through
	Saskatoon -			the sleve is the further sleved through a series of sleves. The amount passing through the sleves is measured reavimentically.
	Environmental			נוס סופירכס וס וווכמסמו כת לו מאוווירט וכמולי.
Particle Size Analysis - Sieve <2mm	E182	Soil/Solid	ASTM D6913-04	Soil samples are disaggregated and sieved through a 2mm sieve. Material passed
				sieve is then further disaggregated using calgon solution and
	Saskatoon -			eries of sieves. The amount passing through the sieves is me
	Environmental			rically.
Particle Size Analysis - Hydrometer	E183	Soil/Solid	ASTM D7928-16	Soil material is separated from coarse material (>2mm). A specimen is then
				disaggregated through mixing with Calgon solution. The material is then suspended in
	Saskatoon -			solution wherein regular hydrometer readings are taken at specific time intervals. The
	Environmental			principles of Stokes' Law are applied to determine the amount of material remaining in
				solution as well as the maximum particle size remaining in solution at the specified time.
Grain Size Report (Attachment)	E185	Soil/Solid	ASTM D6913/D7928	A grain size curve is a graphical representation of the particle sizing of a sample
Hydrometer/Sieve Method				representing the percent passing against the effective particle size.
	Saskatoon -			
	Environmental			
Loss On Ignition (550°C)	E205D	Soil/Solid	CSSS (2008) 28.3	
			(pom)	sample at 105°C overnight, then igniting at 550°C for 16-20 hours. The weight loss after
	Saskatoon -			ignition is reported as % loss on ignition. LOI is reported on a dry weight basis. LOI at
	Environmental			550°C can be used as an estimation of Organic Matter (CSSS 2008).
Total Carbon by Combustion	E351	Soil/Solid	CSSS (2008) 21.2	Total Carbon is determined by the high temperature combustion method with
			(pom)	measurement by an infrared detector.
	Saskatoon - Environmental			
Acid Volatile Sulfide by Colourimetry (5 mg/kg)	E396	Soil/Solid	EPA 821/R-91-100	Acid Volatile Sulfide is determined by colourimetric measurement on a sediment sample
			(pom)	ergone distillation. Evolved hydrogen sulfide gas trapped and analy:
	Vancouver -			the methylene blue colourimetric method.

	rder		
Page	Work Or	Client	Project

- : 20 of 21 : WR2100682 Amendment 1 : Constantine North Inc. : Palmer Project

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Metals in Soil/Solid by CRC ICPMS	E440	Soil/Solid	EPA 6020B (mod)	This method is intended to liberate metals that may be environmentally available.
	Vancouver -			Samples are dried, then sieved through a 2 mm sieve, and digested with HNO3 and HCI.
	Environmental			Dependent on sample matrix, some metals may be only partially recovered, including Al, Ba, Be, Cr, Sr, Ti, Ti, V, W, and Zr. Silicate minerals are not solubilized. Volatile forms
				of sulfur (including sulfide) may not be captured, as they may be lost during sampling, storage, or digestion. Elemental Sulfur may be poorly recovered by this method.
				Analysis is by Collision/Reaction Cell ICPMS.
Simultaneously Extracted Metals by CRC	E449	Soil/Solid	EPA 821/R-91-100;	is carried out in accordance with the method d
ICPMS (mg/kg)			EPA 6020B (mod)	within a purge
	Environmental			The extract produced from the addition of the acts is then analyzed for simultaneously extracted metals (SEM) using Collision/Reaction Cell ICPMS.
Mercury in Soil/Solid by CVAAS	E510	Soil/Solid	EPA 200.2/1631	Samples are dried, then sieved through a 2 mm sieve, and digested with HNO3 and HCI,
			Appendix (mod)	followed by CVAAS analysis.
	Vancouver - Environmental			
Simultaneously Extracted Mercury by CVAAS	E519	Soil/Solid	EPA	An extract of sediment sample that has been treated with hydrochloric acid within a
			821/R-91-100/1631E	
	Vancouver - Environmental		(mod)	
Total Organic Carbon (Calculated) in soil		Soil/Solid	CSSS (2008) 21 2	Oracia Carbon (TOC) is colorifated by the difference between total
	EC330			rotar Organic Carbon (TOC) is calculated by the unterence between total carbon (TC) and total inorganic carbon (TIC).
	Saskatoon -			
	Environmental			
Acid Volatile Sulfide by Colourimetry (µmol/g)	EC396	Soil/Solid	EPA 821/R-91-100 (mod)	Calculation for Acid Volatile Sulfide to convert units to µmol/g
	Vancouver - Environmental			
Simultaneously Extracted Metals by CRC	EC449	Soil/Solid	EPA	This analysis is carried out in accordance with the method described in EPA
ICPMS (umol/g)			821/R-91-100/EPA	is added to samples
	vancouver - Environmental		6020B (mod)	The extract produced from the addition of the acid is then analyzed for simultaneously extracted metals (SEM) using Collision/Reaction Cell ICPMS.
Simultaneously Extracted Mercury by CVAAS	EC519	Soil/Solid	EPA	An extract of sediment sample that has been treated with hydrochloric acid within a
(fumol/g)			821/R-91-100/1631E	purge and trap system is analyzed by CVAAS.
	Vancouver - Environmental		(mod)	
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Leach 1:2 Soil:Water for pH/EC	EP108	Soil/Solid	BC WLAP METHOD:	The procedure involves mixing the dried (at <60°C) and sieved (No. 10/ 2mm) sample
	Vancouver - Environmental		PH, ELECTROMETRIC, SOIL	with deionized/distilled water at a 1:2 ratio of sediment to water.

: 21 of 21 : WR2100682 Amendment 1 : Constantine North Inc. : Palmer Project

	Method / Lab	IVIGUITA	Mellion vereierice	Metrica Descriptions
Distillation for Acid Volatile Sulfide in Soil	EP396	Soil/Solid	EPA 821/R-91-100 (mod)	Sample distillation for Acid Volatile Sulfide analysis.
	Vancouver -			
	Environmental			
Digestion for Metals and Mercury	EP440	Soil/Solid	EPA 200.2 (mod)	Samples are dried, then sieved through a 2 mm sieve, and digested with HNO3 and HCI.
				This method is intended to liberate metals that may be environmentally available.
	Vancouver -			
Ū.	Environmental			
Simultaneously Extracted Metals Preparation	EP495	Soil/Solid	EPA 821/R-91-100	This analysis is carried out in accordance with the method described in EPA
				821/R-91-100. Hydrochloric acid is added to sediment samples within a purge and trap
	Vancouver -			system. The extract produced from the addition of the acid is then analyzed for
ш	Environmental			simultaneously extracted metals (SEM) and Mercury .
Preparation of Samples for AVS and Metal	EPP396	Soil/Solid	APHA 4500S2J	Sediment samples are treated with hydrochloric acid within a purge and trap system,
Sulfide Determination				where the evolved hydrogen sulfide gas is carried into a basic solution by argon gas
	Vancouver -			for analysis.
ш	Environmental			
Dry and Grind	EPP442	Soil/Solid	Soil Sampling and	After removal of any coarse fragments and reservation of wet subsamples a portion of
			Methods of Analysis,	homogenized sample is set in a tray and dried at less than 60°C until dry. The sample is
	Saskatoon -		Carter 2008	then particle size reduced with an automated crusher or mortar and pestle, typically to
ш	Environmental			<2 mm. Further size reduction may be needed for particular tests.

Work Order Amendment			
Amendment		Page	· 1 of 01
	.1	1	
Client	: Constantine North Inc.	Laboratory	: Whitehorse - Environmental
Contact	: Dylan Krull	Account Manager	:Carla Fuginski
Address	: Suite 320 - 800 West Pender St. Vancouver BC Canada V6C 3V6	Address	:#12 151 Industrial Road Whiteboree Yukon Canada Y1A 2V3
Telephone	: 907-465-6160	Telephone	**************************************
Project	: Palmer Project	Date Samples Received	:23-Jun-2021 21:15
PO		Date Analysis Commenced	:28-Jun-2021
C-O-C number	:17-773584	Issue Date	27-Oct-2021 12:23
Sampler	DK		
Site	: Sediment Analysis		
Quote number	: Q62329		
No. of samples received	: 10		
No. of samples analysed	: 10		
 Laboratory Duplicate Matrix Spike (MS) Re Reference Material (F Method Blank (MB) R Laboratory Control Si 	Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits Matrix Spike (MS) Report; Recovery and Acceptance Limits Reference Material (RM) Report; Recovery and Acceptance Limits Method Blank (MB) Report; Recovery and Acceptance Limits Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits	nits	
Signatories			
This document has been	This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.	ing is conducted in accordance with	u S FDA 21 CFR Part 11.
orginatories	Position	Laboratory Department	
Angela Ren	Team Leader - Metals	Metals, Burnaby, British Columbia	Columbia
Dee Lee	Analyst	Metals, Burnaby, British Columbia	Columbia
Hedy Lai	Team Leader - Inorganics	Inorganics, Saskatoon, Saskatchewan	Saskatchewan
Janice Leung	Supervisor - Organics Instrumentation	Organics, Burnaby, British Columbia	sh Columbia
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia	Columbia
Maria Painchaud	Laboratory Assistant	Inorganics, Saskatoon, Saskatchewan	Saskatchewan
Miles Gropen	Department Manager - Inorganics	Inorganics, Burnaby, British Columbia	tish Columbia
Ophelia Chiu	Department Manager - Organics	Organics, Burnaby, British Columbia	sh Columbia
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia	Columbia

RIGHT SOLUTIONS | RIGHT PARTNER

: 2 of 21	: WR2100682 Amendment 1	: Constantine North Inc.	: Palmer Project	
Page	Work Order	Client	Project	

General Comments

This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. summaries.

Key :

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot. CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances. DQO = Data Quality Objective. LOR = Limit of Reporting (detection limit). RPD = Relative Percentage Difference # = Indicates a QC result that did not meet the ALS DQO.

: 3 of 21	: WR2100682 Amendment 1	: Constantine North Inc.	: Palmer Project	
Page	Work Order	Client	Project	

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

							Labora	Laboratory Dunlicate (DUP) Renort	(IP) Report		
Sub-Matrix: Soil/Solid		-					FaoOla	ory submeries (
Laboratory sample ID	Client sample ID	Analyte	CAS Number Method	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC Lot: 233544)	Lot: 233544)										
VA21B2794-010	Anonymous	pH (1:2 soil:water)	ł	E108	0.10	pH units	6.18	6.00	3.0%	5%	ł
Physical Tests (QC Lot: 233545)	Lot: 233545)										
VA21B2794-007	Anonymous	moisture	-	E144	0.25	%	82.2	80.9	1.69%	20%	-
Physical Tests (QC Lot: 233797)	Lot: 233797)										
WR2100682-006	2021 MGC S1	pH (1:2 soil:water)		E108	0.10	pH units	8.53	8.52	0.1%	5%	ł
Physical Tests (QC Lot: 233798)	Lot: 233798)										
WR2100682-006	2021 MGC S1	moisture		E144	0.25	%	22.3	22.2	0.250%	20%	-
Physical Tests (QC Lot: 233957)	Lot: 233957)						-				
VA21B3247-001	Anonymous	pH (1:2 soil:water)	-	E108	0.10	pH units	11.7	11.7	0.1%	5%	-
Physical Tests (QC Lot: 233960)	Lot: 233960)						-				
WR2100682-005	2021 LGC S5	moisture	-	E144	0.25	%	20.0	20.5	2.38%	20%	-
Physical Tests (QC Lot: 235713)	Lot: 235713)										
WR2100682-005	2021 LGC S5	loss on ignition @ 550°C	-	E205D	1.0	%	1.2	1.2	0.005	Diff <2x LOR	1
Particle Size (QC Lot: 232580)	ot: 232580)										8
WR2100682-001	2021 LGC S1	passing (0.05 mm)	1	E182	1.0	%	12.1	11.5	0.6	Diff <2x LOR	
		passing (0.063 mm)		E182	1.0	%	14.7	14.2	3.24%	15%	1
		passing (0.075 mm)		E182	1.0	%	17.0	16.4	3.48%	15%	ł
		passing (0.125 mm)		E182	1.0	%	37.4	37.2	0.694%	15%	-
		passing (0.149 mm)		E182	1.0	%	47.2	47.1	0.219%	15%	ł
		passing (0.250 mm)	-	E182	1.0	%	75.1	75.0	0.142%	15%	ł
		passing (0.420 mm)		E182	1.0	%	95.0	95.1	0.0632%	15%	ł
		passing (0.50 mm)	ł	E182	1.0	%	96.4	96.4	0.0594%	15%	ł
		passing (0.841 mm)	ł	E182	1.0	%	99.8	99.8	0.0217%	15%	ł
		passing (1.0 mm)		E182	1.0	%	6.99	6.99	0.0180%	15%	
Particle Size (QC Lot: 232581)	ot: 232581)										
WR2100682-001	2021 LGC S1	passing (0.002 mm)	1	E183	1.0	%	2.4	1.8	0.6	Diff <2x LOR	1
		passing (0.004 mm)	ł	E183	1.0	%	2.5	1.8	0.7	Diff <2x LOR	1
		passing (0.005 mm)		E183	1.0	%	2.6	1.8	0.8	Diff <2x LOR	1
		passing (0.020 mm)		E183	1.0	%	4.4	4.0	0.4	Diff <2x LOR	
		passing (0.0312 mm)		E183	1.0	%	7.3	6.4	0.9	Diff <2x LOR	
Organic / Inorganic	Organic / Inorganic Carbon (QC Lot: 232764)	4)									

ALS

Page Work Order Client Project	: 5 of 21 : WR2100682 Amendment 1 : Constantine North Inc. : Palmer Project	mendment 1 orth Inc.									
Sub-Matrix : Soil/Solid							Laborat	Laboratory Duplicate (DUP) Report	JP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number Method	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Metals (QC Lot: 233543) - continued	543) - continued			*							
VA21B2794-010	Anonymous	tungsten	7440-33-7	E440	0.50	mg/kg	<0.50	<0.50	0	Diff <2x LOR	-
		uranium	7440-61-1	E440	0.050	mg/kg	0.241	0.254	0.013	Diff <2x LOR	1
		vanadium	7440-62-2	E440	0.20	mg/kg	17.1	14.7	14.7%	30%	-
		zinc	7440-66-6	E440	2.0	mg/kg	17.6	15.2	14.6%	30%	-
		zirconium	7440-67-7	E440	1.0	mg/kg	2.9	2.7	0.2	Diff <2x LOR	-
Metals (QC Lot: 233795)	795)									-	
WR2100682-006	2021 MGC S1	aluminum	7429-90-5	E440	50	mg/kg	13200	13400	0.887%	40%	1
		antimony	7440-36-0	E440	0.10	mg/kg	0.31	0.27	0.04	Diff <2x LOR	ł
		arsenic	7440-38-2	E440	0.10	mg/kg	3.17	2.84	11.0%	30%	-
		barium	7440-39-3	E440	0.50	mg/kg	139	128	8.06%	40%	ł
		beryllium	7440-41-7	E440	0.10	mg/kg	0.22	0.22	0.007	Diff <2x LOR	ł
		bismuth	7440-69-9	E440	0.20	mg/kg	<0.20	<0.20	0	Diff <2x LOR	ł
		boron	7440-42-8	E440	5.0	mg/kg	<5.0	<5.0	0	Diff <2x LOR	ł
		cadmium	7440-43-9	E440	0.020	mg/kg	0.566	0.622	9.51%	30%	ł
		calcium	7440-70-2	E440	50	mg/kg	31600	31100	1.47%	30%	-
		chromium	7440-47-3	E440	0.50	mg/kg	31.8	30.2	5.22%	30%	1
		cobalt	7440-48-4	E440	0.10	mg/kg	24.4	22.9	6.36%	30%	1
		copper	7440-50-8	E440	0.50	mg/kg	44.7	39.4	12.6%	30%	-
		iron	7439-89-6	E440	50	mg/kg	50300	48300	3.96%	30%	1
		lead	7439-92-1	E440	0.50	mg/kg	8.62	6.61	26.4%	40%	ł
		lithium	7439-93-2	E440	2.0	mg/kg	6.5	6.5	0.02	Diff <2x LOR	ł
		magnesium	7439-95-4	E440	20	mg/kg	12300	11900	3.34%	30%	ł
		manganese	7439-96-5	E440	1.0	mg/kg	743	669	6.03%	30%	-
		molybdenum	7439-98-7	E440	0.10	mg/kg	1.75	1.66	5.34%	40%	ł
		nickel	7440-02-0	E440	0.50	mg/kg	22.8	21.9	4.24%	30%	-
		phosphorus	7723-14-0	E440	50	mg/kg	1000	1040	4.13%	30%	ł
		potassium	7440-09-7	E440	100	mg/kg	1380	1410	2.36%	40%	ł
		selenium	7782-49-2	E440	0.20	mg/kg	0.98	0.95	0.02	Diff <2x LOR	ł
		silver	7440-22-4	E440	0.10	mg/kg	0.13	0.12	0.010	Diff <2x LOR	ł
		sodium	7440-23-5	E440	50	mg/kg	228	215	13	Diff <2x LOR	ł
		strontium	7440-24-6	E440	0.50	mg/kg	71.3	72.2	1.27%	40%	ł
		sulfur	7704-34-9	E440	1000	mg/kg	3600	3000	600	Diff <2x LOR	1
		thallium	7440-28-0	E440	0.050	mg/kg	0.083	0.079	0.004	Diff <2x LOR	1
		tin	7440-31-5	E440	2.0	mg/kg	<2.0	<2.0	0	Diff <2x LOR	
		titanium	7440-32-6	E440	1.0	mg/kg	1850	1680	9.61%	40%	

: 6 of 21 : WR2100682 Amendment 1 : Constantine North Inc.

Page Work Order Client

Project	: Palmer Project										
Sub-Matrix: Soil/Solid							Laborat	Laboratory Duplicate (DUP) Report	JP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number Method	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Metals (QC Lot: 233795) - continued	795) - continued										
WR2100682-006	2021 MGC S1	tungsten	7440-33-7	E440	0.50	mg/kg	<0.50	<0.50	0	Diff <2x LOR	1
		uranium	7440-61-1	E440	0.050	mg/kg	0.389	0.315	21.0%	30%	1
		vanadium	7440-62-2	E440	0.20	mg/kg	123	116	5.71%	30%	-
		zinc	7440-66-6	E440	2.0	mg/kg	122	126	3.50%	30%	1
		zirconium	7440-67-7	E440	1.0	mg/kg	1.4	1.2	0.2	Diff <2x LOR	
Metals (QC Lot: 233796)	796)									-	
WR2100682-006	2021 MGC S1	mercury	7439-97-6	E510	0.0051	mg/kg	0.0113	0.0098	0.0015	Diff <2x LOR	1
Metals (QC Lot: 233958)	958)										
WR2100682-005	2021 LGC S5	aluminum	7429-90-5	E440	50	mg/kg	12600	13200	4.41%	40%	I
		antimony	7440-36-0	E440	0.10	mg/kg	0.37	0.37	0.006	Diff <2x LOR	ł
		arsenic	7440-38-2	E440	0.10	mg/kg	2.66	3.03	13.2%	30%	1
		barium	7440-39-3	E440	0.50	mg/kg	67.3	78.4	15.2%	40%	1
		beryllium	7440-41-7	E440	0.10	mg/kg	0.14	0.16	0.02	Diff <2x LOR	ł
		bismuth	7440-69-9	E440	0.20	mg/kg	<0.20	<0.20	0	Diff <2x LOR	-
		boron	7440-42-8	E440	5.0	mg/kg	<5.0	<5.0	0	Diff <2x LOR	I
		cadmium	7440-43-9	E440	0.020	mg/kg	1.30	0.716	57.6%	30%	H-4UD
		calcium	7440-70-2	E440	50	mg/kg	24800	24900	0.451%	30%	ł
		chromium	7440-47-3	E440	0.50	mg/kg	22.1	22.7	2.46%	30%	1
		cobalt	7440-48-4	E440	0.10	mg/kg	14.5	15.9	9.57%	30%	I
		copper	7440-50-8	E440	0.50	mg/kg	31.6	36.2	13.6%	30%	ł
		iron	7439-89-6	E440	50	mg/kg	34000	37100	8.82%	30%	1
		lead	7439-92-1	E440	0.50	mg/kg	6.97	4.10	51.8%	40%	H-4UD
		lithium	7439-93-2	E440	2.0	mg/kg	5.5	5.8	0.3	Diff <2x LOR	-
		magnesium	7439-95-4	E440	20	mg/kg	10800	11200	3.74%	30%	1
		manganese	7439-96-5	E440	1.0	mg/kg	680	682	0.218%	30%	ł
		molybdenum	7439-98-7	E440	0.10	mg/kg	2.10	1.93	8.48%	40%	ł
		nickel	7440-02-0	E440	0.50	mg/kg	18.7	18.7	0.270%	30%	ł
		phosphorus	7723-14-0	E440	50	mg/kg	789	852	7.71%	30%	I
		potassium	7440-09-7	E440	100	mg/kg	1020	1020	0.666%	40%	I
		selenium	7782-49-2	E440	0.20	mg/kg	0.93	0.88	0.06	Diff <2x LOR	I
		silver	7440-22-4	E440	0.10	mg/kg	0.14	0.11	0.03	Diff <2x LOR	1
		sodium	7440-23-5	E440	50	mg/kg	84	103	19	Diff <2x LOR	1
		strontium	7440-24-6	E440	0.50	mg/kg	59.3	63.1	6.28%	40%	I
		sulfur	7704-34-9	E440	1000	mg/kg	1300	1700	400	Diff <2x LOR	ł
		thallium	7440-28-0	E440	0.050	mg/kg	0.054	0.057	0.003	Diff <2x LOR	1
_	_	_	_	-	-	-	-	-	_	-	

: 7 of 21 : WR2100682 Amendment 1 : Constantine North Inc. : Palmer Project Page Work Order Client Project

											ć
Sub-Matrix: Soil/Solid							Laborat	Laboratory Duplicate (DUP) Report	JP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number Method	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Metals (QC Lot: 2:	Metals(QC Lot: 233958)- continued						-				
WR2100682-005	2021 LGC S5	tin	7440-31-5	E440	2.0	mg/kg	<2.0	<2.0	0	Diff <2x LOR	I
		titanium	7440-32-6	E440	1.0	mg/kg	635	825	26.0%	40%	
		tungsten	7440-33-7	E440	0.50	mg/kg	<0.50	<0.50	0	Diff <2x LOR	-
		uranium	7440-61-1	E440	0:050	mg/kg	0.254	0.296	0.043	Diff <2x LOR	
		vanadium	7440-62-2	E440	0.20	mg/kg	74.6	80.0	7.05%	30%	-
		zinc	7440-66-6	E440	2.0	mg/kg	154	131	15.9%	30%	
		zirconium	7440-67-7	E440	1.0	mg/kg	<1.0	<1.0	0	Diff <2x LOR	-
Metals (QC Lot: 233959)	33959)										
WR2100682-005	2021 LGC S5	mercury	7439-97-6	E510	0:0050	mg/kg	0.0192	# 0.0087	0.0104	Diff <2x LOR	HUD
Extractable Metals (QC Lot: 232092)	(QC Lot: 232092)										
WR2100682-001	2021 LGC S1	mercury	7439-97-6	E519	0.010	mg/kg	<0.010	<0.010	0	Diff <2x LOR	
Extractable Metals (QC Lot: 232093)	(QC Lot: 232093)										
WR2100682-001	2021 LGC S1	cadmium	7440-43-9	E449	0.50	mg/kg	0.83	0.86	0.03	Diff <2x LOR	I
		copper	7440-50-8	E449	09.0	mg/kg	12.9	13.4	4.06%	45%	-
		lead	7439-92-1	E449	4.0	mg/kg	4.7	5.2	0.6	Diff <2x LOR	-
		nickel	7440-02-0	E449	2.9	mg/kg	5.8	6.5	0.7	Diff <2x LOR	ł
		zinc	7440-66-6	E449	0.30	mg/kg	61.3	64.0	4.27%	45%	
Qualifiers											

Duplicate results outside ALS DQO, due to sample heterogeneity. Duplicate results and limits are expressed in terms of absolute difference.

Description

Qualifier DUP-H

7

: 8 of 21 : WR2100682 Amendment 1 : Constantine North Inc.

Method Blank (MB) Report

Method Blank results are used to monitor and control for potential A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Soil/Solid

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 233545)					
moisture	E144	0.25	%	<0.25	-
Physical Tests (QCLot: 233798)					
moisture	E144	0.25	%	<0.25	I
Physical Tests (QCLot: 233960)				-	
moisture	E144	0.25	%	<0.25	-
Organic / Inorganic Carbon (QCLot: 232764)				-	
carbon, total [TC]	E351	0.05	%	<0.050	-
Inorganic Parameters (QCLot: 232091)					
sulfides, acid volatile	E396	ß	mg/kg	<5.0	
Metals (QCLot: 233542)				-	
mercury	7439-97-6 E510	0.005	mg/kg	<0.0050	
Metals (QCLot: 233543)				-	
aluminum	7429-90-5 E440	50	mg/kg	<50	
antimony	7440-36-0 E440	0.1	mg/kg	<0.10	
arsenic	7440-38-2 E440	0.1	mg/kg	<0.10	ł
barium	7440-39-3 E440	0.5	mg/kg	<0.50	-
beryllium	7440-41-7 E440	0.1	mg/kg	<0.10	-
bismuth	7440-69-9 E440	0.2	mg/kg	<0.20	
boron	7440-42-8 E440	5	mg/kg	<5.0	-
cadmium	7440-43-9 E440	0.02	mg/kg	<0.020	-
calcium	7440-70-2 E440	50	mg/kg	<50	-
chromium	7440-47-3 E440	0.5	mg/kg	<0.50	-
cobalt	7440-48-4 E440	0.1	mg/kg	<0.10	-
copper	7440-50-8 E440	0.5	mg/kg	<0.50	-
iron	7439-89-6 E440	50	mg/kg	<50	-
lead	7439-92-1 E440	0.5	mg/kg	<0.50	-
lithium	7439-93-2 E440	2	mg/kg	<2.0	-
magnesium	7439-95-4 E440	20	mg/kg	<20	ł
manganese	7439-96-5 E440		mg/kg	<1.0	-
molybdenum	7439-98-7 E440	0.1	mg/kg	<0.10	-
nickel	7440-02-0 E440	0.5	mg/kg	<0.50	-
phosphorus	7723-14-0 E440	50	mg/kg	<50	
potassium	7440-09-7 E440	100	mg/kg	<100	-
	-	-	-	-	-

CIIGHT	Project	

	CAS Number Method	a c r	IInit	4.000	Qualifior
Analyte Motolo (OCI ot: 222542) continued				Result	
Metals (QCLOT: 233343) - CONTINUED	7782-49-2 E440	00	ma/ka	<0.20	
			D 10		
silver	7440-22-4 E440	0.1	mg/kg	<0.10	
sodium	7440-23-5 E440	50	mg/kg	<50	-
strontium	7440-24-6 E440	0.5	mg/kg	<0.50	
sulfur	7704-34-9 E440	1000	mg/kg	<1000	
thallium	7440-28-0 E440	0.05	mg/kg	<0.050	-
tin	7440-31-5 E440	2	mg/kg	<2.0	-
titanium	7440-32-6 E440	-	mg/kg	<1.0	-
tungsten	7440-33-7 E440	0.5	mg/kg	<0.50	I
uranium	7440-61-1 E440	0.05	mg/kg	<0.050	I
vanadium	7440-62-2 E440	0.2	mg/kg	<0.20	I
zinc	7440-66-6 E440	2	mg/kg	<2.0	
zirconium	7440-67-7 E440	-	mg/kg	<1.0	I
Metals (QCLot: 233795)				_	
aluminum	7429-90-5 E440	20	mg/kg	<50	
antimony	7440-36-0 E440	0.1	mg/kg	<0.10	-
arsenic	7440-38-2 E440	0.1	mg/kg	<0.10	I
barium	7440-39-3 E440	0.5	mg/kg	<0.50	-
beryllium	7440-41-7 E440	0.1	mg/kg	<0.10	I
bismuth	7440-69-9 E440	0.2	mg/kg	<0.20	I
boron	7440-42-8 E440	Ω	mg/kg	<5.0	-
cadmium	7440-43-9 E440	0.02	mg/kg	<0.020	-
calcium	7440-70-2 E440	50	mg/kg	<50	-
chromium	7440-47-3 E440	0.5	mg/kg	<0.50	I
cobalt	7440-48-4 E440	0.1	mg/kg	<0.10	I
copper	7440-50-8 E440	0.5	mg/kg	<0.50	-
iron	7439-89-6 E440	50	mg/kg	<50	-
lead	7439-92-1 E440	0.5	mg/kg	<0.50	
lithium	7439-93-2 E440	2	mg/kg	<2.0	I
magnesium	7439-95-4 E440	20	mg/kg	<20	I
manganese	7439-96-5 E440	-	mg/kg	<1.0	I
molybdenum	7439-98-7 E440	0.1	mg/kg	<0.10	I
nickel	7440-02-0 E440	0.5	mg/kg	<0.50	I
phosphorus	7723-14-0 E440	50	mg/kg	<50	-
potassium	7440-09-7 E440	100	mg/kg	<100	-

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Metals (OCI of: 233795) - continued					
	7440-22-4 E440	0.1	mg/kg	<0.10	
sodium	7440-23-5 E440	50	mg/kg	<50	I
strontium	7440-24-6 E440	0.5	mg/kg	<0.50	I
sulfur	7704-34-9 E440	1000	mg/kg	<1000	
thallium	7440-28-0 E440	0.05	mg/kg	<0.050	
tin	7440-31-5 E440	2	mg/kg	<2.0	I
titanium	7440-32-6 E440	-	mg/kg	<1.0	I
tungsten	7440-33-7 E440	0.5	mg/kg	<0.50	I
uranium	7440-61-1 E440	0.05	mg/kg	<0.050	
vanadium	7440-62-2 E440	0.2	mg/kg	<0.20	-
zinc	7440-66-6 E440	2	mg/kg	<2.0	-
zirconium	7440-67-7 E440	-	mg/kg	<1.0	I
Metals (QCLot: 233796)					
mercury	7439-97-6 E510	0.005	mg/kg	<0.0050	I
Metals (QCLot: 233958)					
aluminum	7429-90-5 E440	50	mg/kg	<50	-
antimony	7440-36-0 E440	0.1	mg/kg	<0.10	-
arsenic	7440-38-2 E440	0.1	mg/kg	<0.10	
barium	7440-39-3 E440	0.5	mg/kg	<0.50	
beryllium	7440-41-7 E440	0.1	mg/kg	<0.10	ł
bismuth	7440-69-9 E440	0.2	mg/kg	<0.20	ł
boron	7440-42-8 E440	Q	mg/kg	<5.0	-
cadmium	7440-43-9 E440	0.02	mg/kg	<0.020	ł
calcium	7440-70-2 E440	50	mg/kg	<50	ł
chromium	7440-47-3 E440	0.5	mg/kg	<0.50	I
cobalt	7440-48-4 E440	0.1	mg/kg	<0.10	-
copper	7440-50-8 E440	0.5	mg/kg	<0.50	-
iron	7439-89-6 E440	50	mg/kg	<50	
lead	7439-92-1 E440	0.5	mg/kg	<0.50	-
lithium	7439-93-2 E440	2	mg/kg	<2.0	-
magnesium	7439-95-4 E440	20	mg/kg	<20	-
manganese	7439-96-5 E440	~	mg/kg	<1.0	
molybdenum	7439-98-7 E440	0.1	mg/kg	<0.10	
nickel	7440-02-0 E440	0.5	mg/kg	<0.50	I
phosphorus	7723-14-0 E440	50	mg/kg	<50	-

: 11 of 21 : WR2100682 Amendment 1 : Constantine North Inc. : Palmer Project Page Work Order Client Project

Sub-Matrix: Soil/Solid					
Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Metals (QCLot: 233958) - continued					
selenium	7782-49-2 E440	0.2	mg/kg	<0.20	
silver	7440-22-4 E440	0.1	mg/kg	<0.10	
sodium	7440-23-5 E440	50	mg/kg	<50	
strontium	7440-24-6 E440	0.5	mg/kg	<0.50	
sulfur	7704-34-9 E440	1000	mg/kg	<1000	
thallium	7440-28-0 E440	0.05	mg/kg	<0.050	
tin	7440-31-5 E440	2	mg/kg	<2.0	
titanium	7440-32-6 E440	£-	mg/kg	<1.0	
tungsten	7440-33-7 E440	0.5	mg/kg	<0.50	
uranium	7440-61-1 E440	0.05	mg/kg	<0.050	
vanadium	7440-62-2 E440	0.2	mg/kg	<0.20	
zinc	7440-66-6 E440	2	mg/kg	<2.0	
zirconium	7440-67-7 E440	-	mg/kg	<1.0	
Metals (QCLot: 233959)					
mercury	7439-97-6 E510	0.005	mg/kg	<0.0050	
Extractable Metals (QCLot: 232092)					
mercury	7439-97-6 E519	0.01	mg/kg	<0.010	-

: Palmer Project Page Work Order Project Client

: 12 of 21 : WR2100682 Amendment 1 Constantine North Inc.

Laboratory Control Sample (LCS) Report

LCS A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Soil/Solid					Laboratory Con	Laboratory Control Sample (LCS) Report	Report	
				Spike	Recovery (%)	Recovery Limits (%)	Limits (%)	
Analyte CAS N	CAS Number Method	LOR	Unit	Concentration	7CS	Том	High	Qualifier
Physical Tests(QCLot: 233544)								
pH (1:2 soil:water)	E108	1	pH units	6 pH units	100	95.0	105	
Physical Tests (QCLot: 233545)								
moisture	E144	0.25	%	50 %	100	0.06	110	
Physical Tests(QCLot: 233797)								
pH (1:2 soil:water)	E108	-	pH units	6 pH units	99.8	95.0	105	
Physical Tests(QCLot: 233798)		20.00	à	à				
moisture	E144	62.0	%	50 %	101	90.06	110	-
Physical Tests (QCLot: 233957)							-	
pH (1:2 soil:water)	E108		pH units	6 pH units	100	95.0	105	
Physical Tests(QCLot: 233960)								
moisture	E144	0.25	%	50 %	100	0.06	110	
Organic / Inorganic Carbon (QCLot: 232764)								
carbon, total [TC]	E351	0.05	%	48 %	98.6	0.06	110	
		1						
: (QCLot: 233542)								
mercury 743	7439-97-6 E510	0.005	mg/kg	0.1 mg/kg	105	80.0	120	
(QCLot: 233543)								
aluminum 742	7429-90-5 E440	50	mg/kg	200 mg/kg	# 76.7	80.0	120	MES
antimony 744	7440-36-0 E440	0.1	mg/kg	100 mg/kg	102	80.0	120	
arsenic 744	7440-38-2 E440	0.1	mg/kg	100 mg/kg	94.6	80.0	120	
barium 744	7440-39-3 E440	0.5	mg/kg	25 mg/kg	101	80.0	120	
beryllium 744	7440-41-7 E440	0.1	mg/kg	10 mg/kg	101	80.0	120	
bismuth 744	7440-69-9 E440	0.2	mg/kg	100 mg/kg	102	80.0	120	
boron 744	7440-42-8 E440	ß	mg/kg	100 mg/kg	108	80.0	120	
cadmium 744	7440-43-9 E440	0.02	mg/kg	10 mg/kg	96.2	80.0	120	
calcium 744	7440-70-2 E440	50	mg/kg	5000 mg/kg	101	80.0	120	
chromium 744	7440-47-3 E440	0.5	mg/kg	25 mg/kg	97.6	80.0	120	
cobalt 744	7440-48-4 E440	0.1	mg/kg	25 mg/kg	96.6	80.0	120	
copper 744	7440-50-8 E440	0.5	mg/kg	25 mg/kg	83.4	80.0	120	
iron 743	7439-89-6 E440	50	mg/kg	100 mg/kg	94.6	80.0	120	
lead 743	7439-92-1 E440	0.5	mg/kg	50 mg/kg	103	80.0	120	
lithium 743	7439-93-2 E440	2	mg/kg	25 mg/kg	106	80.0	120	
magnesium 743	7439-95-4 E440	20	mg/kg	5000 mg/kg	95.5	80.0	120	

: 13 of 21 : WR2100682 Amendment 1 : Constantine North Inc. : Palmer Project

Page Work Order Client Project

Put Matrice Collice					I ahoratory Cor	Lahoratory Control Samula // CS) Renord	Renort	
OUD-MARIX: SOUSOID				Spike	Recovery (%)	Recovery	Recovery Limits (%)	
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Том	High	Qualifier
Metals(QCLot: 233543)- continued								
manganese	7439-96-5 E440		mg/kg	25 mg/kg	95.4	80.0	120	
molybdenum	7439-98-7 E440	0.1	mg/kg	25 mg/kg	105	80.0	120	
nickel	7440-02-0 E440	0.5	mg/kg	50 mg/kg	94.9	80.0	120	
phosphorus	7723-14-0 E440	50	mg/kg	1000 mg/kg	105	80.0	120	-
potassium	7440-09-7 E440	100	mg/kg	5000 mg/kg	94.8	80.0	120	-
selenium	7782-49-2 E440	0.2	mg/kg	100 mg/kg	0.06	80.0	120	
silver	7440-22-4 E440	0.1	mg/kg	10 mg/kg	95.1	80.0	120	
sodium	7440-23-5 E440	50	mg/kg	5000 mg/kg	97.3	80.0	120	
strontium	7440-24-6 E440	0.5	mg/kg	25 mg/kg	104	80.0	120	
sulfur	7704-34-9 E440	1000	mg/kg	5000 mg/kg	94.0	80.0	120	
thallium	7440-28-0 E440	0.05	mg/kg	100 mg/kg	99.4	80.0	120	
tin	7440-31-5 E440	2	mg/kg	50 mg/kg	0.06	80.0	120	
titanium	7440-32-6 E440	-	mg/kg	25 mg/kg	90.1	80.0	120	
tungsten	7440-33-7 E440	0.5	mg/kg	10 mg/kg	98.8	80.0	120	
uranium	7440-61-1 E440	0.05	mg/kg	0.5 mg/kg	94.8	80.0	120	
vanadium	7440-62-2 E440	0.2	mg/kg	50 mg/kg	96.4	80.0	120	
zinc	7440-66-6 E440	2	mg/kg	50 mg/kg	88.3	80.0	120	-
zirconium	7440-67-7 E440		mg/kg	10 mg/kg	110	80.0	120	I
Metals (QCLot: 233795)								
aluminum	7429-90-5 E440	50	mg/kg	200 mg/kg	81.1	80.0	120	
antimony	7440-36-0 E440	0.1	mg/kg	100 mg/kg	100	80.0	120	
arsenic	7440-38-2 E440	0.1	mg/kg	100 mg/kg	96.1	80.0	120	
barium	7440-39-3 E440	0.5	mg/kg	25 mg/kg	100	80.0	120	
beryllium	7440-41-7 E440	0.1	mg/kg	10 mg/kg	106	80.0	120	
bismuth	7440-69-9 E440	0.2	mg/kg	100 mg/kg	105	80.0	120	
boron	7440-42-8 E440	5	mg/kg	100 mg/kg	107	80.0	120	
cadmium	7440-43-9 E440	0.02	mg/kg	10 mg/kg	97.8	80.0	120	
calcium	7440-70-2 E440	50	mg/kg	5000 mg/kg	105	80.0	120	
chromium	7440-47-3 E440	0.5	mg/kg	25 mg/kg	98.0	80.0	120	
cobalt	7440-48-4 E440	0.1	mg/kg	25 mg/kg	98.0	80.0	120	
copper	7440-50-8 E440	0.5	mg/kg	25 mg/kg	85.0	80.0	120	
iron		50	mg/kg	100 mg/kg	102	80.0	120	
lead		0.5	mg/kg	50 mg/kg	106	80.0	120	
lithium		2	mg/kg	25 mg/kg	108	80.0	120	
magnesium		20	mg/kg	5000 mg/kg	100	80.0	120	
manganese	7439-96-5 E440	۲-	mg/kg	25 mg/kg	97.5	80.0	120	
molybdenum	7439-98-7 E440	0.1	mg/kg	25 mg/kg	102	80.0	120	1

: 14 of 21 : WR2100682 Amendment 1 : Constantine North Inc. : Palmer Project

Page Work Order Client Project

Sub-Matrix: Soil/Solid					Laboratory Cor	Laboratory Control Sample (LCS) Report	Report	
				Spike	Recovery (%)	Recovery Limits (%)	Limits (%)	
Analyte	CAS Number Method	LOR	Unit	Concentration	SD1	Том	High	Qualifier
Metals (QCLot: 233795) - continued								
nickel	7440-02-0 E440	0.5	mg/kg	50 mg/kg	97.2	80.0	120	-
phosphorus	7723-14-0 E440	50	mg/kg	1000 mg/kg	105	80.0	120	-
potassium	7440-09-7 E440	100	mg/kg	5000 mg/kg	97.6	80.0	120	-
selenium	7782-49-2 E440	0.2	mg/kg	100 mg/kg	101	80.0	120	-
silver	7440-22-4 E440	0.1	mg/kg	10 mg/kg	93.0	80.0	120	
sodium	7440-23-5 E440	50	mg/kg	5000 mg/kg	98.0	80.0	120	-
strontium	7440-24-6 E440	0.5	mg/kg	25 mg/kg	96.0	80.0	120	-
sulfur	7704-34-9 E440	1000	mg/kg	5000 mg/kg	104	80.0	120	
thallium	7440-28-0 E440	0.05	mg/kg	100 mg/kg	103	80.0	120	
tin	7440-31-5 E440	7	mg/kg	50 mg/kg	98.0	80.0	120	
titanium	7440-32-6 E440	-	mg/kg	25 mg/kg	93.1	80.0	120	
tungsten	7440-33-7 E440	0.5	mg/kg	10 mg/kg	101	80.0	120	
uranium	7440-61-1 E440	0.05	mg/kg	0.5 mg/kg	102	80.0	120	-
vanadium	7440-62-2 E440	0.2	mg/kg	50 mg/kg	98.3	80.0	120	-
zinc	7440-66-6 E440	2	mg/kg	50 mg/kg	90.7	80.0	120	-
zirconium	7440-67-7 E440	-	mg/kg	10 mg/kg	93.2	80.0	120	
Metals (QCLot: 233796)								
mercury	7439-97-6 E510	0.005	mg/kg	0.1 mg/kg	95.6	80.0	120	
Metals (QCLot: 233958)								
aluminum	7429-90-5 E440	50	mg/kg	200 mg/kg	# 77.2	80.0	120	MES
antimony	7440-36-0 E440	0.1	mg/kg	100 mg/kg	106	80.0	120	
arsenic	7440-38-2 E440	0.1	mg/kg	100 mg/kg	95.7	80.0	120	
barium		0.5	mg/kg	25 mg/kg	102	80.0	120	-
beryllium	7440-41-7 E440	0.1	mg/kg	10 mg/kg	103	80.0	120	
bismuth	7440-69-9 E440	0.2	mg/kg	100 mg/kg	106	80.0	120	1
boron	7440-42-8 E440	5	mg/kg	100 mg/kg	108	80.0	120	1
cadmium	7440-43-9 E440	0.02	mg/kg	10 mg/kg	97.9	80.0	120	-
calcium	7440-70-2 E440	50	mg/kg	5000 mg/kg	103	80.0	120	1
chromium	7440-47-3 E440	0.5	mg/kg	25 mg/kg	100	80.0	120	-
cobalt	7440-48-4 E440	0.1	mg/kg	25 mg/kg	99.7	80.0	120	-
copper	7440-50-8 E440	0.5	mg/kg	25 mg/kg	83.4	80.0	120	
iron	7439-89-6 E440	50	mg/kg	100 mg/kg	98.0	80.0	120	
lead	7439-92-1 E440	0.5	mg/kg	50 mg/kg	106	80.0	120	-
lithium	7439-93-2 E440	2	mg/kg	25 mg/kg	106	80.0	120	
magnesium	7439-95-4 E440	20	mg/kg	5000 mg/kg	99.3	80.0	120	
manganese	7439-96-5 E440	-	mg/kg	25 mg/kg	98.9	80.0	120	-
molybdenum	7439-98-7 E440	0.1	mg/kg	25 mg/kg	106	80.0	120	

Qualifier 1 1 l High Recovery Limits (%) 120 130 Laboratory Control Sample (LCS) Report Low 80.0 80.0 80.0 80.0 80.0 80.0 80.0 80.0 80.0 80.0 80.0 80.0 80.0 80.0 80.0 70.0 80.0 80.0 Recovery (%) LCS <u> 9</u>9.5 98.2 95.8 103 98.9 97.8 90.5 98.5 100 100 101 102 102 101 100 110 98.3 102 Concentration 100 mg/kg 100 mg/kg 0.024 mg/kg 000 mg/kg 6000 mg/kg 5000 mg/kg 5000 mg/kg 50 mg/kg 25 mg/kg 50 mg/kg 10 mg/kg 25 mg/kg 0.5 mg/kg 10 mg/kg 50 mg/kg 50 mg/kg 0.1 mg/kg 10 mg/kg Spike mg/kg Unit 1000 0.005 0.05 0.5 50 100 0.2 50 0.5 0.5 0.05 LOR 7 10 0.2 0.01 ÷ 2 CAS Number Method 7440-31-5 E440 7440-32-6 E440 7440-33-7 E440 7440-61-1 E440 7440-62-2 E440 7440-66-6 E440 7440-67-7 E440 7439-97-6 E510 7440-02-0 E440 7723-14-0 E440 7440-09-7 E440 7782-49-2 E440 7440-22-4 E440 7440-23-5 E440 7440-24-6 E440 7704-34-9 E440 7440-28-0 E440 7439-97-6 E519 Metals (QCLot: 233958) - continued Extractable Metals (QCLot: 232092) Metals (QCLot: 233959) Sub-Matrix: Soil/Solid Qualifiers phosphorus potassium Analyte vanadium zirconium selenium strontium tungsten uranium sodium titanium thallium nercury nercury nickel silver sulfur zinc

Qualifier

MES

Description

Data Quality Objective was marginally exceeded (by < 10% absolute) for < 10% of analytes in a Multi-Element Scan / Multi-Parameter Scan (considered acceptable as per OMOE & CCME).

Project

15 of 21 WR2100682 Amendment 1

Work Order

Client Page

Constantine North Inc. Palmer Project

: 16 of 21	: WR2100682 Amendment 1	: Constantine North Inc.	: Palmer Project	
Page	Work Order	Client	Project	

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test Matrix Spike (MS) Report results for the associated sample (or similar samples) may be subject to bias. ND - Recovery not determined, background level >= 1x spike level. Sub-Matrix: Soil/Solid

Sub-Matrix: Soil/Solid	q						warrix spike	матгіх эріке (мэ) керогі		
					Spike	ke	Recovery (%)	Recovery Limits (%)	Limits (%)	
Laboratory sample Client sample ID	Client sample ID	Analyte	CAS Number Method	Method	Concentration	Target	SW	том	High	Qualifier
Inorganic Parame	norganic Parameters (QCLot: 232091)									
WR2100682-002 2021 LGC S2	2021 LGC S2	sulfides, acid volatile	-	E396	191 mg/kg	200 mg/kg	100	70.0	130	1

: 17 of 21 : WR2100682 Amendment 1 Constantine North Inc. : Palmer Project Work Order Project Client Page

Reference Material (RM) Report

RMs are processed in an identical manner to test samples, and are used to monitor and control the accuracy and precision of a test method for a typical sample matrix. RM results are expressed as percent recovery of the target analyte concentration. RM targets may be certified target A Reference Material (RM) is a homogenous material with known and well-established analyte concentrations. concentrations provided by the RM supplier, or may be ALS long-term mean values (for empirical test methods).

Sub-Matrix: Soil/Solid	lid				RM Taraet	Recovery (%)	кегепсе матела (км) керол (%) Recovery Limits (%)	oort imits (%)	
Laboratory sample ID	Reference Material ID	Analyte CA	CAS Number	Method	Concentration	RM	мот	High	Qualifier
Physical Tests (QCLot: 235713)	QCLot: 235713)								
QC-235713-002	RM	loss on ignition @ 550°C	1	E205D	7.1 %	104	80.0	120	I
Particle Size (QCLot: 232579)	;Lot: 232579)								
QC-232579-001	RM	passing (19 mm)	1	E181	100 %	100	0.06	110	I
QC-232579-001	RM	passing (2.0 mm)	1	E181	100 %	100	90.0	110	
QC-232579-001	RM	passing (25.4 mm)	1	E181	100 %	100	90.06	110	1
QC-232579-001	RM	passing (38.1 mm)	1	E181	100 %	100	90.06	110	
QC-232579-001	RM	passing (4.75 mm)	I	E181	100 %	100	90.0	110	I
QC-232579-001	RM	passing (50.8 mm)	I	E181	100 %	100	90.0	110	I
QC-232579-001	RM	passing (76.2 mm)	I	E181	100 %	100	90.0	110	I
QC-232579-001	RM	passing (9.5 mm)	1	E181	100 %	100	90.0	110	1
Particle Size (QCLot: 232580)	;Lot: 232580)								
QC-232580-001	RM	passing (0.05 mm)	1	E182	49.81 %	98.4	0.06	110	I
QC-232580-001	RM	passing (0.063 mm)	I	E182	54.27 %	98.4	90.8	109	I
QC-232580-001	RM	passing (0.075 mm)	-	E182	58.38 %	98.4	91.4	109	1
QC-232580-001	RM	passing (0.125 mm)	1	E182	68.06 %	98.8	92.7	107	1
QC-232580-001	RM	passing (0.149 mm)	1	E182	72.71 %	98.9	93.1	107	1
QC-232580-001	RM	passing (0.250 mm)	I	E182	85.38 %	98.8	94.1	106	I
QC-232580-001	RM	passing (0.420 mm)	I	E182	92.78 %	99.8	94.6	105	1
QC-232580-001	RM	passing (0.50 mm)	ł	E182	93.78 %	99.8	94.7	105	I
QC-232580-001	RM	passing (0.841 mm)	1	E182	97.34 %	99.9	94.9	105	1
QC-232580-001	RM	passing (1.0 mm)	1	E182	97.77 %	100.0	94.9	105	1
Particle Size (QC	(QCLot: 232581)								
QC-232581-001	RM	passing (0.002 mm)	-	E183	21.14 %	101	60.0	140	
QC-232581-001	RM	passing (0.004 mm)	I	E183	24.64 %	102	60.0	140	I
QC-232581-001	RM	passing (0.005 mm)	ł	E183	25.91 %	103	60.0	140	I
QC-232581-001	RM	passing (0.020 mm)	1	E183	37.12 %	102	60.0	140	1
QC-232581-001	RM	passing (0.0312 mm)	1	E183	42.58 %	99.3	60.0	140	
Organic / Inorgan	Organic / Inorganic Carbon (QCLot: 232764)	2764)							
QC-232764-003	RM	carbon, total [TC]	1	E351	1.4 %	97.8	80.0	120	I

 Page
 : 18 of 21

 Work Order
 : WR2100682 Amendment 1

 Client
 : Constantine North Inc.

 Project
 : Palmer Project

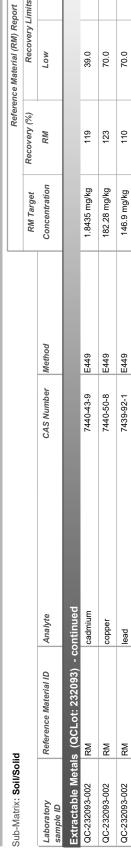
Sub-Matrix: Soil/Solid	lid					Reference	Reference Material (RM) Report	oort	
					RM Target	Recovery (%)	Recovery Limits (%)	imits (%)	
Laboratory sample ID	Reference Material ID	Analyte	CAS Number	Method	Concentration	RM	Том	High	Qualifier
Metals (QCLot: 233542)	233542)								
QC-233542-003	SCP SS-2	mercury	7439-97-6	E510	0.059 mg/kg	105	70.0	130	1
Metals (QCLot: 233543)	233543)							-	
QC-233543-003	SCP SS-2	aluminum	7429-90-5	E440	9817 mg/kg	85.9	70.0	130	-
QC-233543-003	SCP SS-2	antimony	7440-36-0	E440	3.99 mg/kg	99.1	70.0	130	1
QC-233543-003	SCP SS-2	arsenic	7440-38-2	E440	3.73 mg/kg	116	70.0	130	1
QC-233543-003	SCP SS-2	barium	7440-39-3	E440	105 mg/kg	107	70.0	130	1
QC-233543-003	SCP SS-2	beryllium	7440-41-7	E440	0.349 mg/kg	103	70.0	130	1
QC-233543-003	SCP SS-2	boron	7440-42-8	E440	8.5 mg/kg	119	40.0	160	l
QC-233543-003	SCP SS-2	cadmium	7440-43-9	E440	0.91 mg/kg	105	70.0	130	1
QC-233543-003	SCP SS-2	calcium	7440-70-2	E440	31082 mg/kg	107	70.0	130	1
QC-233543-003	SCP SS-2	chromium	7440-47-3	E440	101 mg/kg	113	70.0	130	1
QC-233543-003	SCP SS-2	cobalt	7440-48-4	E440	6.9 mg/kg	102	70.0	130	I
QC-233543-003	SCP SS-2	copper	7440-50-8	E440	123 mg/kg	91.8	70.0	130	I
QC-233543-003	SCP SS-2	iron	7439-89-6	E440	23558 mg/kg	104	70.0	130	1
QC-233543-003	SCP SS-2	lead	7439-92-1	E440	267 mg/kg	104	70.0	130	1
QC-233543-003	SCP SS-2	lithium	7439-93-2	E440	9.5 mg/kg	101	70.0	130	1
QC-233543-003	SCP SS-2	magnesium	7439-95-4	E440	5509 mg/kg	104	70.0	130	1
QC-233543-003	SCP SS-2	manganese	7439-96-5	E440	269 mg/kg	108	70.0	130	1
QC-233543-003	SCP SS-2	molybdenum	7439-98-7	E440	1.03 mg/kg	104	70.0	130	1
QC-233543-003	SCP SS-2	nickel	7440-02-0	E440	26.7 mg/kg	103	70.0	130	1
QC-233543-003	SCP SS-2	phosphorus	7723-14-0	E440	752 mg/kg	97.5	70.0	130	1
QC-233543-003	SCP SS-2	potassium	7440-09-7	E440	1587 mg/kg	109	70.0	130	1
QC-233543-003	SCP SS-2	sodium	7440-23-5	E440	797 mg/kg	103	70.0	130	1
QC-233543-003	SCP SS-2	strontium	7440-24-6	E440	86.1 mg/kg	103	70.0	130	1
QC-233543-003	SCP SS-2	thallium	7440-28-0	E440	0.0786 mg/kg	101	40.0	160	1
QC-233543-003	SCP SS-2	tin	7440-31-5	E440	10.6 mg/kg	100	70.0	130	1
QC-233543-003	SCP SS-2	titanium	7440-32-6	E440	839 mg/kg	114	70.0	130	1
QC-233543-003	SCP SS-2	uranium	7440-61-1	E440	0.52 mg/kg	101	70.0	130	-
QC-233543-003	SCP SS-2	vanadium	7440-62-2	E440	32.7 mg/kg	107	70.0	130	1
QC-233543-003	SCP SS-2	zinc	7440-66-6	E440	297 mg/kg	95.1	70.0	130	1
QC-233543-003	SCP SS-2	zirconium	7440-67-7	E440	5.73 mg/kg	104	70.0	130	ł
Metals (QCLot: 233795)	233795)								

: 19 of 21 : WR2100682 Amendment 1 : Constantine North Inc. : Palmer Project Page Work Order Client Project

l

ALS

					Dofor	Deference Material (DM) Denort	1	
Sub-Matrix: Soil/Solid				RM Target	Recovery (%)	Recovery Limits (%)	mits (%)	
Laboratory sample ID	Reference Material ID	Analyte CAS Number	nber Method	Concentration	RM	Гом	High	Qualifier
Metals (QCLot: 2	Metals (QCLot: 233795) - continued							
QC-233795-003	SCP SS-2	aluminum 7429-90-5)-5 E440	9817 mg/kg	85.9	70.0	130	-
QC-233795-003	SCP SS-2	antimony 7440-36-0	3-0 E440	3.99 mg/kg	106	70.0	130	1
QC-233795-003	SCP SS-2	arsenic 7440-38-2	3-2 E440	3.73 mg/kg	110	70.0	130	1
QC-233795-003	SCP SS-2	barium 7440-39-3	3-3 E440	105 mg/kg	101	70.0	130	1
QC-233795-003	SCP SS-2	beryllium 7440-41-7	I-7 E440	0.349 mg/kg	118	70.0	130	I
QC-233795-003	SCP SS-2	boron 7440-42-8	2-8 E440	8.5 mg/kg	134	40.0	160	1
QC-233795-003	SCP SS-2	cadmium 7440-43-9	3-9 E440	0.91 mg/kg	93.1	70.0	130	1
QC-233795-003	SCP SS-2	calcium 7440-70-2	D-2 E440	31082 mg/kg	114	70.0	130	1
QC-233795-003	SCP SS-2	chromium 7440-47-3	7-3 E440	101 mg/kg	110	70.0	130	1
QC-233795-003	SCP SS-2	cobalt 7440-48-4	3-4 E440	6.9 mg/kg	105	70.0	130	1
QC-233795-003	SCP SS-2	copper 7440-50-8)-8 E440	123 mg/kg	91.5	70.0	130	
QC-233795-003	SCP SS-2	iron 7439-89-6	3-6 E440	23558 mg/kg	104	70.0	130	1
QC-233795-003	SCP SS-2	lead 7439-92-1	2-1 E440	267 mg/kg	109	70.0	130	
QC-233795-003	SCP SS-2	lithium 7439-93-2	3-2 E440	9.5 mg/kg	115	70.0	130	1
QC-233795-003	SCP SS-2	magnesium 7439-95-4	5-4 E440	5509 mg/kg	107	70.0	130	1
QC-233795-003	SCP SS-2	manganese 7439-96-5	3-5 E440	269 mg/kg	108	70.0	130	
QC-233795-003	SCP SS-2	molybdenum 7439-98-7	3-7 E440	1.03 mg/kg	110	70.0	130	
QC-233795-003	SCP SS-2	nickel 7440-02-0	2-0 E440	26.7 mg/kg	102	70.0	130	
QC-233795-003	SCP SS-2	phosphorus 7723-14-0	t-0 E440	752 mg/kg	110	70.0	130	
QC-233795-003	SCP SS-2	potassium 7440-09-7	9-7 E440	1587 mg/kg	112	70.0	130	
QC-233795-003	SCP SS-2	sodium 7440-23-5	3-5 E440	797 mg/kg	103	70.0	130	
QC-233795-003	SCP SS-2	strontium 7440-24-6	t-6 E440	86.1 mg/kg	107	70.0	130	
QC-233795-003	SCP SS-2	thallium 7440-28-0	3-0 E440	0.0786 mg/kg	103	40.0	160	
QC-233795-003	SCP SS-2	tin 7440-31-5	I-5 E440	10.6 mg/kg	101	70.0	130	1
QC-233795-003	SCP SS-2	titanium 7440-32-6	2-6 E440	839 mg/kg	113	70.0	130	1
QC-233795-003	SCP SS-2	uranium 7440-61-1	I-1 E440	0.52 mg/kg	111	70.0	130	
QC-233795-003	SCP SS-2	vanadium 7440-62-2	2-2 E440	32.7 mg/kg	107	70.0	130	
QC-233795-003	SCP SS-2	zinc 7440-66-6	3-6 E440	297 mg/kg	96.2	70.0	130	
QC-233795-003	SCP SS-2	zirconium 7440-67-7	7-7 E440	5.73 mg/kg	95.1	70.0	130	
Metals (QCLot: 233796)	233796)							
QC-233796-003	SCP SS-2	mercury 7439-97-6	7-6 E510	0.059 mg/kg	114	70.0	130	l
Metals (QCLot: 233958)	233958)							


: 20 of 21 : WR2100682 Amendment 1 : Constantine North Inc. : Palmer Project Page Work Order Client Project

l

Sub Motriv: Coil/Colid	3				Referen	Reference Material (RM) Report	port	
	2			RM Target	Recovery (%)	Recovery Limits (%)	imits (%)	
Laboratory sample ID	Reference Material ID	Analyte CAS Number	umber Method	Concentration	RM	Тоw	High	Qualifier
Metals (QCLot: 2	Metals (QCLot: 233958) - continued							
QC-233958-003	SCP SS-2	aluminum 7429-90-5	90-5 E440	9817 mg/kg	81.0	70.0	130	
QC-233958-003	SCP SS-2	antimony 7440-36-0	36-0 E440	3.99 mg/kg	100	70.0	130	1
QC-233958-003	SCP SS-2	arsenic 7440-38-2	38-2 E440	3.73 mg/kg	106	70.0	130	1
QC-233958-003	SCP SS-2	barium 7440-39-3	39-3 E440	105 mg/kg	103	70.0	130	
QC-233958-003	SCP SS-2	beryllium 7440-41-7	41-7 E440	0.349 mg/kg	102	70.0	130	
QC-233958-003	SCP SS-2	boron 7440-42-8	42-8 E440	8.5 mg/kg	118	40.0	160	1
QC-233958-003	SCP SS-2	cadmium 7440-43-9	43-9 E440	0.91 mg/kg	96.8	70.0	130	
QC-233958-003	SCP SS-2	calcium 7440-70-2	70-2 E440	31082 mg/kg	104	70.0	130	1
QC-233958-003	SCP SS-2	chromium 7440-47-3	47-3 E440	101 mg/kg	108	70.0	130	
QC-233958-003	SCP SS-2	cobalt 7440-48-4	48-4 E440	6.9 mg/kg	100	70.0	130	
QC-233958-003	SCP SS-2	copper 7440-50-8	50-8 E440	123 mg/kg	82.5	70.0	130	1
QC-233958-003	SCP SS-2	iron 7439-89-6	89-6 E440	23558 mg/kg	102	70.0	130	
QC-233958-003	SCP SS-2	lead 7439-92-1	92-1 E440	267 mg/kg	101	70.0	130	
QC-233958-003	SCP SS-2	lithium 7439-93-2	93-2 E440	9.5 mg/kg	99.5	70.0	130	1
QC-233958-003	SCP SS-2	magnesium 7439-95-4	95-4 E440	5509 mg/kg	103	70.0	130	
QC-233958-003	SCP SS-2	7439-96-5 7439-96-5	96-5 E440	269 mg/kg	106	70.0	130	1
QC-233958-003	SCP SS-2	molybdenum 7439-98-7	98-7 E440	1.03 mg/kg	107	70.0	130	
QC-233958-003	SCP SS-2	nickel 7440-02-0	02-0 E440	26.7 mg/kg	99.2	70.0	130	1
QC-233958-003	SCP SS-2	phosphorus 7723-14-0	14-0 E440	752 mg/kg	89.2	70.0	130	
QC-233958-003	SCP SS-2	potassium 7440-09-7	09-7 E440	1587 mg/kg	110	70.0	130	
QC-233958-003	SCP SS-2	sodium 7440-23-5	23-5 E440	797 mg/kg	100	70.0	130	
QC-233958-003	SCP SS-2	strontium 7440-24-6	24-6 E440	86.1 mg/kg	101	70.0	130	
QC-233958-003	SCP SS-2	thallium 7440-28-0	28-0 E440	0.0786 mg/kg	96.9	40.0	160	
QC-233958-003	SCP SS-2	tin 7440-31-5	31-5 E440	10.6 mg/kg	109	70.0	130	
QC-233958-003	SCP SS-2	titanium 7440-32-6	32-6 E440	839 mg/kg	115	70.0	130	1
QC-233958-003	SCP SS-2	uranium 7440-61-1	61-1 E440	0.52 mg/kg	104	70.0	130	
QC-233958-003	SCP SS-2	vanadium 7440-62-2	62-2 E440	32.7 mg/kg	104	70.0	130	1
QC-233958-003	SCP SS-2	zinc 7440-66-6	66-6 E440	297 mg/kg	89.2	70.0	130	
QC-233958-003	SCP SS-2	zirconium 7440-67-7	67-7 E440	5.73 mg/kg	96.3	70.0	130	
Metals (QCLot: 233959)	233959)							
QC-233959-003	SCP SS-2	mercury 7439-97-6	97-6 E510	0.059 mg/kg	104	70.0	130	
Extractable Meta	Extractable Metals (QCLot: 232093)							

: 21 of 21	: WR2100682 Amendment 1	: Constantine North Inc.	: Palmer Project
Page	Work Order	Client	Project

Qualifier

High

Low

Recovery Limits (%)

I

50.0 70.0

119

5.8224 mg/kg 260.21 mg/kg

E449 E449

7440-02-0 7440-66-6

nickel

zinc

RR

RM

QC-232093-002 QC-232093-002

119

70.0

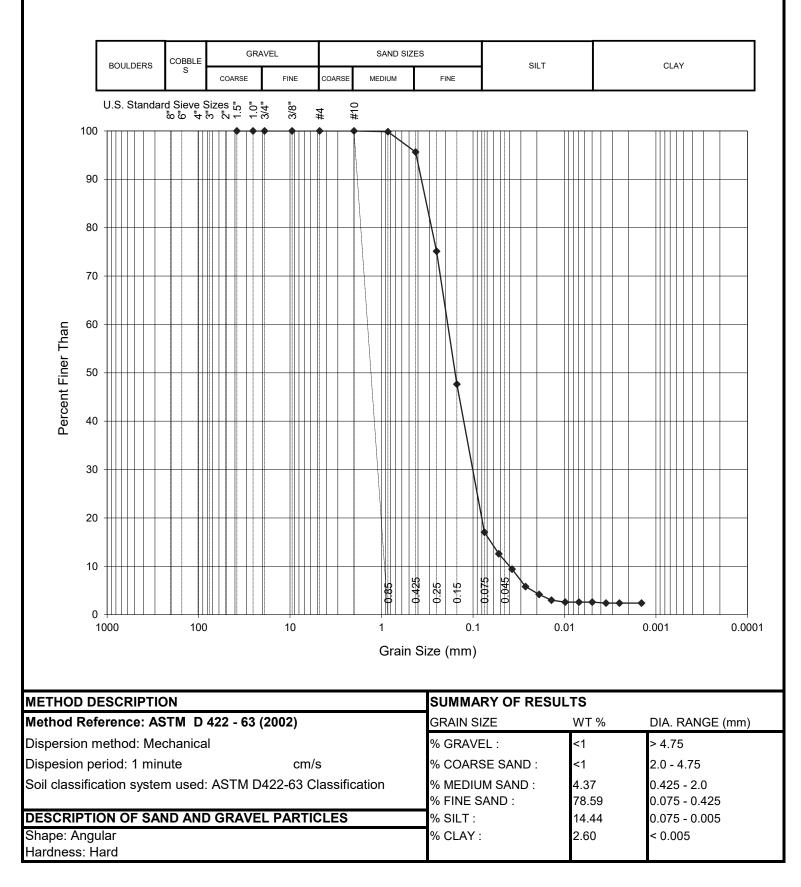
l

l l

130 130 150 130

70.0

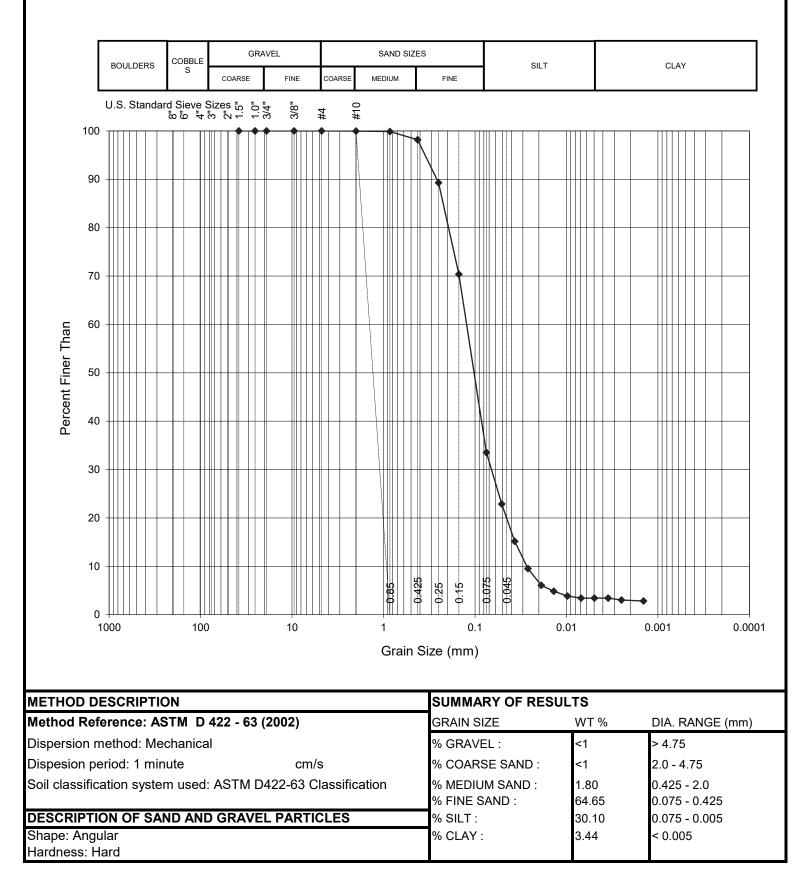
l


161

39.0

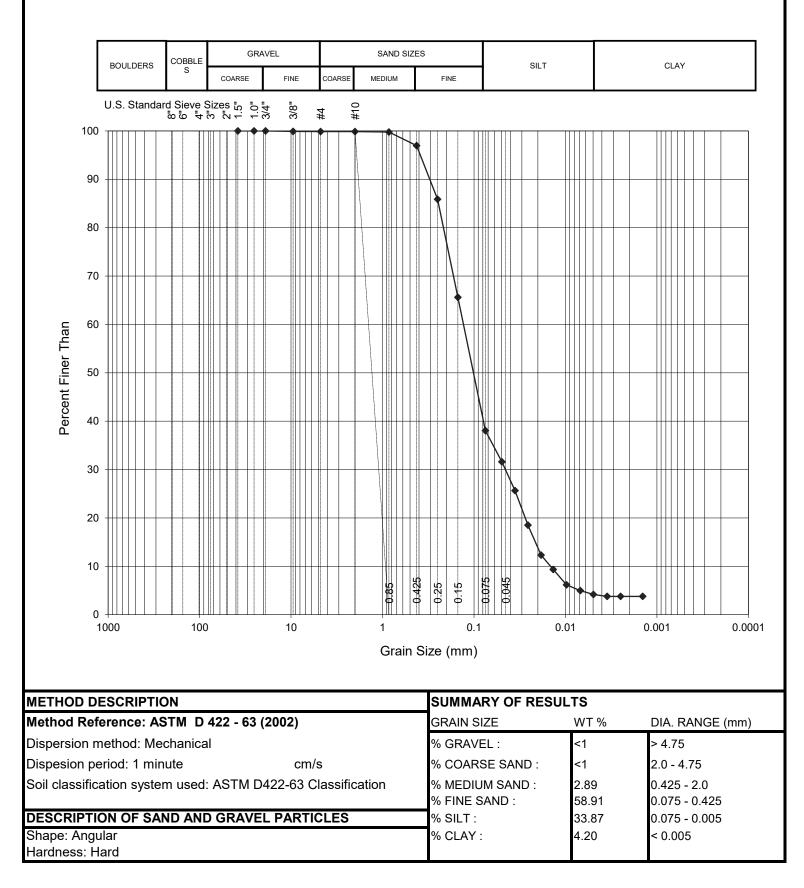
819-58th Street, Saskatoon,SK

PARTICLE SIZE DISTRIBUTION CURVE


Client Name:WR2100682001Project Number:2021 LGC S1Client Sample ID2021 LGC S1Lab Sample IDWR2100682001Date Sample Received 00-Jan-00Test Completion Date:02-Jul-21Analyst:SIH

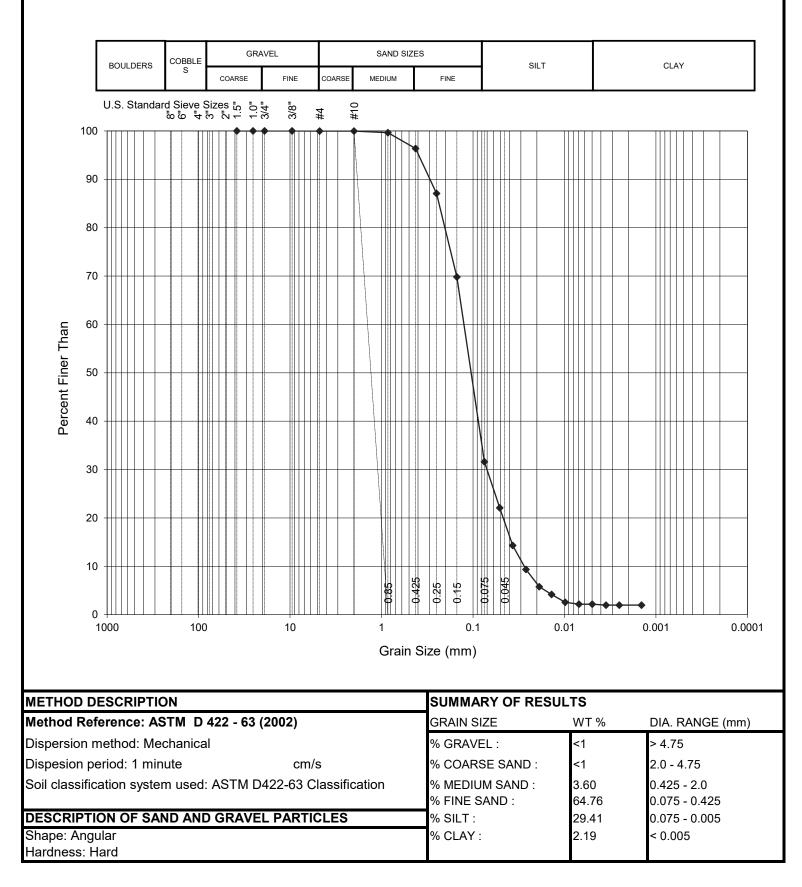
819-58th Street, Saskatoon,SK

PARTICLE SIZE DISTRIBUTION CURVE


Client Name:WR2100682002Project Number:2021 LGC S2Client Sample ID2021 LGC S2Lab Sample IDWR2100682002Date Sample Received 00-Jan-00Test Completion Date: 02-Jul-21Analyst:SIH

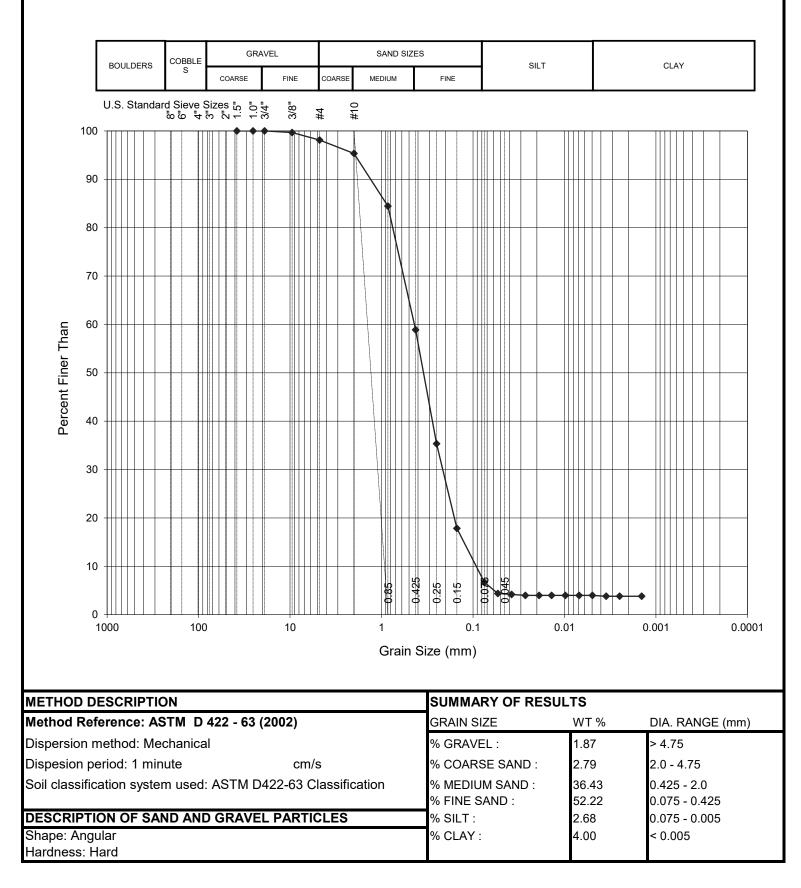
819-58th Street, Saskatoon,SK

PARTICLE SIZE DISTRIBUTION CURVE


Client Name:WR2100682003Project Number:2021 LGC S3Client Sample ID2021 LGC S3Lab Sample IDWR2100682003Date Sample Received 00-Jan-00Test Completion Date: 02-Jul-21Analyst:SIH

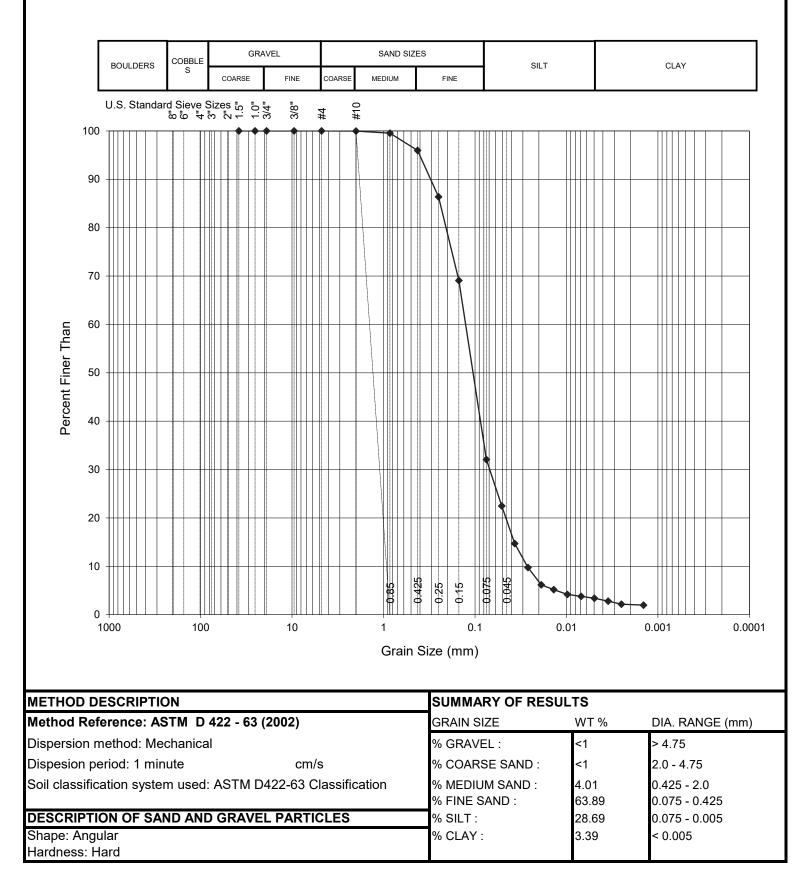
819-58th Street, Saskatoon,SK

PARTICLE SIZE DISTRIBUTION CURVE


Client Name:WR2100682004Project Number:2021 LGC S4Client Sample ID2021 LGC S4Lab Sample IDWR2100682004Date Sample Received 00-Jan-00Test Completion Date: 02-Jul-21Analyst:SIH

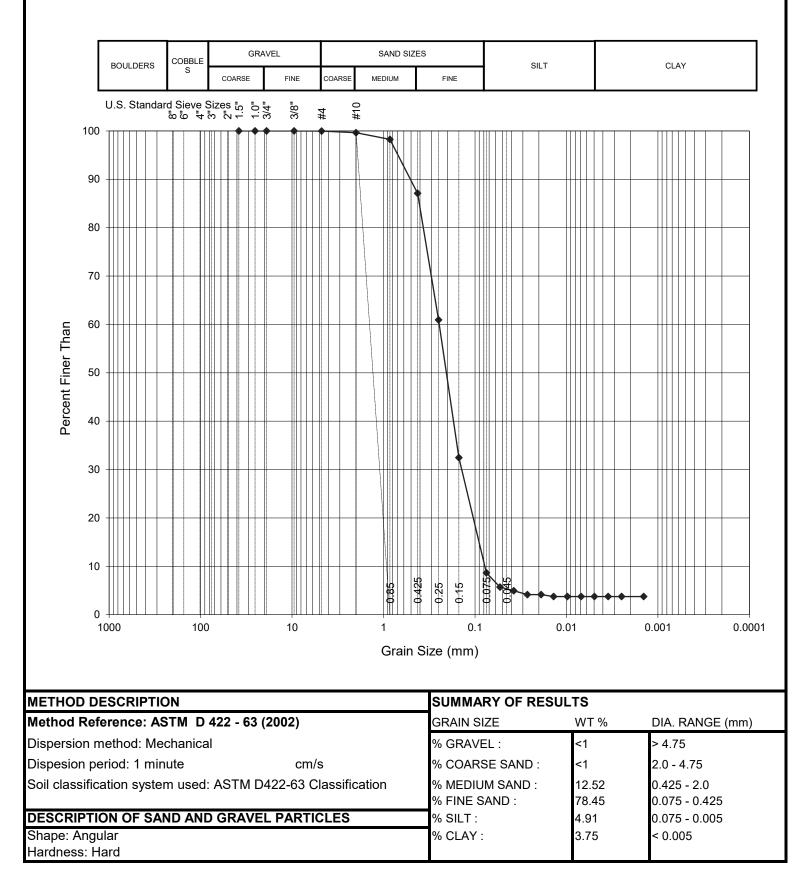
819-58th Street, Saskatoon,SK

PARTICLE SIZE DISTRIBUTION CURVE


Client Name:WR2100682005Project Number:2021 LGC S5Client Sample ID2021 LGC S5Lab Sample IDWR2100682005Date Sample Received 00-Jan-00Test Completion Date: 02-Jul-21Analyst:SIH

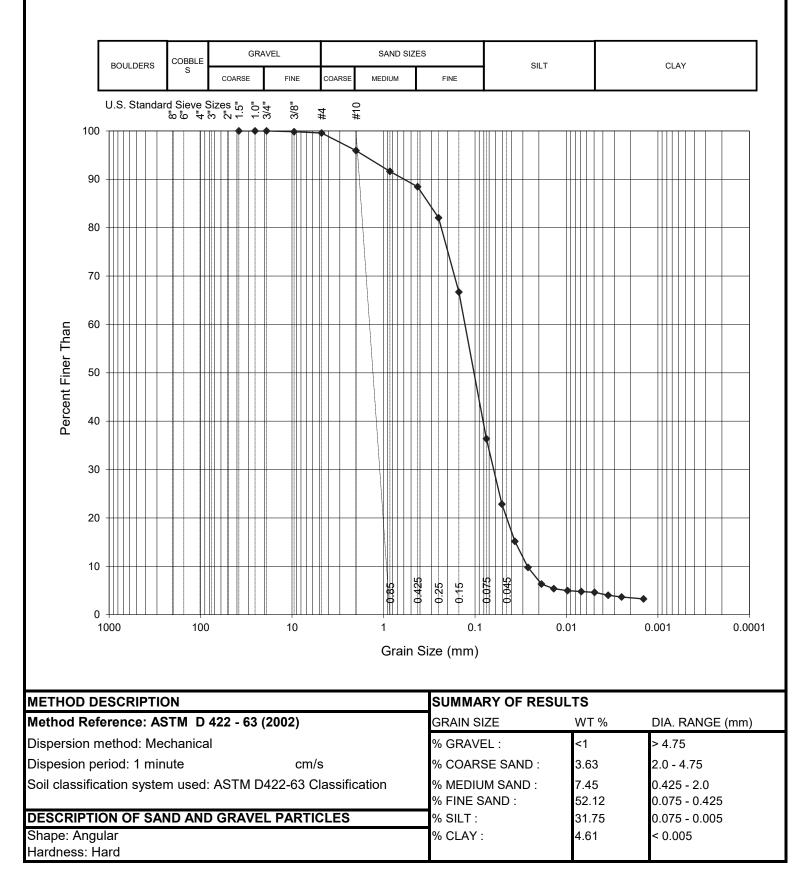
819-58th Street, Saskatoon,SK

PARTICLE SIZE DISTRIBUTION CURVE

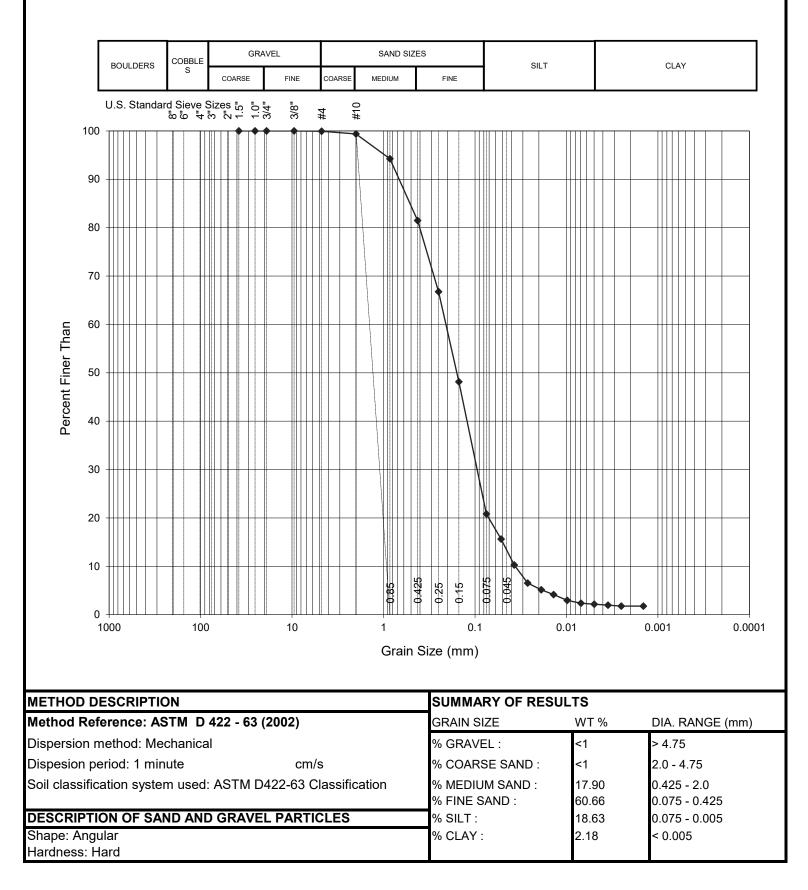

Client Name:WR2100682006Project Number:2021 MGC S1Client Sample ID2021 MGC S1Lab Sample IDWR2100682006Date Sample Received 00-Jan-00Test Completion Date: 02-Jul-21Analyst:SIH

819-58th Street, Saskatoon,SK

PARTICLE SIZE DISTRIBUTION CURVE

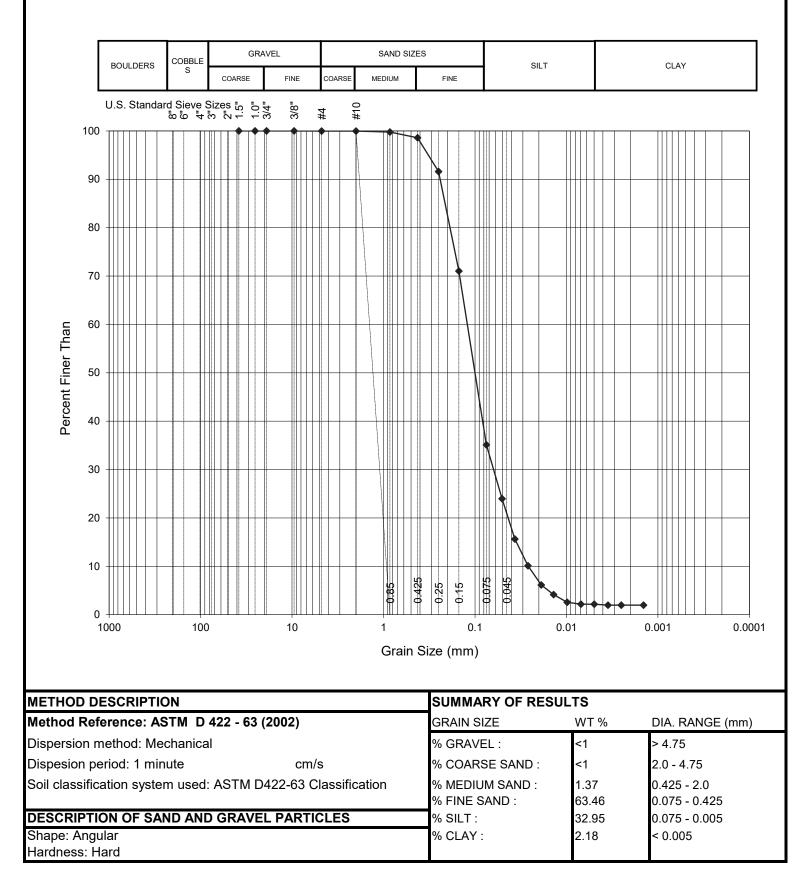

Client Name:WR2100682007Project Number:2021 MGC S2Client Sample ID2021 MGC S2Lab Sample IDWR2100682007Date Sample Received 00-Jan-00Test Completion Date: 02-Jul-21Analyst:SIH

819-58th Street, Saskatoon,SK


Client Name:WR2100682008Project Number:2021 MGC S3Client Sample ID2021 MGC S3Lab Sample IDWR2100682008Date Sample Received 00-Jan-00OU-Jan-00Test Completion Date:02-Jul-21Analyst:SIH

819-58th Street, Saskatoon,SK

PARTICLE SIZE DISTRIBUTION CURVE


Client Name:WR2100682009Project Number:2021 MGC S4Client Sample ID2021 MGC S4Lab Sample IDWR2100682009Date Sample Received 00-Jan-00Test Completion Date: 02-Jul-21Analyst:SIH

819-58th Street, Saskatoon,SK

PARTICLE SIZE DISTRIBUTION CURVE

Client Name:WR2100682010Project Number:2021 MGC S5Client Sample ID2021 MGC S5Lab Sample IDWR2100682010Date Sample Received 00-Jan-00Test Completion Date: 02-Jul-21Analyst:SIH

6 - 5-	-200%	MPLES ON HOLD		Time:
coc Number: 17 - 773584 barcode label here (lab use only) of Page of	Select Service Level Below - Contact your AM to confirm all E&P TATs (surcharges may apply) Regular [R] Standard TAT if received by 3 pm - business days - no surcharges apply Regular [R] Standard TAT if received by 3 pm - business days - no surcharges apply Regular [R] I Base apply Standard TAT if received by 3 pm - business days - no surcharges apply Regular [R] I Base apply I Base and Time Required for all E&P TATs: dd-mmm-yy hh:mm Date and Time Required for all E&P TATs: AnalVsis Request AnalVsis Request AnalVsis Request	INICIDE CONTRINERS	Telephone: +1 B67 688 6689	SAMPLE CONDITION AS RECEIVED (lab use only) Frozen SIF Observations Frozen Ice Cubes Cooling Initiated Custody seal intact Virt A Initiated Nithal Cooler TEMPERATURES *C FINAL COOLER TEMPERATURES *C Nithal Cooler TEMPERATURES *C FINAL COOLER TEMPERATURES *C Nithal FINAL SHIPMENT RECEPTION (lab use only) Time: Received by:
Chain of Custody (COC) / Analytical Request Form Affix ALS barcode (lab use only) Canada Toll Free: 1 800 668 9878	Report Format / Distribution eport Format: PpF Dontrol (QC) Report with Report YEB Control (QC) Report with Report YEB Dontrol (QC) Report with Report YEB Name Results to Criteria on Report - provide details below if box checked Istribution: X Server With Report Natu All and Krich Onlesser and Versided	Email 3 Invoice Distribution Select Invoice Distribution: Email 0 Email 1 or Fax All 0 Email 2 Oil and Gas Required Fields (client use) AFE/cost Center: PO# Mayor Minor Code: Routing Code: ALS Contact: Sampler:	Date Time Sample Type (dd-mmm-yy) (hhmm) Sample Type I6-Sun-3 1200 Sei/ I6-Sun-3 1300 Sei/ I 1 1 I 1 1 I 1 1 I 1 1 I 1 1 I 1 1 I 1 1 I 1 1 I 1 1 I 1 1 I 1 1 I 1 1	Specify Criteria to add on report by clicking on the drop-down list below (electronic COC only) (electronic COC only) Received Or NITIAL SHIPMENT RECEPTION (lab use only) Received Or NITIAL SHIPMENT RECEPTION (lab use only) NHITE - LABORATORY COPY VELLOW
Environmental	Contact and co ADFA 6 Dyl and Q017461 Company address bel DC B03	Same as Copy of Copy of Ad Morte #	pile # Sample Identification and/or Coordinates nily This description will appear on the report) 2020 LGC SI 2021 LGC SI 2022 MGC SI 2023 MGC SI 2023 MGC SI 2023 MGC SI 2021 MGC SI	Iking Water (DW) Samples' (client use) taken from a Regulated DW System? YES NO for human consumption/ use? I YES NO SHIPMENT RELEASE (client use) SHIPMENT RELEASE (client use) C / (C / 2)
ALS	Report To Company: Contact: Phone: Street: City//Province:	Postal Code: Invoice To Company: Contact: ALS Accourt Job #: LSD: ALS Lab	ALS Sample # (lab use only)	Drii Are samples Are samples Released by

I

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

Affix Al Sharcode taket here	(lab use only) Page of		ce Level Below -	Regular [R] Standard TAT if i	문함 4 day [P4-20%] [명임 in the start [E - 100%] [명임 [E - 100%] [명령 [1 - 100%] [1 - 100%] [1 - 100%] [1 - 100%] [1 - 100%] [1 - 100%] [1 - 100%] [1 - 100%] [1 - 100%] [1 - 100%] [1 - 100%] [1 - 100%] [1 - 100%] [1 - 100%] [1 - 100%] [1 - 100%] [1 - 100\%] [1 -	💈 2 day [P2-50%]	Date and Time Required for all E&P TATs; dd-mmm-yy hh:mm	For tests that can not be performed according to the service level selected, you will be contacted.	 Analysis Request 	indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below									Environmental Division			Whitehorse Work Order Reference WOR2100682						Teleohone : +1 A67 668 6689		Frozen SAMPLE CONDITION AS RECEIVED (lab use only)	ks T ice Cubes D custody seal intact Yes D * No	/// CONTEXTEMPERATURES*C* FINAL CONTEXTEMPERATURES*C	.988	Time: Received by: UA Date: 34 Murane 34 Survey	- CLIENT COPY
Chain of Custody (COC) / Analytical	Canada Toll Free: 1 800 668 9878		teport Format / Distribution	EXCEL EDD(Quality Control (QC) Report with Report I YES NO Compare Results to Criteria on Report - provide detaits below if box checked	Select Distribution:	Email 1 or Fax dulan, Kir W Dales Ka. 9 00	allegraceconsteintive wet	Email 3 C CUY	nvoice Distribution	1	Email 1 or Fax Allegra CC	101		Majorminor Lode: Koutang Code: Remistioner	Location:	ALS Contact ON ALS Contact of Sampler: DK	Date	liec one I k- unc 91				+ }	12-Jun-2/ 1300				+ +		Special Instructions / Specify Criteria to add on report by clicking on the drop-down list below (electronic COC only)				Received Brog	WHITE - LABORATORY COPY YELLOW
Chain of C	Ital	M	Contact and company name below will a		Contact: Dylat, K/V I	Company address below will appear	Street: PC Box 11008.4	City/Province: JUNEAU AK	ad 801		Copy of Invoice with Report	Company: The Clonstantine Minude			POLAFE Yalmer Yrojecz		LS Lab Work Order # (lab use only): $\mathcal{NR}\mathcal{U}\mathcal{D}\mathcal{B}\mathcal{T}$	ALS Sample # Sample Identification and/or Coordinates	Lor (PO)	1 160	101	4 202 LGC 34	** 202/ LGC 55	I DODI MECSI		** 2021 MGC 53	4 2021 MEC SY	* * 10 2021 MCC SS		Drinking Water (DW) Samples ¹ (client use) Special Instructio	om a Regulated DW System?	Are samples for human consumption/ use?	SHIPMENT RELEASE (client use)	Released by: Date D. Jar 6/16/21 1920	REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION 1. Includes and the Location of Deministry Marker (DM) Sector Descention